
An Abstraction-based Method to Check
Multi-Agent Deep Reinforcement-Learning Behaviors
Pierre El Mqirmi

Imperial College London, UK

pierre.el-mqirmi19@imperial.ac.uk

Francesco Belardinelli

Imperial College London, UK

francesco.belardinelli@imperial.ac.uk

Borja G. León

Imperial College London, UK

b.gonzalez-leon19@imperial.ac.uk

ABSTRACT
Multi-agent reinforcement learning (RL) often struggles to ensure

the safe behaviours of the learning agents, and therefore it is gen-

erally not adapted to safety-critical applications. To address this

issue, we present a methodology that combines formal verifica-

tion with (deep) RL algorithms to guarantee the satisfaction of

formally-specified safety constraints both in training and testing.

The approach we propose expresses the constraints to verify in

Probabilistic Computation Tree Logic (PCTL) and builds an abstract

representation of the system to reduce the complexity of the verifica-

tion step. This abstract model allows for model checking techniques

to identify a set of abstract policies that meet the safety constraints

expressed in PCTL. Then, the agents’ behaviours are restricted

according to these safe abstract policies. We provide formal guar-

antees that by using this method, the actions of the agents always

meet the safety constraints, and provide a procedure to generate

an abstract model automatically. We empirically evaluate and show

the effectiveness of our method in a multi-agent environment.
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1 INTRODUCTION
Autonomous agents acting in unknown environments are attract-

ing research interests due to their potential applications in multiple

domains including robotics, network optimisation, and distributed

resource allocation [22, 25, 35–37]. Currently, one of the most pop-

ular techniques to tackle these domains is reinforcement learning

(RL) [28]. However, in order to learn how to act, RL requires to ex-

plore the environment, which in safety-critical scenarios means that

the agents will commonly take dangerous actions, possibly dam-

aging themselves or even putting humans at risk. Consequently,

RL and its extension deep RL (DRL) [8] are rarely used in real-

world applications where multiple safety-critical constraints need

to be satisfied simultaneously. To alleviate this problem, (D)RL algo-

rithms are being combined with formal verification techniques to

ensure safety in learning. Even though significant progress has been
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achieved in this direction [1, 5, 9, 12, 19, 23], settings with multiple

learning agents are comparatively less explored and understood.

Our Contribution. In this paper we introduce assured multi-agent
reinforcement learning (AMARL), a method to formally guarantee

the safe behaviour of agents acting in an unknown environment

through the satisfaction of safety constraints by the solution learned

using a DRL algorithm, both at training and test time. Building upon

the assured reinforcement learning (ARL) technique in [19], we com-

bine reinforcement learning and formal verification [13] to ensure

the satisfaction of constraints expressed in Probabilistic Computa-
tion Tree Logic (PCTL) [11]. Differently from ARL, we support a

multi-agent setting and DRL algorithms. Specifically, we introduce

the notion of abstract Markov game (AMG) and present a proce-

dure to generate AMGs automatically, unlike ARL where abstract

models are handcrafted. Moreover, we provide formal proofs of

the preservation of properties expressed in (fragments of) PCTL

between the abstract and concrete model.

Multiple challenges arise from multi-agent settings, such as the

curse of dimensionality [4]. It is therefore crucial to build a small

enough abstract Markov game while preserving all the required

properties. Moreover, many RL algorithms cannot guarantee con-

vergence in multi-agents scenarios and are therefore harder to train.

Finally, the use of options (i.e., temporally extended actions) in the

abstract MG makes the definition of the reward and transition func-

tions complex. Nonetheless, our experimental results demonstrate

the effectiveness of the AMARLmethod to ensure safety constraints.

Moreover, we demonstrate its compatibility with DRL algorithms

and its ability to ensure the safe behaviours of agents even during

the learning stage.

Related Work. This paper builds upon the ARL method intro-

duced in [19]; consequently, both our method and ARL are closely

related and belong to the same class of safe RL techniques based on

restricting exploration [9]. Further, they both support constraints

expressed in the probabilistic temporal logic PCTL. Nevertheless,

our AMARL method is more general than ARL, as we support

both multi-agent settings and the use of both tabular RL and DRL.

Moreover, in contrast with ARL, the abstract representation of the

Markov game is built in an automated manner and proofs of con-

straint preservation between abstracts and concrete models are

provided. Hence, ARL can be seen as a special case of our method,

where only single-agent tabular RL is supported and no proof of

constraint preservation is provided.

Our approach differs from other safe RL methods based on for-

mal verification, as it relies on the construction of an abstract model

to tackle the high dimensional spaces found in typical shield meth-

ods [1, 12] and allows to find high-level solutions directly from

the abstract model. The approach proposed in [1] introduced the
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notion of shield, i.e., an entity that monitors the agents’ actions,

and also expresses constraints in temporal logic. A major difference

w.r.t. AMARL is that their shield instead of penalizing unsafe actions

and preventing the agent from interacting with the environment,

replaces the unsafe action with another safe action and therefore

requires the shield to be active both at training and test time. More-

over, their method is designed for single-agent RL and constraints

are expressed in linear temporal logic [24]. Similarly to [1] and

AMARL, [12] proposes a shield-based technique that expresses

constraints in PCTL. A key difference here is that they consider

multi-agent settings where only a single agent is controllable. Their

method also relies on the construction of an abstraction. However,

differently from AMARL, their abstract model does not include

the reward function, thus preventing from solving the problem at

the abstract level. The approach presented in [23] also expresses

safety constraints in PCTL, but instead of ensuring safety by mean

of a shield, this method is based on verification and repair of the

learned policy. Hence, it does not provide any safety guarantee

at learning time. Moreover, a significant limitation of [23] is its

difficulty to tackle high dimensional state spaces. Thus making this

method prone to the curse of dimensionality and not adapted for

multi-agent settings that are known to suffer from this problem.

2 BACKGROUND
In this section, we provide the necessary background regarding

both reinforcement learning and formal verification.

2.1 Multi-agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) is a machine learning

[3] technique where agents situated in an environment aim to

maximise an expected reward signal provided by their interactions

with such environment [28]. This problem is typically modelled as

a Markov game (MG). Initially, this model is unknown to the agents

and they explore it to collect rewards and to learn the optimal

behaviours (i.e., policies).

Definition 2.1 (Markov Game). [16] AMarkov gamewith𝑛-agents
is a tuple𝑀 = ⟨𝑆,𝐴1, . . . , 𝐴𝑛, 𝑃, 𝑅1, . . . , 𝑅𝑛, 𝛾⟩ where:
• 𝑆 is the state space.
• For every 𝑖 ≤ 𝑛, 𝐴𝑖 is the action space of agent 𝑖 .
• 𝑃 is the transition functionwhere 𝑃 ®𝑎

𝑠𝑠′ denotes the probability

of going from state 𝑠 ∈ 𝑆 to state 𝑠 ′ ∈ 𝑆 by taking the joint

action ®𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩, where all 𝑎𝑖 ∈ 𝐴𝑖 are the actions

taken by the agents simultaneously.

• 𝑅1, . . . , 𝑅𝑛 is a set of reward functions, where 𝑅®a
𝑖,𝑠𝑠′ denotes

the reward received by agent 𝑖 when the joint action ®𝑎 from

state 𝑠 ∈ 𝑆 to state 𝑠 ′ ∈ 𝑆 is performed. We denote 𝑟𝑖,𝑡 the

reward received by agent 𝑖 at time step 𝑡 .

• 𝛾 ∈ [0, 1] is the discount factor.

In MARL each agent’s behaviour is determined by her policy. In

this work, we use deterministic policies and define the policy of

agent 𝑖 as 𝜋𝑖 : 𝑆 → 𝐴𝑖 . Each agent 𝑖 tries to find an optimal policy

𝜋∗
𝑖
that maximises the sum 𝑅𝑖 =

∑∞
𝑘=0

𝛾𝑘𝑟𝑖,𝑡+𝑘 of her expected

rewards. Finally, a joint policy is a tuple ®𝜋 = ⟨𝜋1, . . . , 𝜋𝑛⟩.
Moreover, we focus on fully cooperative problems [4], where all

the agents share the same reward function 𝑅1 = . . . = 𝑅𝑛 and try to

maximise their common sum of rewards. The method we propose

makes use of the popular Independent Q-Learning (IQL) algorithm

[31] due to its simplicity and to the fact that it is the direct extension

of the tabular Q-Learning typically used in previous single-agent

shielded based approaches [1, 12, 19]. According to IQL, each agent

𝑖 has her own Q-table and update the values of the state-action

pairs as follows:

𝑄𝑖,𝑡+1 (𝑠, 𝑎𝑖 ) ← 𝑄𝑖,𝑡 (𝑠, 𝑎𝑖 ) +𝛼 [𝑟𝑖,𝑡 +𝛾 · max

𝑎′
𝑖
∈𝐴𝑖

𝑄𝑖,𝑡 (𝑠 ′, 𝑎′𝑖 ) −𝑄𝑖,𝑡 (𝑠, 𝑎𝑖 )]

(1)

where 0 < 𝛼 ≤ 1 is the learning rate. Once the learning phase is

over, the optimal policy of an agent using IQL returns the action

with the highest Q-value according to the state-action pairs of her

Q-table. In this paper, we make use of deep RL, which combines

RL and deep learning [10] to increase the scalability of traditional

tabular RL algorithms [20]. In particular, we use the direct extension

of IQL called independent deep Q-Learning (IDQL) [30], where the

Q-tables of the agents are replaced by neural networks.

Shield in Safe RL. Our approach makes use of a shield [1, 5, 12]
to ensure the fulfillment of safety constraints both in training and

testing. A shield is an entity that monitors the agents’ actions

and prevents them from performing any action that would lead

to an unsafe state. Therefore, the shield is generally seen as an

intermediate between the agents and the environment that ensure

that only safe actions are performed on the environment. Note that

it is desired to have a shield that intervenes as little as possible and

that does not impact too much the agents’ exploration freedom.

Otherwise, the shield could prevent the agents from finding optimal

policies. For this reason, it is common to have a shield that penalizes

the agents with a negative reward when intervening.

2.2 Formal Verification by Model Checking
The method we propose makes use of the probabilistic computation-
tree temporal logic (PCTL) [11] to express the constraints to satisfy,

possibly extended with rewards [7].

We consider a set 𝐴𝑃 of atomic propositions (or atoms) to label

the states of an MG, in order to express that some facts hold at

certain states [2].

Definition 2.2 (PCTL). Formulae Φ over a set 𝐴𝑃 of atoms are

built according to the following grammar:

Φ ::= 𝑡𝑟𝑢𝑒 | 𝑎 | Φ ∧ Φ | ¬Φ | 𝑃∼𝑝 (𝜑)
𝜑 ::= ⃝Φ | Φ𝑈Φ | Φ𝑈 ≤𝑛Φ

where 𝑎 ∈ 𝐴𝑃 , 𝜑 is a path formula, ∼ ∈ {<, ≤, >, ≥}, 𝑝 ∈ [0, 1], and
𝑛 ∈ N. Intuitively, next ⃝, until𝑈 , and bounded until𝑈 ≤𝑛 are the

standard temporal operators; while 𝑃∼𝑝 (𝜑) expresses that the path
formula 𝜑 is true with probability ∼ 𝑝 .

PCTL formulae are interpreted over the states and paths of a

Markov game and 𝑠 |= Φ denotes that state formula Φ holds in state

𝑠 . In particular, for an MG 𝑀 , we introduce a labelling function

𝐿 : 𝑆 → 2
𝐴𝑃

. For reasons of space, we omit the details about the

semantics of PCTL and refer to [2, 7].

The extended version of PCTL with rewards supported by the

PRISM language [14] extends the definition of state formulae with
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Table 1: Safety (S) and Optimality (O) Constraints

ID Constraint PCTL

𝑆1 All agents will be caught with probability < 0.15. 𝑃<0.15 (♢𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝑎𝑙𝑙 )
𝑆2 Agent 1 will be caught with probability < 0.15. 𝑃<0.15 (♢𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑1)
𝑆3 Agent 𝑖 , 𝑖 = 2, 3 will be caught with probability < 0.3. 𝑃<0.3 (♢𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝑖 )
𝑂1 All agents will reach the goal area with probability ≥ 0.8. 𝑃≥0.8 (♢𝑔𝑜𝑎𝑙𝑎𝑙𝑙 )
𝑂2 Agent 1 will reach the goal with probability ≥ 0.85. 𝑃≥0.85 (♢𝑔𝑜𝑎𝑙1)
𝑂3 Agent 𝑖 , 𝑖 = 2, 3 will reach the goal with probability ≥ 0.8. 𝑃≥0.8 (♢𝑔𝑜𝑎𝑙𝑖 )
𝑂5 The expected reward the agents collect collectively is ≥ 7. 𝑅≥7 (♢𝑒𝑛𝑑𝑎𝑙𝑙 )

the following clauses [7]:

Φ ::= 𝑅∼𝑟 (𝐼=𝑘 ) | 𝑅∼𝑟 (𝐶≤𝑘 ) | 𝑅∼𝑟 (♢Φ)
where ∼ ∈ {<, ≤, >, ≥} and 𝑟 ∈ R≥0.

Intuitively,𝑅∼𝑟 (𝐼=𝑘 ) expresses the reward at time step𝑘 ,𝑅∼𝑟 (𝐶≤𝑘 )
expresses the expected cumulative reward up to time𝑘 , and𝑅∼𝑟 (♢Φ)
expresses the expected cumulative reward to reach a state that sat-

isfies Φ.
Finally, we introduce the weak fragment of PCTL (or wPCTL)

that discards the next and bounded until operators. That is, path

formulae in wPCTL are restricted as follows:

𝜑 ::= Φ𝑈Φ

The weak fragment of PCTL features preeminently as the language

to express constraint on learning agents, including those stated in

Table 1. The Storm model checker [6] supports the same specifica-

tion language as PRISM, and we use it to verify the satisfaction of

such constraints

3 THE VERIFICATION OF (D)RL BEHAVIORS
In this section we present the main contributions of this work. First,

we introduce the motivating example that we use to illustrate the

formal machinery as well as for the experimental evaluation in

Sec. 4. Then, we provide an overview of our new assured multi-
agent RL technique that aims at automatizing and extending to

multi-agent settings the ARL method in [19]. In particular, we

introduce abstract Markov game (AMG) and define a new notion of

bisimulation that guarantees the preservation of formulae in PCTL

between an AMG and its corresponding Markov game. Finally, we

provide a procedure to generate such AMGs automatically.

3.1 Motivating Scenario: the GFC domain
As motivating scenario we consider the guarded flag-collection do-
main (GFC) from [19] that we extend with multiple cooperative

agents (Fig. 1). The agents’ objective is to retrieve as many flags

as possible without getting caught by the cameras before reaching

the Goal position. The detection probability of the cameras is given

in Table 2. Agents have a different probability of getting caught

depending on the action they perform, i.e., hidden, partial or direct.

An agent’s navigation ends when she reaches the goal position or

when she gets caught by a camera. An episode terminates when all

agents’ navigation is over or when the maximum number of step

has been reached.

This scenario illustrates the need to define agent-specific con-

straints. For instance, we may send multiple robots to collect the

flags and some robots might be more valuable than others. Conse-

quently, we want to be able to require the robots to have different

Figure 1: The GFC domain with 3 agents 𝐴1, 𝐴2, and 𝐴3, and
6 flags labelled 𝐴 to 𝐹 .

Table 2: Detection probabilities of the GFC domain cameras.

View Detection Probabilities

Area Transitions Direct Partial Hidden

HallA↔ RoomA 0.18 0.12 0.06

HallB↔ RoomB 0.15 0.1 0.05

HallB↔ RoomC 0.15 0.1 0.05

RoomC↔ RoomE 0.21 0.14 0.07

probabilities to reach the goal position (see, e.g., Table 1). Further,

we observe that the state space grows exponentially with the num-

ber of agents: the GFC domain with three agents has ∼ 8.2𝑒8
states

versus ∼ 1.5𝑒4
states for the case of a single agent considered

in [19]. This remark strengthens the need for our method to be

compatible with deep RL algorithms.

3.2 Assured Multi-Agent Reinforcement
Learning

The main contribution of this paper is the assured multi-agent rein-
forcement learning (AMARL) method ensuring formally that teams

of autonomous agents satisfy given constraints during the learning

process. To this end, we build upon the ARL framework [19] that

we briefly discussed in Sec. 1. In this section, we introduce AMARL

by providing an overview of the method, including the different

stages it involves. The AMARL pipeline is depicted in Fig. 2.

Figure 2: AMARL pipeline, starting with the construction of
the abstract MG, then the generation of the abstract joint
policies, and terminating with safe learning.
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AMG construction. In this stage, the abstract MG corresponding

to the given Markov game is generated in an automated manner

(see Sec. 3.5). Indeed, only some domain expertise is required to

define the labelling function. For instance, in the GFC domain (see

Fig. 1), it is sufficient to know the lower and upper bounds detec-

tion probabilities of the cameras and the layout of the rooms. Note

that since the learning stage makes use of algorithms that are not

guaranteed to converge to an optimal solution (such as DRL algo-

rithms), we build both an AMG that considers transitions with the

higher chance of reaching a "bad state" called safe AMG, and an

AMG that considers transitions with the lower chance of reaching

a "bad state" called optimal AMG. For instance, in the GFC domain

the safe AMG considers the direct transitions in Table 2, whereas

the optimal AMG considers hidden transitions. Nonetheless, the

two AMGs are identical but for their transition probabilities and,

therefore, have the same abstract policies.

Further, we prove a preservation result on the satisfaction of

constraints in PCTL between the AMG and the original MG, by

using a bisimulation relation [2, 27] (see Sec. 3.4). This is a key

difference w.r.t. ARL, where the abstract model was handcrafted

and no preservation guarantees were provided.

Abstract Joint-Policy Generation. In the second stage of AMARL

we generate arbitrary joint policies in the AMG. Then, we use

the Storm model checker [6] to verify the relevant constraints

in PCTL on the AMGs, suitably restricted according to the joint

policy. Safety constraints are verified on the safe AMG, whereas
optimality constraints on the optimal AMG. (See Table 1 for safety
and optimality constraints.) Consequently, the safety constraints

allow us to certify that agents always act safely (even during the

learning stage, unlike ARL), while the optimality constraints allow

us to evaluate the performance of the abstract policies. Finally, as

in ARL, we build a Pareto set [17] of safe abstract joint policies that
enables us to choose a Pareto-optimal safe abstract joint policy

according to our preferences.

Safe Learning. Finally, even though we obtained the high-level

solution, at the concrete level the selected abstract joint policy can

be consistent with several different concrete policies. We there-

fore apply deep RL to let agents learn an optimal concrete policy

consistent with the selected safe abstract joint policy. Specifically,

we use independent deep Q-Learning [30]. Our safe learning stage

differs from the corresponding stage of the ARL method on several

accounts. Firstly, in order to make our approach compatible with

DRL algorithms, we do not remove any action from the action space

of the agents. Thus, to make agents learn that some actions are

unsafe, we introduce our notion of shield [1] on the environment

as depicted in Fig. 2. Our shield makes use of the AMG to derive

the bisimulation relation (See Def. 3.3) between the states of the

MG and the states of the AMG, then restrict the behaviours of

the agents in the original MG to the selected abstract policy. That

is, every time an agent selects an action, before letting the agent

interacting with the environment, the shield verifies if the agent’s

action leads to states allowed by the abstract joint policy and the

relaxed bisimulation relation (see Def. 3.6). Accordingly, every time

the shield block an action, the agent gets a reward of -1 and remains

in its current position without interacting with the environment.

By doing so, the agent learns that the action is not safe and the

shield will no longer be needed at test time when agents follow the

learned joint policy. Differently from ARL, to facilitate the learning

process of the agents, the shield also recompenses the agents with

a reward of 1 every time they complete an option.

3.3 Abstract Markov Games
Due to the general high dimensionality of the problems solved with

(deep) RL algorithms, it is typically not possible to apply model

checking techniques directly on the concrete problems. A notion

of abstraction is therefore required, and it is then necessary to

show the class of formulas that can be verified on the abstract

model and preserved in the original one. In this section we formally

define the notion of abstract Markov game used in the AMARL

method. However, we first introduce the concepts of options [29]
and termination scheme [26] as they are required for the definition

of AMG.

An option is defined as a tuple 𝑜 = ⟨𝐼𝑜 , 𝜋𝑜 , 𝛽𝑜 ⟩ where 𝐼𝑜 ⊆ 𝑆

is the initialisation set; 𝜋𝑜 : 𝑆 → 𝐴 is its policy; and 𝛽𝑜 ⊆ 𝑆 is

the termination condition [29]. An option can be thought of as a

sequence of actions that once initialised follows a policy until it

reaches a termination condition.

When actions are replaced with options, given that options, as

sequences of actions, might have different duration and termina-

tion condition for different agents, thus terminating at different

times, it is required to decide when to terminate the joint option.

In this paper, we focus on a fully cooperative setting that uses the

𝑇𝑎𝑙𝑙 termination scheme proposed in [26], whereby the next joint

option is decided as soon as all the options currently being exe-

cuted have terminated. The reason for this choice is that it makes

the decision problem synchronous and allows the definition of the

reward and transition functions at the abstract level. Moreover, the

𝑇𝑎𝑙𝑙 termination scheme is the one that has fewer decision epochs

and reduces further the complexity of the problem. Focusing on

fully cooperative problems, on the other hand, allows to define

the reward function without knowing the particular policy of each

agents. For example, in the GFC domain, if two agents try to collect

the same flag, it is not necessary to know which agent collects it to

define the reward function.

Definition 3.1 (Abstract Markov Game). Given a Markov game

𝑀 = ⟨𝑆,𝐴1, . . . , 𝐴𝑛, 𝑃, 𝑅1, . . . , 𝑅𝑛, 𝛾⟩, let 𝑂1, . . . ,𝑂𝑛 be a tuple of

option spaces over 𝑀 , and 𝑧 be an abstraction function for 𝑆 . We

define the abstract Markov game corresponding to 𝑀 as a tuple

𝑀̄ = ⟨𝑆,𝑂1, . . . ,𝑂𝑛, 𝑃, 𝑅1, . . . , 𝑅𝑛, 𝛾⟩ where:
• 𝑆 is the abstract state space with 𝑧 (𝑆) = 𝑆 .

• For every 𝑖 ≤ 𝑛, 𝑂𝑖 is the option space of agent 𝑖 .
• 𝑃 is the transition function where 𝑃

®̄𝑜
𝑠𝑠′

denotes the prob-

ability of going from the abstract state 𝑠 ∈ 𝑆 to the ab-

stract state
¯𝑠 ′ ∈ 𝑆 with the joint option ®𝑜 = ⟨𝑜1, . . . , 𝑜𝑛⟩:

𝑃
®̄𝑜
𝑠𝑠′

=
∑
𝑠∈𝑆,𝑧 (𝑠)=𝑠 𝑤𝑠

∑
𝑠′∈𝑆,𝑧 (𝑠′)=𝑠′ 𝑃 (𝑠, ®𝑜, 𝑠 ′)

where 𝑤𝑠 denotes the weight of state 𝑠 and represents the

degree whereby 𝑠 contributes to the abstract state 𝑧 (𝑠) [18],
• 𝑅1, . . . , 𝑅𝑛 is the set of reward function where 𝑅 ®𝑜

𝑖,𝑠𝑠′
denotes

the reward perceived by agent 𝑖 when performing the joint

option ®𝑜 = ⟨𝑜1, . . . , 𝑜𝑛⟩ in𝑀 , from state 𝑠 ∈ 𝑆 to state
¯𝑠 ′ ∈ 𝑆 .

𝑅
®̄𝑜
𝑖,𝑠𝑠′

=
∑
𝑠∈𝑆,𝑧 (𝑠)=𝑠 𝑤𝑠𝑅𝑖 (𝑠, ®𝑜)
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• 𝛾 ∈ [0, 1] is the discount factor.

By Def. 3.1 AMGs can be considered as a special case of Markov

games where an option is considered as an abstract action and we

normally omit the bar above the letters in the notation of AMGs. In

Sec. 3.5 we provide an algorithmic way to generate abstract MG so

that constraints expressed in wPCTL are preserved, based on the

notion of (stutter) bisimulation developed in the following section.

3.4 Stutter Bisimulations
This section is devoted to identifying the conditions under which

constraints expressed in PCTL are preserved between an MG and

the corresponding abstract MG. To this end, we first consider stutter
bisimulations, which are known to preserve the weak fragment of
PCTL (wPCTL) in stochastic systems [27]. In particular, we provide

a new notion of stutter bisimulation adapted for Markov games and

prove that this new definition preserves the formulas expressed in

wPCTL. Then, as this direct adaptation of stutter bisimulations to

Markov games turns out to be too restrictive for the safe learning

stage to be efficient, we provide a relaxation of one of the require-

ments of the stutter bisimulation, thus allowing the agents to learn

more independently while reducing the number of interventions of

the shield. Finally, we provide a procedure to automatically generate

an AMG that is stutter-bisimilar to a given MG.

3.4.1 Stutter Bisimulation. Stutter bisimulations have been intro-

duced for probabilistic systems in [27], where they are referred

to as weak bisimulations. Here we extend these bisimulations to

Markov games and a multi-agent setting.

We first recall some notations and definitions.

Probability distribution. For a finite set 𝑋 , a (discrete) probability
distribution on 𝑋 is defined by a function 𝜇 : 𝑋 → [0, 1] such that∑
𝑠∈𝑆 𝜇 (𝑠) = 1. 𝐷𝑖𝑠𝑡 (𝑋 ) denotes the set of all probability distribu-

tions over 𝑋 .

Notation. Let 𝑆 be a set of states and E an equivalence relation
over 𝑆 , i.e., a transitive, reflexive and symmetric binary relation

on 𝑆 . For each 𝑠 ∈ 𝑆 , [𝑠]E = {𝑠 ′ ∈ 𝑆 | (𝑠, 𝑠 ′) ∈ E} denotes the
equivalence class of state 𝑠 under E. Then, 𝑆\E = {[𝑠]E | 𝑠 ∈ 𝑆} is
the quotient space of 𝑆 under E. For a relation E, if (𝑠1, 𝑠2) ∈ E, we
often write 𝑠1E𝑠2. Let 𝑀 be a Markov game, 𝑃 (𝑠, ®𝑎, ·) denotes the
discrete probability distribution on 𝑆 to select the next states, given

the current state 𝑠 and joint action ®𝑎.

Definition 3.2 (E-equivalence [27]). Let E be an equivalence re-

lation over set 𝑆 and let 𝜇1, 𝜇2 ∈ 𝐷𝑖𝑠𝑡 (𝑆) be two probability distri-

bution. We say that 𝜇1 and 𝜇2 are E-equivalent, denoted 𝜇1 ≡E 𝜇2,

iff 𝜇1 ( [𝑠]E ) = 𝜇2 ( [𝑠]E ), for all [𝑠]E ∈ 𝑆\E, where 𝜇 ( [𝑠]E ) =∑
𝑠′∈[𝑠 ]E 𝜇 (𝑠

′). That is, 𝜇1 and 𝜇2 are E-equivalent if they assign

the same probability weight to every E-equivalence class.

Having recalled the required notations, we now introduce our

novel definition of stutter bisimulation specifically for Makov games.

Definition 3.3 (Stutter Bisimulation). Let𝑀𝑖 = ⟨𝑆𝑖 , 𝐴1,𝑖 , . . . , 𝐴𝑛,𝑖 ,

𝑃𝑖 , 𝑅1,𝑖 , . . . , 𝑅𝑛,𝑖 , 𝛾𝑖 ⟩, for 𝑖 = 1, 2, be two Markov games over 𝐴𝑃

with labelling functions 𝐿𝑖 : 𝑆𝑖 → 2
𝐴𝑃

for 𝑀1 and 𝑀2. A (stutter)
bisimulation for (𝑀1, 𝑀2) is an equivalence relation E over 𝑆1 ∪ 𝑆2

such that

𝑣0, {𝑎} 𝑣1, {𝑎} 𝑣2, {𝑎}

𝑣3, {𝑏}

𝑣4, {𝑐}

−→𝑥 , 1

−→𝑥 , 1
−→𝑦 , 1

−→𝑥 , 0.7

−→𝑥 , 0.3

−→𝑦 , 1

−→𝑥 , 1

−→𝑥 , 1

𝑠0, {𝑎}

𝑠1, {𝑏}

𝑠2, {𝑐}−→𝑥 , 0.3

−→𝑥 , 0.7

−→𝑦 , 1

−→𝑥 , 1

−→𝑥 , 1

Figure 3: The MG 𝑀1 on the left and its stutter-bisimilar
AMG𝑀2 on the right.

(1) for every 𝑠1 ∈ 𝑆1, there exists 𝑠2 ∈ 𝑆2 such that 𝑠1E𝑠2.

(2) for every 𝑠2 ∈ 𝑆2, there exists 𝑠1 ∈ 𝑆1 such that 𝑠1E𝑠2.

(3) for all (𝑠1, 𝑠2) ∈ E it holds that:

(a) 𝐿1 (𝑠1) = 𝐿2 (𝑠2),
(b) for every joint action ®𝑎1 available from state 𝑠1, there exist

a joint option ®𝑜2 available from 𝑠2 such that 𝑃1 (𝑠1, ®𝑎1, ·) ≡E
𝑃2 (𝑠2, ®𝑜2, ·) and ®𝑜2 respect the branching condition [32]:

• for every path𝑤 consistent with ®𝑜2 and every state 𝑠 oc-

curring in𝑤 , either 𝑠1E𝑠 and each state 𝑠 ′ that precedes
𝑠 in𝑤 satisfies 𝑠1E𝑠 ′, or for every 𝑠 ′

1
∈ 𝑆1, 𝑠

′
1
E 𝑙𝑎𝑠𝑡 (𝑤)

implies 𝑠 ′
1
E𝑠 .

(c) for every joint action ®𝑎2 available from state 𝑠2, there exist

a joint option ®𝑜1 available from 𝑠1 such that 𝑃2 (𝑠2, ®𝑎2, ·) ≡E
𝑃1 (𝑠1, ®𝑜1, ·) and ®𝑜1 respect the branching condition [32]:

• for every path𝑤 consistent with ®𝑜1 and every state 𝑠 oc-

curring in𝑤 , either 𝑠2E𝑠 and each state 𝑠 ′ that precedes
𝑠 in𝑤 satisfies 𝑠2E𝑠 ′, or for every 𝑠 ′

2
∈ 𝑆2, 𝑠

′
2
E 𝑙𝑎𝑠𝑡 (𝑤)

implies 𝑠 ′
2
E𝑠 .

where 𝑙𝑎𝑠𝑡 (𝑤) denotes the last state of path𝑤 .

We write 𝑀1 ≃ 𝑀2 whenever there exist a bisimulation E for

(𝑀1, 𝑀2), and for every (𝑠1, 𝑠2) ∈ E we write 𝑠1 ≃ 𝑠2.

Conditions (1) and (2) in Def. 3.3 state that every state of 𝑀1 is

in relation with some state of𝑀2 and vice versa. Condition (3.a) re-

quires that bisimilar states are equally labelled. Condition (3.b) says

that every outgoing transition 𝑃1 (𝑠1, ®𝑎1, ·) must be E-equivalent
to some outgoing transition 𝑃2 (𝑠2, ®𝑜2, ·). The branching conditions

says that for every path𝑤 that can occur when following ®𝑜2, all the

states in𝑤 that appear before the change of equivalence class are

related to state 𝑠1, whereas all the states that appear thereafter are

related to the same state 𝑠 ′
1
∈ 𝑆1. Condition (3.c) is the symmetric

counterpart to (3.b). As an example, Fig. 3 depicts an MG𝑀1 and its

corresponding AMG𝑀2, which is stutter-bisimilar according to the

equivalence relation that induces the following set of equivalence

classes {{𝑣0, 𝑣1, 𝑣2, 𝑠0}, {𝑣3, 𝑠1}, {𝑣4, 𝑠2}}.
Our definition of stutter bisimulation can be seen as a unified

version of the stutter bisimulation for deterministic systems in

[2] and the weak bisimulations for probabilistic systems in [27].

Indeed, our definition takes into account the state labellings as in [2]

and supports the probabilistic case as in [27]. However, a notable

difference here is the use of options which follow memoryless

policies, in contrast with the notions in [2, 27] that use history-based

policies. Further, conditions (3.b) and (3.c) in Def. 3.3 guarantee that

Main Track AAMAS 2021, May 3-7, 2021, Online

478



the equivalence relation E is divergence-sensitive, i.e., the following
lemma holds.

Lemma 3.4. Let 𝑀𝑖 = ⟨𝑆𝑖 , 𝐴1,𝑖 , . . . , 𝐴𝑛,𝑖 , 𝑃𝑖 , 𝑅1,𝑖 , . . . , 𝑅𝑛,𝑖 , 𝛾𝑖 ⟩, for
𝑖 = 1, 2, be two bisimilar Markov games, with bisimilar states 𝑠1 ∈ 𝑆1

and 𝑠2 ∈ 𝑆2. For every infinite path𝑤1 from 𝑠1 that always remains
in [𝑠1]E , there exists an infinite path𝑤2 from 𝑠2 that always remains
in [𝑠2]E (and viceversa).

We can now state the main theoretical result in this section about

the preservation of wPCTL under stutter bisimulations.

Theorem 3.5. Let𝑀1 and𝑀2 be two Markov games over 𝐴𝑃 with
labelling functions 𝐿𝑖 : 𝑆𝑖 → 2

𝐴𝑃 for 𝑀1 and 𝑀2. For every weak
PCTL formula Φ, we have that if 𝑀1 ≃ 𝑀2, then 𝑀1 |= Φ ⇐⇒
𝑀2 |= Φ.

By Theorem 3.5 two bisimilar Markov games satisfy the same

formulae in wPCTL. This is a key result that allows us to guarantee

that, since we can build AMG that are bisimilar to the concrete MG,

then all properties expressed in the weak fragment of PCTL that

hold in the AMG, also hold in the corresponding MG. However, it is

important to note that the branching condition expressed in items

(3.b) and (3.c) of Def. 3.3 forces agents to coordinate to perform

a joint action that transition from a state bisimilar to the initial

state of the joint option to a state bisimilar to a terminal state of

it, thus preventing from terminating their options independently.

As we assume that agents can perform an idle action that does

nothing, this condition does not have any impact theoretically. On

the other hand, using the shield to guarantee the satisfaction of the

branching condition would considerably complicate the learning

process and deteriorate the quality of the learned solution. For

this reason, in the next section, we introduce a relaxed version

of the branching condition that allows agents to terminate their

options independently, thus improving the quality of the learned

solution and facilitating the learning stage by reducing the number

of interventions of the shield, as the agents are normally less likely

to violate the constraints for the relaxed version.

3.4.2 Relaxing the Branching Condition. In a multi-agent RL envi-

ronment it is key to verify the behaviour of each agent indepen-

dently, e.g., we want to be able to ensure that a specific agent is

not reaching a dangerous state. However, some atomic proposi-

tions expressing overall goals the agents want to achieve, will be

shared by all agents. E.g., in the GFC domain, the flags that have

been collected are represented as atoms that are shared amongst

all agents as it is a common goal. Following this idea, we denote as

𝐴𝑃𝑖 the set of atoms whose truth depends only on the local state of

agent 𝑖 , such as its position, and 𝐴𝑃𝑎𝑙𝑙 the set of atoms whose truth

depends on the whole global state of the system. Then, we relax

the branching conditions (3.b) and (3.c) in Def. 3.3. Note that this

relaxed branching condition is only used during the learning stage

to define the shield and not during the generation of the abstract

model. Thus, the generated abstract model is still stutter bisimilar

to the concrete model.

Definition 3.6 (Relaxed (Stutter) Bisimulation). Let𝑀𝑖 = ⟨𝑆𝑖 , 𝐴1,𝑖 ,

. . . , 𝐴𝑛,𝑖 , 𝑃𝑖 , 𝑅1,𝑖 , . . . , 𝑅𝑛,𝑖 , 𝛾𝑖 ⟩, 𝑖 = {1, 2} be two Markov Games over

𝐴𝑃 with labelling functions 𝐿𝑖 : 𝑆𝑖 → 2
𝐴𝑃

for𝑀1 and𝑀2. A relaxed
(stutter) bisimulation for (𝑀1, 𝑀2) is an equivalence relation E over

𝑆1 ∪ 𝑆2 such that all conditions in Def. 3.3 hold for the following

relaxed branching condition:

• for every path𝑤 consistent with ®𝑜𝑘 and every state 𝑠 occur-

ring in𝑤 ,

(1) for each agent 𝑖 , either 𝐿(𝑠) ∩ 𝐴𝑃𝑖 = 𝐿(𝑠𝑚) ∩ 𝐴𝑃𝑖 and

each state 𝑠 ′ that precedes 𝑠 in 𝑤 satisfies 𝐿(𝑠 ′) ∩ 𝐴𝑃𝑖 =
𝐿(𝑠𝑚) ∩ 𝐴𝑃𝑖 , or for every 𝑠 ′𝑚 ∈ 𝑆𝑚 , if 𝐿(𝑠 ′𝑚) ∩ 𝐴𝑃𝑖 =

𝐿(𝑙𝑎𝑠𝑡 (𝑤)) ∩𝐴𝑃𝑖 then 𝐿(𝑠 ′𝑚) ∩𝐴𝑃𝑖 = 𝐿(𝑠) ∩𝐴𝑃𝑖
(2) either 𝐿(𝑠) ∩𝐴𝑃𝑎𝑙𝑙 = 𝐿(𝑠𝑚) ∩𝐴𝑃𝑎𝑙𝑙 and each state 𝑠 ′ that

precedes 𝑠 in𝑤 satisfies 𝐿(𝑠 ′) ∩𝐴𝑃𝑎𝑙𝑙 = 𝐿(𝑠𝑚) ∩𝐴𝑃𝑎𝑙𝑙 , or
for every 𝑠 ′𝑚 ∈ 𝑆𝑚 , if 𝐿(𝑠 ′𝑚) ∩𝐴𝑃𝑎𝑙𝑙 = 𝐿(𝑙𝑎𝑠𝑡 (𝑤)) ∩𝐴𝑃𝑎𝑙𝑙
then 𝐿(𝑠 ′𝑚) ∩𝐴𝑃𝑎𝑙𝑙 = 𝐿(𝑠) ∩𝐴𝑃𝑎𝑙𝑙 .

where 𝑙𝑎𝑠𝑡 (𝑤) denotes the last state of path𝑤 , 𝑘,𝑚 ∈ {1, 2}, 𝑘 ≠𝑚.

We write𝑀1 ≃𝑟 𝑀2 whenever there exist a relaxed bisimulation

𝑅 for (𝑀1, 𝑀2), and for (𝑠1, 𝑠2) ∈ E, we write 𝑠1 ≃𝑟 𝑠2.

Intuitively, the difference between the relaxed condition inDef. 3.6

and items (3.b) and (3.c) in Def. 3.3 is that, instead of ensuring that

between the initial and the last state of a path all atoms either

change simultaneously or do not change, only ensures that the

atoms in each𝐴𝑃𝑖 , either change at the same time or do not change,

with the atoms belonging to set 𝐴𝑃𝑎𝑙𝑙 considered independently.

We now state the following theorem, which adapts Theorem 3.5

to formulae containing atoms of a single agent, as well as formulae

with no restriction on the atoms.

Theorem 3.7. Let𝑀1 and𝑀2 be two Markov games over 𝐴𝑃 with
labelling functions 𝐿𝑖 : 𝑆𝑖 → 2

𝐴𝑃 for𝑀1 and𝑀2.
(1) For every wPCTL formula Φ that only contains atoms in 𝐴𝑃𝑖

we have that if𝑀1 ≃𝑟 𝑀2, then𝑀1 |= Φ ⇐⇒ 𝑀2 |= Φ.
(2) For every wPCTL formula Φ where path formulae are restricted

to (𝑡𝑟𝑢𝑒 𝑈 Φ) and (𝑓 𝑎𝑙𝑠𝑒 𝑈 Φ), i.e., ♢Φ and Φ, we have that
if 𝑀1 ≃𝑟 𝑀2, then 𝑀1 |= Φ ⇐⇒ 𝑀2 |= Φ. Moreover,
assuming that Φ only contains one atom and no restriction on
path formulae, if𝑀1 ≃𝑟 𝑀2, then𝑀1 |= Φ ⇐⇒ 𝑀2 |= Φ.

We, therefore, defined a relaxation for the branching condition

of bisimulation that allows to construct more easily the shield in

the safe learning stage. However, it is worth to mention that even

though the shield can enable agents to perform actions that lead to

a state that is neither bisimilar to the initial state nor to a terminal

state of the joint option in the sense of Def. 3.3, still it has to verify

that after performing an action the global probability of reaching

the target equivalence classes remains the same.

Thus, as mentioned in Sec, 3.2, our shield is built according to

the relaxed version of the branching condition and by Theorem 3.7,

it ensures the preservation of some wPCTL formulae both during

the learning stage and by the learned solution.

We refer to the appendices of [21] for the proofs of Theorems

and Lemma introduced in this section.

3.5 Building Bisimilar Abstract Markov Games
In this section we provide an algorithm to construct the abstract

MG corresponding to a given Markov game, so that the AMG is

stutter bisimilar to the original MG.

As the starting point, we consider the algorithm given in [2]

to compute the quotient transition system under stutter bisimu-

lation for deterministic systems, which is based on the partition
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refinement technique [15]. We, therefore, adapt this algorithm to

compute AMGs under stutter bisimulation. Throughout this sec-

tion, let𝑀 = ⟨𝑆,𝐴1, . . . , 𝐴𝑛, 𝑃, 𝑅1, . . . , 𝑅𝑛𝛾⟩ be a Markov game over

AP with labelling function 𝐿 : 𝑆 → 2
𝐴𝑃

. Moreover, the abstrac-

tion function 𝑧 we introduced in Def. 3.1 maps each state 𝑠 to its

equivalence class according to the interpretation of atoms.

Definition 3.8 (Splitter). Let Π be a partition of 𝑆 and let 𝐵 ∈ Π,
we have that:

(1) A transition 𝑃 (𝑠, ®𝑎, ·), for 𝑠 ∈ 𝐵, ®𝑎 = ⟨𝑎1, . . . , 𝑎𝑛⟩, 𝑎𝑖 ∈ 𝐴𝑖 is a

Π-𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟 for 𝐵 iff there exists a state 𝑠 ′ ∈ 𝐵 that does not

have any joint option respecting the branching condition

that matches 𝑃 (𝑠, ®𝑎,𝐶) for every 𝐶 ∈ Π.
(2) Π is 𝐵-𝑠𝑡𝑎𝑏𝑙𝑒 if there is no Π-𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟 for 𝐵 ∈ Π.
(3) Π is 𝑠𝑡𝑎𝑏𝑙𝑒 if Π is 𝐵-𝑠𝑡𝑎𝑏𝑙𝑒 for all blocks 𝐵 ∈ Π.

In words, 𝑃 (𝑠, ®𝑎, ·) is a Π-𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟 for 𝐵 if it violates conditions

(3.b) and (3.c) in Def. 3.3, i.e., there exist a state 𝑠 ′ ∈ 𝐵 from where

there exist no joint option respecting the branching condition that

can mimic the transition 𝑃 (𝑠, ®𝑎, ·). Given that the initial partition

obtained with the abstraction function 𝑧 groups the states in blocks

that share the same labelling of atoms, it is easy to see that if Π is

stable, then Π is a stutter bisimulation.

Once introduced the notion of splitter, we show how to split a

block 𝐵 ∈ Π according to a transition 𝑃 (𝑠, ®𝑎, ·) that was identified as
a Π-𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟 of 𝐵. Thus, we define the function 𝑆𝑝𝑙𝑖𝑡 (𝐵, 𝑃 (𝑠, ®𝑎, ·)) =
{𝐵 ∩ 𝑆𝑎𝑡𝐵 (𝑃 (𝑠, ®𝑎, ·)), 𝐵\𝑆𝑎𝑡𝐵 (𝑃 (𝑠, ®𝑎, ·))}, where 𝑆𝑎𝑡𝐵 (𝑃 (𝑠, ®𝑎, ·)) de-
notes the set of states in 𝐵 that have a joint option respecting the

branching condition that can mimic transition 𝑃 (𝑠, ®𝑎, ·). We can

now define the function 𝑅𝑒 𝑓 𝑖𝑛𝑒 (Π, 𝐵, 𝛿) that refines a partition Π.

Definition 3.9 (Refinement). Let Π be a partition for state space

𝑆 , 𝐵 ∈ Π, and 𝑃 (𝑠, ®𝑎, ·) a Π-𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟 of 𝐵. Then,
𝑅𝑒 𝑓 𝑖𝑛𝑒 (Π, 𝐵, 𝑃 (𝑠, ®𝑎, ·)) = 𝑆𝑝𝑙𝑖𝑡 (𝐵, 𝑃 (𝑠, ®𝑎, ·)) ∪ (Π\𝐵)

By using Def. 3.9, we present in Algorithm 1 the refinement

procedure for quotienting Markov games according to our stutter

bisimulation, which is an adaptation of the algorithm for stutter

bisimulation quotienting in [2].

Note that we are only interested in the generation of stutter

bisimulation and not in relaxed stutter bisimulation as the definition

of the relaxed stutter bisimulation is based on a relation that is a

stutter bisimulation. The relaxed stutter bisimulation is less strict

than the stutter bisimulation, thus if we have a relation that is a

stutter bisimulation, this relation also fullfil the conditions of the

relaxed stutter bisimulation. The only difference is that the relaxed

stutter bisimulation allows to reach the next abstract state by going

through some abstract states that are not in relation with the initial

one nor the final one. From an AMG that is a stutter bisimulation,

it is easy to build a shield that restrict the actions of the agents

according to the relaxed version of the branching condition.

4 EXPERIMENTAL EVALUATION
We evaluate empirically the performance of our method on the GFC

domain with three agents presented in Sec. 3.1, against the safety

and optimality constraints in Table 1. All our experiments are run

using an Nvidia Tesla (12GB RAM) - 24-core/48 thread Intel Xeon

CPU with 256GB RAM. The DRL algorithm we use is IDQL [30]

Algorithm 1: Algorithm to compute the stutter bisimula-

tion quotient

input :An MG𝑀 without terminal states over 𝐴𝑃 and its

corresponding labeling function 𝐿

output :Stutter bisimulation quotient space 𝑆/≃
Π := Π𝐴𝑃 ; \\ Π𝐴𝑃 is the initial partition that
aggregate states with the same atoms. An
algorithm to compute Π𝐴𝑃 is provided in [2].

while ∃𝐵 ∈ Π, ∃𝑃 (𝑠, 𝑎, ·), 𝑠 ∈ 𝐵. such that 𝑃 (𝑠, 𝑎, ·) is a
Π-𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑟 for 𝐵 do

choose such 𝐵 ∈ Π, 𝑃 (𝑠, 𝑎, ·), 𝑠 ∈ 𝐵
Π := 𝑅𝑒 𝑓 𝑖𝑛𝑒 (Π, 𝐵, 𝑃 (𝑠, 𝑎, ·))

return Π

with Double Deep Q-Learning [33] and the Dueling Network Ar-

chitecture [34]. We refer to [21] for the details on hyperparameters.

Each final policy evaluation is repeated 1𝑒4
times.

For our experiments, the fully cooperative reward function of the

AMGs is defined as follows: a reward of 1 is obtained for each flag

collected and for each agent that reaches the goal position of the

environment. It is important to realise that the reward function of

the AMGs is not used for training purpose but only for evaluating

the score of the abstract joint policies and thus to verify if an

abstract joint policy meets the optimality constraints expressed on

the rewards obtained. In fact, the reward function of the concrete

MG is defined as follows:

Definition 4.1. Each agent gets an individual reward of 1 upon

collecting a flag and for reaching the goal area of the environment.

Moreover, the shield assigns a reward of 1 to each agent that

completes an option and a -1 penalty to each agent that tries to

perform an unsafe action, i.e. an action not allowed by the selected

abstract joint policy. Note that we do not penalise an agent that

gets caught as she is already naturally penalised by the fact that

she cannot navigate the environment and get rewards anymore.

Thus, even though agents have the common objective of collect-

ing as many flags as possible before reaching the goal area of the

environment, to facilitate the learning stage, they have different

reward functions at the concrete level. This difference of reward

function between the AMGs and the concrete MG does not impact

the properties preservation as the score of the abstract joint policy

is evaluated according to the atoms of the states it reaches.

To evaluate AMARL, we first run the AMG construction stage to

obtain the safe and optimal AMGs. In the second stage, we generate

1,000 abstract joint policies and verify our constraints on them by

using the Storm model checker [6]. Given the large number of state

of our problem and the fact that the number of possible abstract

joint policies increases exponentially with the number of states, it

is difficult to find a policy that satisfies the expressed constraints.

In the current setting, we only obtain one abstract joint policy that

meets the constraints (see Table 3). Finally, we run the safe learning

stage of our method and obtain the results presented in Table 4.

Note that at test time, the shield of our method is no longer ac-

tive and agents follow their learned policies in a traditional way

and that during training agents always meet the safety constraints

thanks to the shield. From results in Table 4, we see that the learned

Main Track AAMAS 2021, May 3-7, 2021, Online

480



Table 3: Abstract joint policy’s properties returned by Storm
that satisfy the constraints. 𝑃? (Φ) denotes the probability of
reaching a state that satisfies Φ, while 𝑅? (Φ) denotes the ex-
pected reward obtained by reaching such a state.

Optimality properties

𝑷?(♢𝒈𝒐𝒂𝒍𝒂𝒍𝒍 ) 𝑷?(♢𝒈𝒐𝒂𝒍1) 𝑷?(♢𝒈𝒐𝒂𝒍2) 𝑷?(♢𝒈𝒐𝒂𝒍3) 𝑹?(♢𝒆𝒏𝒅𝒂𝒍𝒍 )

0.8393 1 0.8835 0.9422 7.8007

Safety properties

𝑷?(♢𝒄𝒂𝒑𝒕𝒖𝒓𝒆𝒅𝒂𝒍𝒍 ) 𝑷?(♢𝒄𝒂𝒑𝒕𝒖𝒓𝒆𝒅1) 𝑷?(♢𝒄𝒂𝒑𝒕𝒖𝒓𝒆𝒅2) 𝑷?(♢𝒄𝒂𝒑𝒕𝒖𝒓𝒆𝒅3)

0 0 0.297 0.176

Table 4: AMARL test performance applying IDQL on the ab-
stract joint policy from Table 3. Results are presented as the
mean and standard deviation from 5 independent runs.

𝒊 𝑷?(♢𝒄𝒂𝒑𝒕𝒖𝒓𝒆𝒅𝒊) 𝑷?(♢𝒈𝒐𝒂𝒍𝒊) 𝑹?(♢𝒆𝒏𝒅𝒊)

1 0.0 (0.0) 0.9859 (0.271) 1.9859 (0.0271)

2 0.1184 (0.0033) 0.8733 (0.0195) 3.8022 (0.022)

3 0.0523 (0.0029) 0.8739 (0.0189) 1.9111 (0.0297)

𝒂𝒍𝒍 0.0 (0.0) 0.8379 (0.0023) 7.6992 (0.0553)

policies satisfy the safety constraints as well as the optimality con-

straints defined in Table 1. Additionally, the constraints satisfied

by the learned policies closely match the results returned by Storm
meaning that the agents learned polices just marginally worse than

optimal. This small divergence is potentially caused by scenarios

where one or more agents get captured which were not frequent

enough during the training stage for the remaining agents to learn

the selected abstract joint policy.

In order to fairly evaluate the impact the shield has, we run a

second experiment without the use of this element, whereby an

episode terminates as soon as some agent reaches an unsafe state

(i.e., a state that violates the joint abstract policy) and the agent

that performed the unsafe action is penalised with a reward of -1.

Further, to make the comparison as fair as possible, we keep the

same reward function as before (See Def. 4.1) where additionally,

agents are given a reward of 1 when completing an option and

their interactions with the environment are restricted until the

termination of the joint option so that we keep the𝑇𝑎𝑙𝑙 termination

scheme.

The performance of the solutions learned in this experiment

are provided in Table 5. Contrasting these results with the ones in

Table 4 we see that the use of the shield has no negative impact on

the final performance of the agents. Nevertheless, when learning

without the shield the agents reach an unsafe state in 61% of the

episodes over the 5 independent runs, while in the shield-based

approach safety is always guaranteed. Finally, we also compared our

method with a vanilla IDQL approach that does not take advantage

of the abstraction. We observe that, in this case, the agents do

not converge to an optimal solution in addition to their unsafe

behaviours. We refer to [21] for details on this experiment.

Table 5: AMARL test performance after being trained with-
out the shield on the abstract joint policy from Table 3. Re-
sults are presented as in Table 4.

𝒊 𝑷?(♢𝒄𝒂𝒑𝒕𝒖𝒓𝒆𝒅𝒊) 𝑷?(♢𝒈𝒐𝒂𝒍𝒊) 𝑹?(♢𝒆𝒏𝒅𝒊)

1 0.0 (0.0) 0.9192 (0.0297) 1.9044 (0.0522)

2 0.1264 (0.0258) 0.8375 (0.0316) 3.7555 (0.0565)

3 0.0529 (0.0043) 0.8553 (0.0414) 1.8902 (0.0334)

𝒂𝒍𝒍 0.0 (0.0) 0.8293 (0.0242) 7.5501 (0.0716)

5 CONCLUSION AND FUTUREWORK
In this paper we put forward a methodology to formally guarantee

that solutions learned using deep RL algorithms in a multi-agents

setting satisfy specific constraints, even during the learning stage.

By taking as starting point the ARL method proposed in [19], we

defined the notion of abstract Markov game meant to reduce the

complexity of the original problem, modelled as a Markov game.

The construction of the AMG allows to increase the scalability of the

verification method by applying model checking techniques on the

abstract model. We also defined a notion of stutter bisimulation for

MGs, which we proved to be adapt to preserve the weak fragment of

PCTL. We thus established the conditions an AMG has to satisfy to

guarantee that true properties, expressed in wPCTL, are preserved

in the corresponding MG.

Furthermore, in order to keep the learning stage efficient, we

defined a relaxation of stutter bisimulation to allow agents to act as

independently as possible. Accordingly, we introduced the classes

of wPCTL formulae that are preserved when the learning stage

takes advantage of this relaxation. Therefore, we provided formal

guarantees of property preservation between an AMG and its cor-

responding MG. This contribution, unlike the ARL method, allows

us to ensure the safe behaviours of agents both at training and

testing time. Moreover, we provided an algorithm to generate the

bisimilar AMG automatically. Finally, our AMARL method allows

for choosing beforehand the policy to be learnt among a set of safe

solutions, thus permitting to select the most adapted solution for

the problem regarding both safety and optimality, depending on

the application at hand.

The empirical evaluation we ran on the GFC domain showed

that the safety constraints were always satisfied, and that the so-

lution learned using DRL almost always converged to the optimal

solution with respect to the selected abstract joint policy, and that

it improves on the solution found using the same DRL algorithm

without AMARL. The experiments also showed that in addition to

ensuring agents safety, the shield of our method had no negative

impact and even improved by a bit the agents’ final performance in

comparison to AMARL without the shield.

Future work on the AMARL method would include increasing

its scalability, also through a more efficient implementation of the

procedure to automatically generate the abstract MG. A natural

continuation of this work would deal with different termination

scheme, as well as support competitive and mixed games. Finally,

a further work is needed to apply AMARL to a wider range of

problems as well as a broader class of PCTL contraints.
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