
Learning Correlated Communication Topology
in Multi-Agent Reinforcement Learning

Yali Du

University College London

yali.du@ucl.ac.uk

Bo Liu

Institute of Automation, Chinese

Academy of Sciences

benjaminliu.eecs@gmail.com

Vincent Moens

Huawei R&D UK

vincent.moens@huawei.com

Ziqi Liu
1

University College London

ziqi.liu.20@ucl.ac.uk

Zhicheng Ren
1

University of California, Los Angeles

franklinnwren@g.ucla.edu

Jun Wang

University College London

jun.wang@cs.ucl.ac.uk

Xu Chen

Beijing Key Laboratory of Big Data

Management and Analysis Methods

GSAI, Renmin University of China

xu.chen@ruc.edu.cn

Haifeng Zhang
2

Institute of Automation, Chinese

Academy of Sciences

haifeng.zhang@ia.ac.cn

ABSTRACT
Communication improves the efficiency and convergence of multi-

agent learning. Existing study of agent communication has been

limited on predefined fixed connections. While an attention mecha-

nism exists and is useful for scheduling the communication between

agents, it, however, largely ignores the dynamical nature of com-

munication and thus the correlation between agents’ connections.

In this work, we adopt a normalizing flow to encode correlation

between agents interactions. The dynamical communication topol-

ogy is directly learned by maximizing the agent rewards. In our

end-to-end formulation, the communication structure is learned by

considering it as a hidden dynamical variable.We realize centralized

training of critics and graph reasoning policy, and decentralized

execution from local observation and message that are received

through the learned dynamical communication topology. Experi-

ments on cooperative navigation in the particle world and adaptive

traffic control tasks demonstrate the effectiveness of our method.

KEYWORDS
Reinforcement Learning; Multi-agent Systems; Communication

Topology

ACM Reference Format:
Yali Du, Bo Liu, Vincent Moens, Ziqi Liu

1
, Zhicheng Ren

1
, Jun Wang, Xu

Chen, and Haifeng Zhang
2
. 2021. Learning Correlated Communication

Topology in Multi-Agent Reinforcement Learning. In Proc. of the 20th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1
Work done at Institute of Automation, CAS.

2
Corresponding author.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

1 INTRODUCTION
Communication is an essential aspect of intelligence as it helps

agents to learn from others’ experience and work as a group rather

than a collection of individuals. Distributed machine learning algo-

rithms could be made more effective if the communication topol-

ogy between learning agents was optimized [1]. It has been shown

that communication can lead to increased exploration, higher re-

ward, and higher diversity of solutions in both simulated high-

dimensional optimization problems [3] and human experiments

[23]. Examples include traffic light control [43], coordination of

autonomous vehicles [33], resources management [27] and multi-

player video games [21, 30].

However, how to prioritize the communication targets rather

than communicating based on a static graph remains an open ques-

tion. One line of work implements communication based on avail-

able connections, for example, Foerster et al. [10], Sukhbaatar and

Fergus [37] allow agents to communicate given full accessibility

to all other agents. Another group of works focus on the com-

munication with the nearest neighbors [5, 19, 20]; it is only valid

when the goal or decision of the agent is explicitly influenced by

its neighbors. However, in the real world, humans always prioritize

the communication target. For examples, in a sports match, one

teammate who can communicate, can choose to communicate with

the targeted teammates to optimize the performance; in traffic light

control, the traffic on a lane may be influenced more by the main

street faraway, rather than the nearest lanes. Recent attempts adopt

attention-based mechanisms that allow each agent to schedule the

communication. Das et al. [7] and [15] learn attention weights to

differentiate the importance of incoming messages. Singh et al. [35]

and Kim et al. [22] learn hard binary gates controlling the agents

to only communicate when allowed to do so. However, all these

methods implicitly build communication networks by modelling

each edge independently.

In this work, we focus on the problem of learning to prioritize the

communication targets and propose to use a normalizing flow to

encode correlation between agents interactions in the topology and

Main Track AAMAS 2021, May 3-7, 2021, Online

456

learn communicative policies and graph reasoning policies together

thatmaximize profitability.We learn the underlying communication

graph to maximize the rewards, and adopt an optimization-based

approximation to infer the conditional policy. Each agent performs

decentralized execution based on its local observation andmessages

received from the learned topologies. The graph reasoning policy is

represented by a normalizing flow with knowledge of global states,

accounting for the correlation between the edges in the graph dis-

tribution. And we adopt additive coupling flows that are easily

reversed. We adopt centralized training of critics and graph reason-

ing policy, and decentralized execution based on local observation

and message received through the communication topology. The

communication of policies are based on the graph encoded by a

normalizing flow, and we name our method FlowComm.

Our work differs from the existing works in the following ways.

Firstly, we consider an adaptive coordination graph, while most

of previous works adopted a static graph. Secondly, while a global

manager is available to decide the communication graph that dic-

tates each agent’s policy, FlowComm allows each agent to maintain

its own policy and make decisions based on their observations and

messages from the connected agents. Thirdly, FlowComm does not

assume that the communication graph is symmetric and undirected

as in [22, 35]. Instead, we build a directed graph to allow each agent

to prioritize the target agents to query the message. Cycles may

exist indicating that the mutual reliance on the knowledge between

agents.

The main contributions are three-fold:

• We first consider the correlation between agents interactions

in the topology and learn communicative policies and graph

reasoning policies together that maximize profitability.

• We generalize coupling flow to the modeling of discrete

variables as the interaction graph in MARL. The normalizing

flow learns a communication graph that is conditioned on

the global states of all agents, which is used to decide when

two agents need to communicate or not.

• Through extensive empirical studies on Particle world and

CACC, we show that FlowComm outperforms baseline al-

gorithms by a large margin in terms of the attained re-

ward. Through the visualization of communication graphs,

FlowComm can learn meaningful communication policies.

2 RELATEDWORK
Reinforcement learning has become a popular data-driven approach

in learning adaptive control strategies. However, renowned suc-

cesses are mostly limited to single agent domains, ranging from

playing Atari Games [28], to playing Go [34], and recently text-

based games [44]. Due to the wide exist of multi-agent systems,

such as traffic light control, resources management andmulti-player

video games, multi-agent reinforcement learning are attracting

more and more attention. Communication is important for MARL

to capture the dependencies between agents’ decisions and has

been shown to be effective in increased exploration, higher reward,

and higher diversity of solutions in simulated high-dimensional

optimization problems [3] and human experiments [23].

Based on the communication methods, we classify the exist-

ing MARL methods into three groups. The first group is non-

communicative methods that focus on stabilizing training with

centralized value estimation. Representative works include COMA

[11], MADDPG [24] and LIIR [9], which explores the problem of

credit assignment multi-agent policy gradients and address learn-

ing in mixed environments, respectively. Another line of research

devotes to value-function factorization [32]. VDN [38], QMIX [31],

QTRAN [36], and MAVEN [26] gradually increase the representa-

tion ability of the global value function.

The second group of works focus on communication based on

static communication topology throughout the training and execu-

tion. Foerster et al. [10] uses directly-shared low dimensional policy

fingerprints from other agents. CommNet [37] adopts a seperate

channel for communication and average pooling to extract the infor-

mation from all other agents. Böhmer et al. [4], Jiang et al. [19], Jiang

and Lu [20] uses the K-nearest neighbor to define neighbor agents

for communication. [14] adopts convolution kernels in policy net-

work to implicitly utilize the neighbors’ information for decision

making, based on the image-like state representations. Adjodah

et al. [1] studies the communication topologies between different

learning agents in evolutionary algorithms and also relies on static

topologies, such as Erdos-Renyi random graphs. Networked MARL

[5, 12, 45] considers cases where communication range is restricted

to connected neighborhoods in networked systems such as traffic

signal, distributed sensing.

The third group of works focus on attention-based communica-

tion that selectively sends messages to the agents chosen. VAIN [15]

extends [37] by replacing the average pooling with an attention

vector for selecting useful agents to interact with. ATOC [20] learns

to allocate a communication weight to each other agent. TarMAC

[7] adopts an attention mechanism to decide whether two agents

need to communicate or not and differentiates the importance of

incoming messages. IC3Net [35] and SchedNet [22] learns a binary

attention to control the agents to only communicate when they are

selected to do so. Our work also learns binary attention to control

when to communicate.

3 PROBLEM SETUP
We consider a cooperative multi-agent system with decentralized

control based on partial observation (Dec-POMDP) [29]. A Dec-

POMDP can be described by a tuple ⟨N, S,U , P, r ,γ , ρ0,o,Ω⟩ where
N = {1, · · · ,n} and S denotes the set of agents and states respec-

tively. U = {U1,U2, · · · ,Un } denote the action space of n agents.

P(st+1 |st ,ut) : S×U ×S → R
+
is the state transition probability dis-

tribution. r i (st ,ut) : S ×U → R indicates the reward function from

the environment. γ ∈ ([0, 1) is a discount factor and ρ0 : S → R is

the distribution of the initial state s0.
We consider a partially observable setting and each agent draws

observations ωi ∈ Ωi
by oi : S → Ωi

. At time step t , let ωt =
{ωi

t }
n
i=1 with each ωi

t ∈ Si being the partial observation from

agent i . Accordingly, let ut = {u
i
t }

n
i=1 with each uit ∈ U

i
indicating

the action taken by the agent i . Let π i (uit |ω
i
t) : S

i × U i → [0, 1]

be a stochastic policy for agent i and denote π = {π i }ni=1. Let

Rit =
∑∞
l=0 γ

l r i (st+l ,ut+l), each agent is presumed to pursue the

Main Track AAMAS 2021, May 3-7, 2021, Online

457

Figure 1: Diagram of FlowComm. (a) and (b) shows one example of the communication topology and the corresponding adja-
cency matrix. (c) and (d) represents the train and sampling phases. Solid lines represent deterministic mappings and dashed
lines represent sampling. The features enter the network in the mappings д(Ab

i ; s), which is not required to be bijective. (c)
shows the sampling process given feature s. (d) shows the training process where we need to calculate the likelihood of A
through backward the flow model to A0, which is based on the fact that ρφ (A; s) ≡ ρ0ς (A0).

maximal cumulative reward , expressed as

ηi (π i) = E
[
Rit

]
(1)

where s0 ∼ ρ0(s0),u
i
t ∼ π i (uit |ω

i
t) for i ∈ N , and st+1 ∼ P(st+1 |st ,ut).

Dec-POMDP with Communication. We model each agent as

a Dec-POMDP augmented with selective communication based

on a communication topology graph A. Denote A ∈ Bn×n . Let
Ai j = 1 denote that i needs to receive a message from j, 0 oth-

erwise. Accordingly, based on the communication topology, we

let each agent draw observation ωi ∈ Ωi
according to the obser-

vation function oi (s,A) : S × B → Ωi
, which will be detailed

later. Correspondingly, we can define the state-action Q-function
by Qi

π (s,u) = E
[
Rit | st = s,ut = u

]
, and the value function by

V i
π (s) = E

[
Rit | st = s

]
.

4 METHODOLOGY
We aim to learn the conditional action policy {π i }i ∈N and graph

reasoning policy ρ(A) by performing posterior approximation to

the expected trajectory distribution . By including the graph A, we
factorize the joint policy as a conditional policy π i (ui |oi (s,A);θ i)
and a graph reasoning policy ρ(A|s;φ):

π (u,A | s) = Πn
i=1π

i (ui |oi (s,A);θ i)ρ(A|s;φ), (2)

where oi (s,A) will be defined later and π i (ui |oi (s,A);θ i) will be
written as π i (ui |oi (s,A)) for brevity. In the following, we provide

the details for approximations of {π i }i ∈N and ρ(A) respectively.

4.1 Multi-Agent Actor Critic
Let τ = (s0,A0,u0, s1, . . .) denote the trajectory. We would like to

approximate

p(τ) =
[
p(s1)

T∏
t=1

p(st+1 |st ,ut ,At)
]
exp

(T∑
t=1

r i (st ,ut)
)
, (3)

with

qθ i (τ) = p(s1)
T∏
t=1

p
(
st+1 |st ,ut ,At

)
π
(
u,A | s

)
. (4)

We can optimize agent-i’s policy viaminimizing the Kullback–Leibler

divergence DKL(qθ i (τ)∥p(τ)), which is given by Proposition 1.

Proposition 1. The Kullback–Leibler divergence between qθ i (τ)
and p(τ) reads as

−DKL(qθ i (τ)∥p(τ)) =

T∑
t
Est ,ut ,At∼qθ i

[
r i (st ,ut) + H

(
π i (ui |oi (s,A))ρ(At |st)

)]
.

Besides the reward term, the objective introduces an additional

term of the conditional entropy of the joint distribution π i (ait |
o(st ,At))ρ(At |st) that promotes the exploration for agent i and for
graph reasoning policy ρ. Now we restate the objective of agent i
as:

Jπ i (θ
i) = Eqθ i

[
Q(s,u) + H

(
π i (ui |oi (s,A))ρ(A | s)

)]
. (5)

The update of π i comes from maximizing (5) and its gradient reads:

∇θ i J (θ
i) =Eqθ i

[
∇θ i logπ

i (ui | oi (s,A))(−α logπθ i
(
ui | oi (s,A)

)
+Qi (s,u))

]
.

The loss function for Qi
is defined as

LQ (ϕ) = E(st ,ut)∼D [(y
i
t −Q

i (st ,ut ;ϕ))
2], (6)

with yi = r i (st ,ut) + Q
i (st+1,u

i
t+1,u

−i
t+1;ϕ). During training, we

repeat the following procedures: first, fix π i (ui |s,A) and Qi (s,u)
to update ρ(A), then improve π i (ui | o(s,A)) and Qi (s,u,A) by the

trajectories generated given A.
The policy π i can be represented by a typical deep neural net-

work with either deterministic or stochastic action output. We

model ρ(A) as a distribution of A conditioned on the joint observa-

tions of agents. Next, we present how to parameterize ρ(·) which
is required to infer a complex adjacency matrix.

4.2 Graph Reasoning Policy Gradient
Given (1) and (2), the gradient for optimizing ρ(A) is given by

Proposition 2.

Main Track AAMAS 2021, May 3-7, 2021, Online

458

Algorithm 1 The optimization algorithm for FlowComm.

Ensure: Policy π i , and graph reasoning policy ρ
1: Initialize parameters θ i ,ϕi for each agent and φ for graph rea-

soning;

2: Assign target parameters of Q-function: ϕ
i
← ϕi , and target

policy parameter: θ
i
← θ i

3: D ← empty replay replay buffer

4: while Not terminated do
5: Sample A ∼ ρφ (A | s);

6: Given current state s , compute oi (s,A) for all agents and x ;
7: Sample ui ∼ π i (· · · |oi (s,A));
8: Take the joint action {ui }i ∈N and observe own reward r i

and new state s ′:

D ← D ∪

{
(s, {ui }i ∈N,A, {r

i }i ∈N, s
′)

}
9: for each agent do
10: Update ϕi according to ∇ϕ JQ (ϕ

i)

11: Update θ i according to ∇θ i Jπ (θ
i)

12: Update φ according to
1

n
∑n
i=1 ∇φη

i
ρ
(
φ
)

13: Reset target Q-function : ϕ
i
= βϕi + (1 − β)ϕ

i

14: end for
15: end while

Proposition 2. Given (1) and (2), the update rule for the graph
reasoning gradient can be devised as follows

∇φη
i = Es∼p,A∼ρ

[
∇φ log ρφ (A | s)

∫
U πθ (u | o

i (s,A))Qi (s,u)du
]
.

Proposition 2 states that the graph reasoning policy should im-

prove its policy toward the direction of the best response after it

takes into account all kinds of possibilities of how agents would

react if that graph is selected.

In practice, off-policy is more data-efficient. A replay buffer is

introduced in a centralized actor-critic method for off-policy train-

ing [11, 24]. By applying batch sampling to the centralized critic,

the gradient can be approximated by:

∇φη
i = E(s ,u ,A)∼D

[
∇φ log ρφ

(
A | s

)
Qi (s,u)

]
. (7)

To make it consistent with the policy update, we use off-policy

importance sampling to update ρφ (A), and the gradient reads:

∇φη
i = E(s ,u ,A)∼D

[∇φρφ (A | s)
ρφ (A | s)

Qi (s,u)
]
, (8)

where ρφ (A | s) is the old graph reasoning policy used for sampling.

4.3 Discrete Normalizing Flow for Graph
Reasoning

As we do for the actions, we introduce a probability distribution

over latent adjacency matrices A ∈ B where B ⊂ {0, 1}n×n is the

space of adjacency matrices:

A ∼ ρφ (A). (9)

The inference of A is non-trivial since it is a multivariate discrete

random variable with n ×n entries. In what follows, we propose an

approach to efficiently solve this problem. The main idea is to define

a simple, diagonal parametric distribution p0ς over the off-diagonal

elements of A, and apply a sequence of n invertible and reversible

parametric transforms fφd ◦ · · · ◦ fφ1
on A0 ∼ p0ς , such that the

relationship between A0 and A can be written as:

A
fd
←→ · · · h1

f2
←→ h2

f1
←→ A0. (10)

Let F = f −1φ1

◦ · · · ◦ f −1φd . Formally, we have:

ρφ (A) ≡ p
0

ς

(
f −1φ1

◦ · · · ◦ f −1φd (A)
) ���det ∂F (A)

∂A

��� , (11)

with φ ≡ {ς,φ1, . . . ,φn }. Note that in (11), for real-valued random

variables, this kind of transform amends to a change of variable

and hence requires the probability density to be corrected by the

absolute value of the determinant of the Jacobian of the transform.

However, for discrete variables, the problem is much easier [41],

as bijective transforms do not change the mass of the distribution.

Thus

���det ∂F (A)
∂A

��� = 1 in (11) can be ignored.

First, we choose p0ς to be an ordered set of Bernoulli distribu-

tions with parameters ς ∈ (0, 1)n×n . The next step is to define the

transforms fφ that will ensure a flexible mixing of the binary ran-

dom variables generated by p0ς . Sampling from this distribution is

trivial, but what we aim for is to obtain a reparameterized version

of this sampling algorithm. Here, we use the Gumbel-softmax trick

[18, 25].

We propose an approach similar to what is used for Coupling

flows [8], where for a given function fφi , we sample half of the

values of Ai = fφi−1 (Ai−1) (say, Ab
i) and use it to transform the

other half of the transformed vector (say, Aa
i). Several transforms

could be considered: as a general principle, we use a logical gate

L : {−1, 1}2 7→ {−1, 1}2 (e.g. XOR or CNOT) to compute the

element-wise transform L(Aa
i ,дφi (A

b
i)) of A

a
i , and then compute

the transformed sample

Ai+1 =

[
L1(Aa

i ,дφi (A
b
i ;x))

Ab
i

]
(12)

where the 1-indexed L gate stands for the fact that only the first

output of L is retrieved. x dentoes the task specific features, and we

use the joint observations of agents. The usage of Coupling flow is

based on its power of modeling complex high-dimensional densities

to ensure that elements are fully mixed. The usage of logical gate

is for representing discrete variables A. To ensure that the output

of дφ (·) is binarized as required by a logical gate, we use binarized

activation to round the output to be −1 or 1[16]. According to [8],

three coupling layers in (12) are necessary to allow all dimensions

to influence one another. We generally use four layers.

We train a Normalizing-flow to promote the exploration in the

graph space by maximizing the entropy H [ρφ] during training.

Proposition 3. Based on the construction of ρφ (A) from ρς (Z)in
(11), we have that

H [ρφ] = H [ρ0ς]. (13)

Proposition 3 provides a simple form for calculating the entropy

of ρ(A). We chose ρ0ς to be a factorial Bernoulli distribution with

n2 independent dimensions, and H [ρφ] will be easy to obtain. In

practice, we use sampled mini-batch to approximate H [ρ0ς].

Main Track AAMAS 2021, May 3-7, 2021, Online

459

(a) Coop.-Navi.

V2V V2V V2VV2V

Speed, acceleration,
headway

Speed, acceleration,
headway

(b) CACC

Figure 2: Environments on Particle world and CACC. (a)
Four agents that need to reach different landmarks respec-
tively. (b) A platoon of five vehicles that need to coordinate
to keep a proper headway and stable velocity.

4.4 Practical Implementations
We follow the Centralized Training and Decentralized Execution
(CTDE) paradigm [11]. The critic takes as input joint actions and

state representations from all agents to estimate the action-value

for each agent at every timestep. The centralized critic is learned

by temporal difference [39], and is used only when training.

In execution, we first sample a graphA conditioned on the feature

s . Denote the hidden state of each agent’s observations as v
j
t , the

message that agent i can receive is defined as

mi
t =

n∑
j=1

Ai jv
j
i , (14)

and ωi
t = vit ∪m

i
t . Each agent thus determines the action based

on its own observation and messages received in a distributed

manner. This process is sequentially repeated at each time step

under different observations. The overall algorithm for policy and

graph iteration is presented in Algorithm 1.

5 NUMERICAL EXPERIMENTS
In this section, we evaluate FlowComm on existing multi-agent

environments, Particle world [24] and Cooperative Adaptive Cruise

Control (CACC) [6]. Figure 2 gives examples for the scenarios used

in the experiments. The two environments all have a discrete action

space and continuous state space.

5.1 Baselines
The considered methods for evaluation include

• MAAC [17]: the method follows CTDE which learns central-

ized critics and decentralized policies. The centralized critic

takes as input the global state. It adopts the Soft Actor-Critic

(SAC) [13]. Agents are decentralized controlled without com-

munication in execution.

• CommNet [37]: it allows agents to communicate through

broadcasting a communication vector, which is the aver-

age of neighbors’ hidden states. Continuous communication

allows backpropagation and thus is learned alongside policy.

• NeurComm [5]: it assumes neighborhood communication

and formulates the spatiotemporal MDP, allowing each agent

to optimize their control performance based on delayed com-

munication. Messages passed between agents include hidden

state representations and policy fingerprints.

• DIAL [10]: each agent encodes the received messages in-

stead of averaging them, but still sums all encoded inputs.

It uses directly-shared low dimensional policy fingerprints

and hidden states from other agents.

• IC3Net [35]: it learns a hard binary gate to decide when

an agent needs to communicate. If one agent decides to

communicate, it will broadcast its message to all other agents.

• FlowComm: we adopt MAAC as the base algorithm and our

method learns to prioritize the communication by learning

a communication graph. The communicated message for

each agent includes the encoding of its observations and

additional neighbors’ state in CACC.

5.2 Settings
Algorithm setup. For policy implementation, we first encode

the agents local observations then concatenate that with the re-

ceived message. We use LSTM layer to encode the message and

observations before feeding them into two fully-connected neural

networks producing policies. The critic network uses three-layered

fully-connected neural networks. All hidden layers are set up to 64

hidden units. The message is the encoding of agents observations.

For L in (12), we use logical gate for reversible additions and minus,

and for дφ , we use three fully connected layers with tanh activation.

We use four coupling layers to make sure the elements in A are

dependent on each other and we allow parameter sharing across

coupling layers.

For Particle world, the episode length and batch size are both

64. For CACC, the batch is 60 and maximum episode length is 600

steps. MAAC and FlowComm as off-policy methods use the same

replay buffer size as 1 × 106. The update interval is 4. The learning

rate for actor and critic are set up to 1×10−3. CommNet, DIAL, and

NeurComm, IC3Net are on-policy methods, and the learning rate

for actor and critic are set up to 5 × 10−4 and 2.5 × 10−4 that report

best performance. All baseline methods are implemented such that

the policy and critic has similar structure to our method and their

approximate total number of parameters (across agents) are equal

to our method. Hyperparameters for each underlying algorithm

are tuned based on performance.

Evaluation metric. The experiments are evaluated by average

episode reward in training time, which was used as a standard

measurement of MARL algorithm in many articles [13, 24]. All

experiments are repeated for 3 runs with different random seeds.

We report the mean reward along with standard deviations. The

learning curves are smoothed by moving average with a window

of 100 episodes. The execution performance is also provided.

5.3 Particle World
We test our method on the Particle world environments [24], which

is a popular benchmark for evaluating multi-agent algorithms, in-

cluding several cooperative and competitive tasks. Specifically, we

Main Track AAMAS 2021, May 3-7, 2021, Online

460

0.2M 0.4M 0.6M 0.8M 1.0M
Training step

−8

−7

−6

−5

−4

−3

−2

Av
er

ag
e

ep
iso

de
 re

wa
rd

CommNet
DIAL
NeurComm
IC3Net
MAAC
FlowComm

(a) Coop.-Navi. n = 4

0.2M 0.4M 0.6M 0.8M 1.0M
Training step

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

Av
er

ag
e

ep
iso

de
 re

wa
rd

(b) Coop.-Navi. n = 6

Figure 3: Average episode reward vs. training steps of vari-
ous methods on Coop.-Navi. scenarios with different num-
bers of agents.

Table 1: Summary of execution performance of trained
MARLpolicies in Coop.-Navi. Average rewardwith standard
deviations of 50 episodes. Best values in bold.

FlowComm IC3Net NeurComm

n=4 −1.79 ± 0.05 −3.09 ± 0.33 −3.00 ± 0.30

n=6 −2.10 ± 0.05 −3.64 ± 0.35 −4.57 ± 0.62

CommNet DIAL MAAC

n=4 −3.25 ± 0.46 −3.22 ± 0.48 −2.13 ± 0.07

n=6 −5.06 ± 0.87 −5.13 ± 0.68 −2.39 ± 0.06

consider the Cooperative-navigation task, with n agents in size 0.05

and n landmarks.

The objective of these agents is to cooperate via physical ac-

tions and it requires each agent to infer which landmark they must

cover while avoiding collisions. Each agent is described by several

attributes, including agent’s own positions, and observation of the

relative positions of the nearest agents and landmarks. Each agent

takes action in moving { up, down, left, right, stay}. The collec-

tive reward is the average minimal distance of any agent to each

landmark.

5.3.1 Summary of Training Performance. Figure 3 compares

the learning curves of all MARL algorithms for n = 4, 6 agents.

CommNet, DIAL and NeurComm have similar learning curves

while NeurComm slightly outperform CommNet and DIAL. IC3Net

and MAAC enjoy higher sample efficiency and converge after 0.3M

on both tasks. But they are all inferior to FlowComm, which outper-

forms CommNet, Dial and NeurComm by a large margin. Moreover,

FlowComm substantially get better average reward and smaller

variance than MAAC and IC3Net at the same time, indicating that

the prioritized communication increasingly enhances the stability

of our method.

5.3.2 Summary of Execution Performance. To test the execu-

tion performance of all methods, we execute the trained MARL

policies for 50 episodes, and report the mean and standard devia-

tions in Table 1. FlowComm outperforms all the baselines with the

lowest standard deviations.

We compute the sparsity of the communication graph through-

out each episode and report the mean and standard deviation. The

(a) t = 7 (b) t = 8 (c) At with t = 7.

Figure 4: Illustration of the effects of one communication
step on the movements of the agents. (a) When t = 7, the
dashed line shows the moving directions of four agents. (b)
New state at t = 8. (c) Communicate topology at t = 7.

sparsity of A with n = 4 agents has value 0.499 ± 0.125; the coun-

terpart with n = 6 agents has value 0.501 ± 0.084 This implies

that FlowComm learns to prioritize the communication rather than

connecting the agents all together as did in CommNet and DIAL.

Visualization of Communication Graph. Figure 4 illustrates
the effects of one communication step on the movements of the

4 agents of Cooperative Navigation task. On the communication

matrix, 1 means there is communication between the sender and

the receiver and 0 means there is no communication. Agent 1 (the

red agent) receives messages from agent 3 (the blue agent) and

agent 4 (the grey agent) and realizes that they are moving to the

uppermost landmark and the lowest landmark respectively. Hence,

it chooses to move to the middle landmark to avoid collision with

agent 3 and agent 4, even though that landmark is further away

from it. Similarly, agent 2 (the green agent) receives messages from

agent 1 and agent 4, and moves to the upper-right landmark to

avoid collision with them. In general, we observe that communi-

cation occurs when multiple agents are trying to move to a single

landmark, and those exchange of messages helps them better decide

which agent would occupy that landmark.

5.3.3 Results on Heterogeneous Graph. To further study the

performance of FlowComm in learning correlated communications,

we modify the cooperative-navigation task as a heterogeneous

communication task. In this setting, we have n = 8 agents learning

to cover n landmarks. The difference to the previous setting is that

agent 3 has a larger global view compared to the other three agents.

Figure 5(a) compares the learning curves in the heterogeneous

graph with n = 8 agents. Due to the bad performances of CommNet,

DIAL and NeurComm, we only include two best baselines MAAC

and IC3Net. Note that the performance of IC3Net experiences an

obvious drop at the beginning, since the agents learn to avoid

collisions but not to reach the landmarks. FlowComm performs

consistently better and enjoys higher sample efficiency compared

to IC3Net. To show the correlations among different agents’ com-

munication topology, we sample the values in positions {(1,3), (5,3),

(6,3), (8,3), (3,1), (3,5), (3,6), (3,8)} and plot the correlation among the

values. Figures 5(b) to 5(d) shows that {(1,3), (5,3), (6,3), (8,3)} has

higher mutual correlation and lower correlation with {(3,1), (3,5),

(3,6), (3,8)}. This attributes to that agent 1, 5, 6, 8 has smaller sight

range and acts more as receivers.

Main Track AAMAS 2021, May 3-7, 2021, Online

461

Table 2: Performance of MARL controllers in CACC environments: catch-up (above) and slow-down (below). Best values are
in bold.

Scenario Name FlowComm IC3Net NeurComm CommNet DIAL MAAC

avg reward −61.90 -439.2 -241.08 -357.9 -276.72 -90.19

std reward 46.34 244.7 93.96 217.55 84.34 127.66

avg vehicle headway [m] 20.29 20.00 20.45 20.47 21.99 20.32

std vehicle headway [m] 0.96 0 1.2 1.18 0.2 1.41

avg vehicle velocity [m/s] 15.21 15.00 15.33 15.33 15.07 15.34

std vehicle velocity [m/s] 0.71 0 0.9 0.87 0.16 0.87

collision number 0 0 0 0 0 0

avg reward −608.27 -889.65 -2159.51 -2582.69 -2581.89 -865.41

std reward 913.35 941.85 675.23 586.73 570.05 1258.67

avg vehicle headway [m] 22.54 23.55 15.84 16.24 14.42 21.79
std vehicle headway [m] 4.77 5.19 2.1 2.16 1.7 5.51

avg vehicle velocity [m/s] 17.43 20.05 13.43 13.82 12.28 18.99

std vehicle velocity [m/s] 2.95 5.70 2.77 2.88 2.49 4.34

collision number 0 0 13 12 16 6

0.0M0.2M0.5M0.8M1.0M1.2M1.5M1.8M2.0M
Training step

−7

−6

−5

−4

−3

−2

Av
er

ag
e

ep
iso

de
 re

wa
rd

IC3Net
MAAC
FlowComm

(a) Hetero. Coop.-Navi. n = 8

A13

A53

A63

A31

A35

A36

A83

A38
A13 A53 A63 A31 A35 A36A83 A38

1.0

0.8

0.6

0.4

0.2

0.0

(b) Correlation matrix t = 2

A13

A53

A63

A31

A35

A36

A83

A38
A13 A53 A63 A31 A35 A36A83 A38

1.0

0.8

0.6

0.4

0.2

0.0

(c) Correlation matrix t = 15

A13

A53

A63

A31

A35

A36

A83

A38
A13 A53 A63 A31 A35 A36A83 A38

1.0

0.8

0.6

0.4

0.2

0.0

(d) Correlation matrix t = 30

Figure 5: (a) Average episode reward vs. training steps of var-
ious methods on Heterogeneous Coop.-Navi. scenarios. (b-
d) Correlation matrix for different agents’ communication
topology.

5.4 Traffic control
We use one existing Cooperative Adaptive Cruise Control (CACC)

environment with two scenarios Catch-up and Slow-down [6]. For

the two CACC tasks, we simulates a string of n = 8 vehicles for

60s with a 0.1s control interval, where target speed v∗t = 15m/s .
CACC Catch-up has an initial headway h1,0 > hi ,0,∀i , 1. CACC

Slow-down has an initial headway hi ,0 = h
∗
and target speed v∗t

linearly decreases to 15m/s during the first 30s and then stays at

constant.

The objective is to adaptively coordinate a string of vehicles to

minimize the car-following headway and speed perturbations based

on real-time vehicle-to-vehicle communication. The observation of

each vehicle includes its headway h, velocityv , and acceleration
a to neighbors within one step. We follow [5] and adopt an optimal

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training step

−1600
−1400
−1200
−1000

−800
−600
−400
−200

0

Av
er

ag
e

ep
iso

de
 re

wa
rd

CommNet
DIAL
NeurComm
IC3Net
MAAC
FlowComm

(a) CACC Catch-up.

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training step

−3500

−3000

−2500

−2000

−1500

−1000

−500

Av
er

ag
e

ep
iso

de
 re

wa
rd

(b) CACC Slow-down.

Figure 6: Average episode reward vs. training steps of vari-
ous methods on two Traffic control scenarios.

velocity model (OVM) [2] to control a platoon of vehicles under

above constraints, by changing two hyper-parameters: headway

gain α◦, relative velocity gain β◦. The policy are trained to select

appropriate hyper-parameters

(
α◦, β◦

)
from four levels and the

action space is set as {(0, 0),(0.5, 0),(0, 0.5),(0.5, 0.5)}.
Rewards are designed based on the following cost. Assuming the

target headway and velocity profile are h∗ = 20m and v∗t , respec-

tively, the cost of each agent is (hi ,t − h
∗)2 + (vi ,t −v

∗
t)

2 + 0.1u2i ,t .

Whenever a collision happens (hi ,t < 1m), all agents receive a

large penalty 1000, and the episode terminates. An additional cost

5

(
2hst − hi ,t

)
2

+ is added in training for potential collisions.

5.4.1 Summary of Training Performance. Figure 6 shows the
average on 2 seeds of the training curve of all methods on CACC

with n = 8 agents. The high standard deviation of episode returns

is due to the large penalty of collisions. Our method distinctly

outperforms all five baselines out of two scenarios as well as keep

relatively stable performance. In Catch-up, although MAAC and

FlowComm share more drastic decrease of learning curve before

0.2M steps, the curves of these two exceed other 4 baselines’ at

about 0.45M steps, even FlowComm outperforms MAAC slightly.

Moreover, FlowComm learns the greatest improvement from the

initial random reward, more smoothly than MAAC, converging

Main Track AAMAS 2021, May 3-7, 2021, Online

462

at around 0.8M, while CommNet, DIAL, NeurComm and IC3Net

improve not much.

For the Slow-down scenario, it is a more complicated task com-

pared to Catch-up, and baselines including MAAC and IC3Net show

violent vibration and others learn strenuously. Even though, our

method still learns the best reward, conquering the descent and

maintaining at a relatively stable value ultimately. MAAC presents

second top performance followed by IC3Net and DIAL. The result

illustrates that the graph structure increasingly enhances models’

stability and exploits the communication.

5.4.2 Summary of ExecutionPerformance. We freeze and eval-

uate our model for another 50 episodes. Table 2 summarizes the key

metrics in CACC. The optimal values of headway and velocity are h
= 20m, and v = 15m/s. The averaged values are computed from the

safe execution episodes. The metric “collision number” count the

number of episodes where a collision happens. While collision-free

is of top priority in reality, safe control is not the focus of this paper.

As we can see, FlowComm gains the highest average reward and

also lowest collision numbers.

We compute the sparsity of the communication graph through-

out each episode and report the mean and standard deviation. The

sparsity values in the traffic environment are relatively low, i.e.

0.54 ± 0.018 and 0.46 ± 0.03 in Catch-up and Slow-down respec-

tively.

6 CONCLUSION
In this work, we have considered the correlation between agents in-

teractions in the topology and proposed to learnmessage-augmented

decentralized policies and graph reasoning policies together to max-

imize profitability. We generalize coupling flow to model the inter-

action graph inMARL conditioning on the global states of all agents.

Extensive empirical studies on Particle world and CACC show the

efficacy of FlowComm. The visualization results on Particle world

indicate that our method has learnt meaningful communications.

While the policies are decentralized and easily scale the scenar-

ios with more agents, the usage of the centralized critic prohibits

its application to large scale problems. For future works, it would

be interesting to consider extending our method to coordination

scenarios where agents’ decision should be made in order.

ACKNOWLEDGMENTS
This work is partly supported by the Strategic Priority Research

Program of Chinese Academy of Sciences, Grant No. XDA27000000.

A DETAILED PROOFS
We provide detailed proofs to the propositions below.

A.1 Proposition 1
Proof of Proposition 1.

− DKL
(
qθ i (τ)∥p(τ)

)
= Eτ∼qθ i

[
logp(τ) − logqθ i (τ)

]
= Eτ∼qθ i

[
logp(s1)

∏
t=1

p(st+1 |st ,ut) exp
(T∑
t=0

r it (st ,ut)
)

− logp(s1)Πt=1p(st+1 |st ,ut)
T∏
t=1

π (ut ,At |st)
]

= Eτ∼qθ i
[T∑
t=0

r it (st ,ut) −
T∑
t=1

log

(n∏
j=1

π j (u
j
t |o

j (st ,At))ρ(At |st)
)]

∝ Eτ∼qθ i
[∑
t=0

r it (st ,ut) −
T∑
t=1

logπ i (uit |o
i (st ,At)ρ(At |st)

]
(15)

=

T∑
t
Est ,ut ,At∼qθ i

[
r i (st ,ut) + H (π

i
θ (u

i
t |o

i (st ,At))ρ(At |st)
]
.

where

∑n
j=1, j,i logπ

i (u j |oi (s,A)) is removed from (15) since it is

not related to θ i . □

A.2 Proposition 2
Proof of Proposition 2. Following the single agent Policy Gra-

dient Theorem [40, 42], we get the multi-Agent graph reasoning

policy gradient:

ηi =

∫
S ,U ,B

π
(
u,A | s

)
Qi (s,u) dsdudA.

=

∫
S

∫
B
ρ(A)

∫
U
π
(
u | oi (s,A)

)
Qi (s,u) dsdudA.

Suppose ρ(A) is parameterized by φ, then we apply the gradient

over ηi

∇φη
i =

∫
S

∫
B

∇φρφ (A)

∫
U
π
(
u | oi (s,A)

)
Qi (s,u) dsdudA

= Es∼p,A∼ρ
[
∇φ log ρφ (A | s)

∫
U
π (u | oi (s,A))Qi (s,u) du

]
.

In off-policy training, a replay buffer is introduced in a centralized

actor-critic method [24, 42]. By applying batch sampling to the

centralized critic, the gradient can be approximated by:

∇φη
i = E(s ,u ,A)∼D

[
∇φ log ρφ

(
A | s

)
Qi (s,u)

]
.

This completes the proof. □

A.3 Proposition 3
Proof. We train a Normalizing-flow to promote the exploration

in the graph space by maximizing the entropy H [ρφ] during train-

ing. We note that the entropy of the ρφ has a simple form. Since

H [ρφ] ≡ −
∑
A∈B

ρφ (A) log ρφ (A)

= −
∑
A∈B

p0ς
(
f −1φ1

◦ · · · ◦ f −1φn (A)
)
logp0ς

(
f −1φ1

◦ · · · ◦ f −1φn (A)
)

= −
∑

A0∈{0,1}n×n

ρ0ς (A0) log ρ
0

ς (A0).

Since our sequence of transformations is a bijective transform be-

tween the (unrestricted) domains ofA andA0. This relation ensures

that,

H [ρφ] = H [ρ0ς]

which is tractable. For the estimation, we independently sample

Ai
0
∼ ρ0ς (A0), i = 1, 2, ...,k , then H [ρ0ς] ≈

∑k
i=1 log ρ

0

ς (A
i
0
). □

Main Track AAMAS 2021, May 3-7, 2021, Online

463

REFERENCES
[1] Dhaval Adjodah, Dan Calacci, Abhimanyu Dubey, Anirudh Goyal, PM Krafft,

Esteban Moro, and Alex Pentland. 2020. Leveraging Communication Topologies

Between Learning Agents in Deep Reinforcement Learning. In Proceedings of
the 19th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). 1738–1740.

[2] Masako Bando, Katsuya Hasebe, Akihiro Nakayama, Akihiro Shibata, and Yuki

Sugiyama. 1995. Dynamical model of traffic congestion and numerical simulation.

Physical Review E 51, 2 (1995), 1035.

[3] Daniel Barkoczi and Mirta Galesic. 2016. Social learning strategies modify the

effect of network structure on group performance. Nature Communications 7, 1
(2016), 1–8.

[4] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. 2020. Deep Coordination

Graphs. In In International Conference on Machine Learning (ICML). 01–11.
[5] Tianshu Chu, Sandeep Chinchali, and Sachin Katti. 2020. Multi-agent Reinforce-

ment Learning for Networked System Control. In International Conference on
Learning Representations (ICLR). https://openreview.net/forum?id=Syx7A3NFvH

[6] Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. 2020. Multi-Agent Deep

Reinforcement Learning for Large-Scale Traffic Signal Control. IEEE Transactions
on Intelligent Transportation Systems 21 (2020), 1086–1095.

[7] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike

Rabbat, and Joelle Pineau. 2019. Tarmac: Targeted multi-agent communication.

In International Conference on Machine Learning (ICML). 1538–1546.
[8] Laurent Dinh, David Krueger, and Yoshua Bengio. 2014. Nice: Non-linear inde-

pendent components estimation. arXiv preprint arXiv:1410.8516 (2014).
[9] Yali Du, Lei Han, Meng Fang, Tianhong Dai, Ji Liu, and Dacheng Tao. 2019. LIIR:

Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning..

In Advances in Neural Information Processing Systems (NeurIPS).
[10] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon White-

son. 2016. Learning to communicate with deep multi-agent reinforcement learn-

ing. In Advances in Neural Information Processing Systems (NeurIPS). 2137–2145.
[11] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Thirty-
Second AAAI Conference on Artificial Intelligence (AAAI).

[12] Shubham Gupta, Rishi Hazra, and Ambedkar Dukkipati. 2020. Networked Multi-

Agent Reinforcement Learning with Emergent Communication. In Proceedings of
the 19th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). 1858–1860.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft

Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a

Stochastic Actor. In International Conference on Machine Learning (ICML). 1861–
1870.

[14] Lei Han, Peng Sun, Yali Du, Jiechao Xiong, QingWang, Xinghai Sun, Han Liu, and

Tong Zhang. 2019. Grid-Wise Control for Multi-Agent Reinforcement Learning

in Video Game AI. In International Conference on Machine Learning (ICML). 2576–
2585.

[15] Yedid Hoshen. 2017. Vain: Attentional multi-agent predictive modeling. In Ad-
vances in Neural Information Processing Systems (NeurIPS). 2701–2711.

[16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. 2016. Binarized neural networks. In Advances in Neural Information
Processing Systems (NeurIPS). 4107–4115.

[17] Shariq Iqbal and Fei Sha. 2019. Actor-attention-critic for multi-agent reinforce-

ment learning. In International Conference on Machine Learning (ICML). PMLR,

2961–2970.

[18] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical reparameterization

with gumbel-softmax. Proceedings of the International Conference on Learning
Representations (ICLR) (2017).

[19] Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. 2020. Graph Convo-

lutional Reinforcement Learning. In International Conference on Learning Repre-
sentations (ICLR). https://openreview.net/forum?id=HkxdQkSYDB

[20] Jiechuan Jiang and Zongqing Lu. 2018. Learning attentional communication for

multi-agent cooperation. In Advances in Neural Information Processing Systems
(NeurIPS). 7254–7264.

[21] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech

Jaśkowski. 2016. ViZDoom: A Doom-based AI Research Platform for Visual

Reinforcement Learning. In IEEE Conference on Computational Intelligence and
Games. 341–348.

[22] Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang, Taeyoung Lee,

Kyunghwan Son, and Yung Yi. 2019. Learning to Schedule Communication in

Multi-agent Reinforcement Learning. In International Conference on Learning

Representations (ICLR).
[23] David Lazer and Allan Friedman. 2007. The network structure of exploration

and exploitation. Administrative Science Quarterly 52, 4 (2007), 667–694.

[24] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor

Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive

environments. In Advances in Neural Information Processing Systems (NeurIPS).
6379–6390.

[25] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2017. The concrete distribu-

tion: A continuous relaxation of discrete random variables. Proceedings of the
International Conference on Learning Representations (ICLR) (2017).

[26] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. 2019.

MAVEN: Multi-Agent Variational Exploration. In Advances in Neural Information
Processing Systems (NeurIPS). 7611–7622.

[27] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.

Resource management with deep reinforcement learning. In Proceedings of the
15th ACM Workshop on Hot Topics in Networks. 50–56.

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, and

Georg Ostrovski. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529.
[29] Frans A Oliehoek, Christopher Amato, et al. 2016. A concise introduction to

decentralized POMDPs. Vol. 1. Springer.
[30] OpenAI. 2018. OpenAI Five. https://blog.openai.com/openai-five/.

[31] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder Witt, Gregory Farquhar,

Jakob Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function

Factorisation for Deep Multi-Agent Reinforcement Learning. In International
Conference on Machine Learning (ICML). 4292–4301.

[32] Stuart J Russell and Andrew Zimdars. 2003. Q-decomposition for reinforcement

learning agents. In Proceedings of the 20th International Conference on Machine
Learning (ICML). 656–663.

[33] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. 2017.

Deep reinforcement learning framework for autonomous driving. Electronic
Imaging 2017, 19 (2017), 70–76.

[34] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-

shelvam, and Marc Lanctot. 2016. Mastering the game of Go with deep neural

networks and tree search. Nature 529, 7587 (2016), 484.
[35] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. 2019. Learning when

to Communicate at Scale in Multiagent Cooperative and Competitive Tasks. In

International Conference on Learning Representations (ICLR).
[36] Kyunghwan Son, Daewoo Kim,Wan Ju Kang, David Hostallero, and Yung Yi. 2019.

QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent

Reinforcement learning. In International Conference on Machine Learning (ICML).
International Conference on Machine Learning Organizing Committee.

[37] Sainbayar Sukhbaatar and Rob Fergus. 2016. Learning multiagent communication

with backpropagation. In Advances in Neural Information Processing Systems
(NeurIPS). 2244–2252.

[38] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-

cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl

Tuyls, et al. 2018. Value-decomposition networks for cooperative multi-agent

learning based on team reward. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS). 2085–2087.

[39] Richard S Sutton, AndrewGBarto, and Francis Bach. 1998. Reinforcement learning:
An introduction. MIT press.

[40] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.

Policy gradient methods for reinforcement learning with function approximation.

In Advances in Neural Information Processing Systems (NeurIPS). 1057–1063.
[41] Dustin Tran, Keyon Vafa, Kumar Agrawal, Laurent Dinh, and Ben Poole. 2019.

Discrete flows: Invertible generative models of discrete data. In Advances in
Neural Information Processing Systems (NeurIPS). 14719–14728.

[42] Ermo Wei, Drew Wicke, David Freelan, and Sean Luke. 2018. Multiagent soft

q-learning. In Thirty-Second AAAI Conference on Artificial Intelligence (AAAI).
[43] Marco Wiering. 2000. Multi-agent reinforcement learning for traffic light control.

In International Conference on Machine Learning (ICML). 1151–1158.
[44] Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Joey Tianyi Zhou, and Chengqi

Zhang. 2020. Deep Reinforcement Learning with Stacked Hierarchical Attention

for Text-based Games. In Advances in Neural Information Processing Systems
(NeurIPS).

[45] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. 2018. Fully

Decentralized Multi-Agent Reinforcement Learning with Networked Agents. In

International Conference on Machine Learning (ICML). 5872–5881.

Main Track AAMAS 2021, May 3-7, 2021, Online

464

https://openreview.net/forum?id=Syx7A3NFvH
https://openreview.net/forum?id=HkxdQkSYDB

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setup
	4 Methodology
	4.1 Multi-Agent Actor Critic
	4.2 Graph Reasoning Policy Gradient
	4.3 Discrete Normalizing Flow for Graph Reasoning
	4.4 Practical Implementations

	5 Numerical Experiments
	5.1 Baselines
	5.2 Settings
	5.3 Particle World
	5.4 Traffic control

	6 Conclusion
	Acknowledgments
	A Detailed Proofs
	A.1 Proposition 1
	A.2 Proposition 2
	A.3 Proposition 3

	References

