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ABSTRACT

This paper presents objective metrics for how explainable artifi-
cial intelligence (XAI) can be quantified. Through an overview of
current trends, we show that many explanations are generated
post-hoc and independent of the agent’s logical process, which
in turn creates explanations with limited meaning as they lack
transparency and fidelity. While user studies are a known basis for
evaluating XAl, studies that do not consider objective metrics for
evaluating XAI may have limited meaning and may suffer from
confirmation bias, particularly if they use low fidelity explanations
unnecessarily. To avoid this issue, this paper suggests a paradigm
shift in evaluating XAI that focuses on metrics that quantify the
explanation itself and its appropriateness given the XAI goal. We
suggest four such metrics based on performance differences, D, be-
tween the explanation’s logic and the agent’s actual performance,
the number of rules, R, outputted by the explanation, the number
of features, F, used to generate that explanation, and the stability,
S, of the explanation. We believe that user studies that focus on
these metrics in their evaluations are inherently more valid and
should be integrated in future XAl research.

KEYWORDS

Explainable Artificial Intelligence; Interpretable Machine Learning;
Human-Agent Systems; System Evaluation

ACM Reference Format:

Avi Rosenfeld. 2021. Better Metrics for Evaluating Explainable Artificial In-
telligence: Blue Sky Ideas Track. In Proc. of the 21th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2021), Online, May
3-7, 2021, IFAAMAS, 6 pages.

1 OVERVIEW

As the field of Artificial Intelligence matures and becomes ubiqui-
tous, there is a growing emergence of systems where people and
agents work together. These systems, often called Human-Agent
Systems or Human-Agent Cooperatives, have moved from theory
to reality in the many forms, including digital personal assistants,
recommendation systems, training and tutoring systems, service
robots, chatbots, planning systems, self-driving cars and medical
diagnostic systems [2-4, 6, 14, 21-25, 27, 29, 34, 36, 37, 40-42, 42—
45,45, 47, 48, 50, 52, 53, 55, 56, 58—60, 63, 64, 66, 67, 69, 72, 73]. In this
paper we focus on how well agents in these systems explain their
logic to the people they interact with — the challenge of quantifying
the effectiveness of explainable artificial intelligence (XAI).
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Please consider the following scenario to better motivate sur-
rounding challenges in quantifying XAI The XYZ company has just
developed a new agent to automate the analysis of medical imaging
to diagnose a deadly disease such as cancer. Currently, radiolo-
gists are 97% successful in finding the disease using state-of-the-art
imaging techniques, but the agent is accurate with 99.5% accuracy.
However, both the agent and the human experts miss different
types of cancer. As such, 0.5% of the cancers that are missed by the
agent are found by the experts, but the agent is overall significantly
better than experts at finding cancer. One would ideally hope that
the agent and human work in tandem and thus experts will find the
cancers the agent missed and the agent will inform the experts of
cancers they didn’t find to create an 100% overall accuracy. Unfor-
tunately, XYZ’s agent provides no explanation and they have also
noted that the experts that use their system often trust it when they
shouldn’t. As a result they have formulated the following questions:
Would the experts learn how to find cancer better had the system
explained its logic better? Given a set of explanations, how can
XYZ quantify the effectiveness of each explanation and identify
the best one? Is the agent safe and should it be trusted? How can
XYZ quantify bias if the agent mistakes only one ethnic minority’s
cancer? Should society hold XYZ legally liable for this agent bias
or might it be the expert’s responsibility to avoid this problem?

The goal of this paper is to highlight how ambiguities in XAI
definition and goals impact how agent designers quantify XAI.
We argue that many current XAI methods are based on a wrong
assumption that agents must maximize their performance using
certain machine learning techniques even if they are not readily and
fully understood by the intended user. This disconnect highlights a
potentially poor fit between the motivation for why explanations
are needed and how those algorithms are currently being evalu-
ated by XAl researchers. As we will see in the following sections,
many such explanations are not capable of instilling trust in the
system [55] and others even hurt the user’s ability to understand
the agent’s decisions [38]. Also, user studies to date typically mea-
sure XAl based on the user’s performance and how it’s impacted
by explanations [12, 22, 37, 38, 51, 65]. However, not only are user
studies relatively hard to run, they may be of limited value [38]
and may suffer from confirmation bias [68]. Instead, we present
four objective XAI measures to quantify XAI effectiveness either
on their own or in conjunction with user studies:

D, the performance difference between the agent’s model
and the performance of the logic presented as an explanation
R, the number of rules in the agent’s explanation

F, the number of features used to construct the explanation
S, the stability of the agent’s explanation
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Elements of these metrics exist in other papers [28, 46, 47, 49, 51, 55],
and throughout the paper we point out similarities and differences
to previous works. In order to better understand the novelty of
this work, we first briefly overview state-of-the-art approaches for
generating explanations.

2 HOW EXPLANATIONS ARE GENERATED

Unfortunately, no consensus currently exists about the meaning of
various terms related to explainability including interpretability and
transparency. Part of the confusion is likely complicated by the fact
that the terms, “explainability, interpretability and transparency”
are often used synonymously while others implicitly define these
terms differently [11, 12, 16, 17, 30, 51, 55, 57]. Previous work by
Rosenfeld and Richardson defined interpretability as a technical
term focusing on the clarity of the system’s internal logic and ex-
plainability as the ability of human user to understand that logic
[51]. In contrast, Rudin defined explanations as agent attempts to
explain its logic in a post-hoc fashion without necessarily being
tied to the agent’s true decision model, while interpretations are
inherently tied to the agent’s logic [55]. Both works agree that
the XAI goal is to completely, accurately and clearly quantify the
agent’s logic, something that Rosenfeld and Richardson refer to as
transparency [51] and Rudin terms fidelity [55]. To avoid termi-
nology confusion, we will use these terms synonymously as both
focus on the same paramount XAI goal.

The level of agent transparency depends on which of three basic
approaches are used to generate XAlI: directly from a transparent
machine learning algorithm, through feature selection and/or anal-
ysis of the inputs, or by using an algorithm to create a post-hoc
modeling, outcome, or visualization tool. The first approach is to
only use certain types of machine learning methods, such as deci-
sion trees or other rule-based approaches, that transparently output
a model that can readily be understood by the user. For example, if
a decision tree outputs a relatively small set of rules, this output
can then be directly implemented as the agent’s logic and serves
as the explanation presented to the system’s user [51, 55, 58].

A second approach is to use feature selection and analysis to
establish which data elements should be focused upon. Even if
transparent models are then not used, using a limited set of features
can help clarify the agent’s logic [19, 26, 51, 55]. The advantage
of this approach is that the information presented to the user is
generated directly from the mathematical relationship between
a small set of features and the target being learned. Additionally,
even if the agent uses more complex models machine learning mod-
els, this approach helps the user better understand the underlying
relationships between the input and output of the system even if
she does not fully grasp the full interplay of all input possibilities
and the resultant model. This in turn allows the agent to use more
accurate models without sacrificing significant fidelity levels [51].

The last, and possibly most prevalent, approach uses mechanisms
external to the system’s logic to help describe the inner working
of a black-box system that is not inherently understood [37, 55].
This approach is often used in conjunction with state-of-the-art
prediction models obtained from neural networks and ensemble
methods that are not transparent [63]. One group of approaches
within this category create proxy models secondary to the agent’s
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logic to approximate the agent’s logic via transparent models such
as decision trees [9, 20, 62, 71]. Other approaches, such as saliency
maps, highlight which portion of the input features, such as areas of
a picture, are important based of the structure of model being used—
typically in a neural network [1, 61, 70]. A third approach high-
lights which inputs are important based on model perturbations to
query the system for how the agent’s performance would be im-
pacted without those inputs [10, 13, 31, 32, 39]. Popular examples of
XAl algorithms within this approach are LIME (Local Interpretable
Model-Agnostic Explanations) [39] and SHAP (SHapley Additive
exPlanation) [31, 32]. While the post-hoc explanation is not a full
representation of the system’s logic, they do enable people to better
understand the system’s logic [51] — even in black-box systems.

3 MATCHING XAI WITH ITS NEED

An effective evaluation metric must quantify the benefit of XAI to-
wards achieving the system’s goals. These goals stem from various
needs including legal, ethics, safety, trust, and knowledge discovery
considerations [3, 12, 51, 55]. It is important to differentiate between
different types of entities requiring the explanations — whether it
is a user interacting with the system or an outside societal or legal
body. While XAI research is typically geared for individual users,
there is a growing need to address legal and governmental con-
cerns. Both the EU and UK governments have adopted guidelines
requiring agent designers to provide users information about com-
puter decisions. In the words of the EU’s “General Data Protection
Regulation" (GDPR), users are legally entitled to obtain “mean-
ingful explanation of the logic involved" of these decisions and
additional legislation exists to ensure that automated decisions are
not biased against any ethnic or gender groups [12, 17]. However,
demonstrating that a system is generally unbiased or even provides
“meaningful” explanations is not the same as providing transparency
and full fidelity about the logical process of the system for every
possible situation.

Explainability has also been suggested to help the system de-
signer evaluate the system or to confirm that the system is func-
tioning properly and safely. This requirement is particularly acute
within life-and-death human-agent systems including the medi-
cal application built by the XYZ company. Without XAl both the
medical practitioner and the patient might fear that the agent’s
recommendations might be adopted wrongly at times and thus put
people’s lives in danger.

In contrast, certain explanation goals are less critical- such as
using explanations for knowledge discovery to help researchers
gain understanding of various medical phenomena. Explainability
can similarly be useful in building trust between the user and system
especially when mistakes were made [8]. XAl is not critical in these
cases but could help improve the total utility of the human-agent
system. Assuming the agent effectively conveys its logic in the XYZ
application, the user could potentially understand when to accept
the agent’s recommendation and when to ignore them. This would
create an ideal decision support system (DSS) by leveraging agent
and user strengths.

Some explanations goals are relatively easy to evaluate. We gen-
erally believe that explanations built to address legal, ethics, safety,
and knowledge discovery considerations can be typically evaluated
with a simple or binary score- either the system addresses these
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considerations or not. If the explanation lacks fidelity, and thus
doesn’t truly quantify the agent’s logic, then there is no basis to
consider the system safe or non-biased. Similarly, if the knowledge
discovery is rooted in explanations based on simplified logic that is
not being used, then the XAI is independent of the agent’s logic,
making any gain from this knowledge minimal [55].

More commonly, explanations are important to create better
human-agent interactions — either to develop trust or to foster
better performance in a DSS [51]. In these cases, evaluating the
explanation is more difficult as it must quantify the complex rela-
tionship between the agent and human components of the system.
As is the case in the XYZ system, the agent’s ability to create ac-
curate models is critical for the overall success of the system. As
such, any evaluation metric should reason about the joint agent
and human performance with classic metrics such accuracy, ROC
and/or precision. Assuming the agent performance achieved from
black-box models is higher, these models could then be used- even
at a potential loss of transparency. Many XAI researchers assume
that these black-box models are inherently better due to their su-
perior performance and explainability must be created given this
constraint [10, 13, 17, 31, 32, 37, 39]. Accordingly, it is tempting to
suggest that transparent models and their explanations be used for
life-or-death decisions such as the ones made by the XYZ system,
or when legally required, but explanations with less fidelity might
be acceptable in other situations [51, 55]. User studies with classic
performance and satisfaction metrics can then be used to weigh the
effectiveness of various explanations [12, 22, 37, 38, 51, 65]. How-
ever, for reasons we now detail, we instead suggest using the D, R,
E, S metrics to quantify XAI

4 BETTER METRICS FOR XAI EVALUATIONS

In this section we argue that the “gold-standard” for evaluating XAI
system through user studies may at times be inherently flawed due
to several reasons. First, there is an assumption that user studies can
properly capture the complex dynamics between user performance
and explanations. This has already been shown to not always be
correct. Second, XAI research has assumed that providing better
explanations aid group behavior. However, one large-scale study
involving 3800 participants did not find this to be the case and
providing more detailed explanations hurt performance [38]. Even
studies seeming to support the benefit from a given explanation
algorithm may suffer from confirmation bias, where user studies
are constructed to confirm the effectiveness of a wrong hypothesis,
here a poor explanation given the XAT's goals [68].

We generally claim that existing user studies that evaluate expla-
nations generated post-hoc with a separate logic and low fidelity to
validate legal, ethics or safety concerns are inherently flawed. As
Rudin points out, if the post-hoc explanation is based on a funda-
mentally different logic than the one used by the agent, then what
is being evaluated? If they contain the same logic, then why not use
that model instead of the black-box model [55]? This critique is par-
ticularly an issue regarding explanations created post-hoc via proxy
methods as these explanations are a known oversimplification of
the agent’s logic [9, 20, 28, 62, 71]. Saliency maps have also been
found to be equally problematic as these visualization tools are
often the same regardless of the specific input used— making their
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general worth questionable [1]. Thus, even if a user is satisfied with
explanations of these types, the positive result is potentially based
on confirmation bias. Even when trust and performance needs to be
evaluated, and the complex interplay between XAl and performance
must be considered, one should question the validity of explana-
tions generated with low fidelity. Given the logical gap between
the agent’s logic and the explanation, classic user metrics cannot
necessarily quantify if a positive result is due to the explanation or
confirmation bias. Objective metrics are critical for quantifying the
tradeoff between agent fidelity and performance.

To address this challenge, we present four XAI evaluation met-
rics, D, R, F, S, that are not dependant on the task being performed
or the XAI algorithm developed. As a result, these metrics can-
not suffer from any confirmation bias. Consequently, D, R, F, and
S can be used to quantify XAI similarly to how the NASA-TLX
[54] and the System Usability Scale [5] quantify elements of user
performance.

The first metric, D, is predicated upon the assumption that
human-agent system designers used black-box models for the agent
because they provided a significant improvement in agent perfor-
mance [18, 51]. It is still unclear if this tradeoff is typically necessary
for most applications or even for specialized tasks such as image
processing where neural networks are typically used [55]. To eval-
uate this tradeoff, D quantifies the change of agent performance, &,
between the black box model, and the best observed transparent
model. This measure is similar to the disagreement metric previ-
ously developed [28] but uses  to quantify performance differences
between models to facilitate comparing different types of expla-
nations and the potential improvement in performance versus the
loss of fidelity. Even if a user is happy with an explanation, § helps
measure if the tradeoff between this explanation and one with
transparency was warranted by comparing the performance, P; of
the transparent model and the performance, P, — J, of the black
box model. For example, assuming XYZ’s black box model is 99.5%
accurate, but a transparent model is 95.5% accurate, § would have
to be less than 0.04 to justify using the black box model. Similarly,
if a model based on feature construction is 99% accurate, § would
have to be less than 0.005 to justify using the black box model. User
studies could then focus on what value for § is most justified for a
given XAl goal and specific task.

The D metric can be useful both in cases where binary and non-
binary evaluation of XAl is warranted, but will typically be more
helpful in the later case. Assuming binary evaluation is needed due
to legal, ethics or safety issues, any value for § greater than a trivial
value € shows that the explanation and agent are not synonymous,
and thus any benefit from the explanation is likely nil. For example,
if an explanation is used to show lack of bias in XYZ’s system, but
the logic based on the explanation is different for certain cases,
then close inspection is needed to evaluate if these cases represent
a bias or can be ignored. Conversely, if § is zero then the two
models are equivalent and the more transparent model should be
used regardless. Thus, we believe D is more useful when XAI is
beneficial to the system, but not necessary.

While D focuses on performance differences between models,
the second metric, R, focuses on the size of the agent’s explanation
without comparison to other models. R quantifies explanations
based on their simplicity — the fewer rules in the explanation, the
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better. This metric is built upon an assumption that simpler expla-
nations should be preferred as per Occam’s Razor [51] and work
by Gigerenzer and Brighton about the bias-variance tradeoff [15].
These works, among others, assume that the world is inherently or-
derly and understandable by relatively simple rules. Thus, complex
rules should be penalized.

While many utility functions are possible for R, similar to Rudin
[55] we suggest using a parameter A to quantify the number of rules
within the agent’s model. In contrast to their work, we suggest that
a penalty of 1 * £ be used to penalize the performance metric
where L = size(m) — c. We define size(m) as the number of rules
in the explanation. We set c=1 by default but this value can be
set to larger values to show that explanations with this number of
rules are fully explainable and should not be penalized. Formally, we
define £ = size(m) — ¢ where (size(m)-c)>0, and zero otherwise. For
example, assuming the size of the model, size(m), is 1, no penalty
is added regardless of the value for A. If A = 0.005, the default
value for c is used and 5 rules exist in the explanation, then a 0.02
performance penalty is added for the four rules above the base size
of 1. Alternatively, no penalty may be desired for any model less
with fewer than 5 rules, and c=5 can be set. As such, a penalty will
only exist when 6 or more rules are in the explanation as per L’s
definition. In all cases the A * L penalty could be optimized and
evaluated based on theoretical or user studies.

We assume that the R metric is most useful for transparent meth-
ods, but it can also be in conjunction with other XAI algorithms as
well. While decision trees are generally assumed to be transparent
models [51], one would be pressed to consider a decision tree with
thousands of rules as being explainable. Thus, A * £ can quantify
the impact of this complexity on the system’s performance. Con-
versely, while neural networks and ensemble methods are typically
assumed to be non-transparent, given a small enough model size
they may be understood by the intended user. We suggest user
studies based on R be performed to further analyze these claims.

While the R metric focuses on quantifying the number of rules
in the agent’s output, the F metric focuses on the number of fea-
tures inputted by agent to create its explanation. This metric was
particularly built for those explanations based on feature analysis.
Even when the agent’s model is based on a complex learning model
with lower fidelity, the assumption is that explainability will be
higher if the user can focus on a smaller number of features, thus
making the XAI clearer. To quantify this relationship, we again
suggest that a penalty of A * L be defined similarly to R, but here
we define size(m) as the number of inputs to the model instead of
the rules outputted. The threshold ¢ can again be used to quantify
a maximum number of feature inputs where no penalty should be
applied. It is possible that a magical number of around 7 [33] be
used for ¢ in both R and F, but further studies are needed given a
specific XAl goal/task.

We posit that the size(m) value in the R and F metrics need not
based on a single feature or field, and more complex constructed
features be considered as one unit for purposes of size(m). For exam-
ple, image processing typically currently focuses on pixels inputs,
but some constructed image features such as edges are inherently
more interpretability and might be considered as a single feature
for purposes of these metrics. Similarly, a complex driving style
feature was previously found to be useful in quantifying people’s
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use of adaptive cruise control [45] and the maximum cancer core
length feature was found to be an important feature in quantifying
the existence of prostate cancer [7]. As a general rule, we suggest
that derived features be treated the same as non-derived ones as
long as they are equally understood by the intended user.

The last evaluation metric we present, S, quantifies the stability
of the agent’s explanation. Feature stability is a metric central to
feature selection analysis and refers to its ability to robustly handle
small noise perturbations. Finding stable features is important as it
indicates that the feature selection is unlikely to be overfitted to the
specific data being considered. Unstable feature inputs have been
linked to poor explainability [35]. We suggest boostrapping the
data and then observing its impact on the outputted agent explana-
tions. The similarity between the bootstraps’ explanations can be
quantified using Jaccard and/or Tanimoto similarity measures. We
stress that only small perturbations should be used by the bootraps
such that the class labels are not changed and small amounts of
resampling noise are used to check that the explanations are stable
and thus general. At the other extreme, “the data randomization
test”, was created that randomly permutes all labels within the
training classes [1]. This check also uses similarity to evaluate if
an explanation is useful, but here a lack of similarity shows that
explanations are not dependent on the data being used, rendering
them without value. In all cases, and as was the case for the R
and F metrics, a penalty cost, A * £ can be used to penalize the
performance metric. As similarity metrics are typically between
0-1, with 1 being complete similarity, we suggest directly defining
S$=1"(1-similarity) such that performance-(A*(1-similarity)) could
be used as a penalty. Once again, user studies could be used to help
compare different methods and appropriately set the values for A.

While we have presented each of these metrics individually, we
believe that they are complimentary in many cases. It is likely desir-
able that a transparent explanation be both stable, perform similarly
to agent, and contain relatively few rules. As such one might expect
it to have high scores for the D, R, S metrics. Conversely, any agent
using black box methods might score lower for the D, F metrics
especially if a proxy model is used for generating explanations,
but if this explanation is relatively simple and stable it would still
achieve higher scores for the R, S metrics. Thus, composite scores
could be constructed and focused user studies should be conducted.

5 CONCLUSION

In this paper we argue that many XAI studies wrongly assume
low fidelity explanations should be accepted for certain tasks. We
also argue that user studies may also have confirmation bias in
their evaluation of XAI To remove these concerns, we advocate
using four general metrics, D, R, F, S, to quantify XAI explainability
based on the difference in the agent’s performance using models
with higher fidelity versus lower fidelity, the number of rules in
the outputted explanation, the number of features used by the
agent to generate the explanation, and the stability of the agent’s
explanation. The advantage of these measures is that they make no
a-priori assumption about the relatively advantage of using an XAI
algorithm with higher or lower fidelity, yet facilitate comparison
without any potential confirmation bias from user studies. We hope
that these metrics will be considered in the future for what we
consider to be more significant evaluations of XAI.
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