
Partially Observable Mean Field Reinforcement Learning
Sriram Ganapathi Subramanian

University of Waterloo

Waterloo, Canada

s2ganapa@uwaterloo.ca

Matthew E. Taylor

University of Alberta, Dept. of Computing Science

Alberta Machine Intelligence Institute (Amii)

Edmonton, Canada

matthew.e.taylor@ualberta.ca

Mark Crowley

University of Waterloo

Waterloo, Canada

mcrowley@uwaterloo.ca

Pascal Poupart

University of Waterloo, Waterloo, Canada

Vector Institute, Toronto, Canada

ppoupart@uwaterloo.ca

ABSTRACT
Traditional multi-agent reinforcement learning algorithms are not

scalable to environments with more than a few agents, since these

algorithms are exponential in the number of agents. Recent research

has introduced successful methods to scale multi-agent reinforce-

ment learning algorithms to many agent scenarios using mean field

theory. Previous work in this field assumes that an agent has access

to exact cumulative metrics regarding the mean field behaviour of

the system, which it can then use to take its actions. In this paper,

we relax this assumption and maintain a distribution to model the

uncertainty regarding the mean field of the system. We consider

two different settings for this problem. In the first setting, only

agents in a fixed neighbourhood are visible, while in the second

setting, the visibility of agents is determined at random based on

distances. For each of these settings, we introduce a 𝑄-learning

based algorithm that can learn effectively. We prove that this 𝑄-

learning estimate stays very close to the Nash 𝑄-value (under a

common set of assumptions) for the first setting. We also empiri-

cally show our algorithms outperform multiple baselines in three

different games in the MAgents framework, which supports large

environments with many agents learning simultaneously to achieve

possibly distinct goals.

KEYWORDS
Multi-Agent Reinforcement Learning, Reinforcement Learning,Mean

Field Theory, Partial Observation

ACM Reference Format:
Sriram Ganapathi Subramanian, Matthew E. Taylor, Mark Crowley, and Pas-

cal Poupart. 2021. Partially Observable Mean Field Reinforcement Learning.

In Proc. of the 20th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Multi-agent systems involve several learning agents that are learn-

ing simultaneously in an environment to solve a task or satisfy an

objective. These agents may have to compete or cooperate with

each other in the given context. Multi-agent systems are non sta-

tionary [9], making it hard to derive learning policies that are as

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

effective as in the single agent context. As the number of learning

agents increases, the possible number of learning situations in the

environment increases exponentially. Many algorithms introduced

in the Multi-Agent Reinforcement Learning (MARL) literature suf-

fer from scalability issues [4, 13], and hence are typically not well

suited for environments in which agents are infinite in the limit,

called many agent systems. Mean field theory has been used to

scale MARL to many agent scenarios in previous research efforts

[31, 32], most of which have assumed some notion of aggregation

that is made available by an engine or is directly observable in the

environment. For example, Guo et al. [7] assume that a population

distribution parameter can be obtained from the game engine and

Yang et al. [32] assume that the mean action of all agents in the

environment can be observed directly by all agents.

Partial observability is an important research area in single agent

reinforcement learning (RL) [8, 11, 34], but these advances are not

applicable to the many agent RL paradigm, since the stationary

environment assumption is broken. Also, partial observation in

single agent RL corresponds only to partial observability of state

features, but in multi-agent systems this could also correspond to

partial observability of other agents.

This paper relaxes the assumption that agents observe the aggre-

gate state variable in a mean field update. Instead, we maintain a

belief over the aggregate parameter that is used to help agent action

selection. We focus on discrete state and action space Markov deci-

sion processes (MDPs) and modify the update rules from Yang et

al. [32] to relax the assumptions of (1) global state availability and

(2) exact mean action information for all agents. We consider two

settings in this paper. The Fixed Observation Radius (FOR) setting as-
sumes that all agents in each agent’s small field of view are always

observed (and those outside the radius are not). The Probabilistic
Distance-based Observability (PDO) setting relaxes FOR such that

we model the probability of an agent seeing another agent as a

function of the distance between them (and this distribution de-

fines what agents are “viewable”). We introduce a new 𝑄-learning

algorithm for both settings, addressing the Partially Observable
Mean Field (POMF)𝑄-learning problem, using Bayesian updates

to maintain a distribution over the mean action parameter.

This paper’s contributions are to (1) introduce two novel POMF

settings, (2) introduce two novel algorithms for these settings, (3)

prove that the first algorithm ends up close to the Nash 𝑄-value

Main Track AAMAS 2021, May 3-7, 2021, Online

537

[10], and (4) empirically show that both algorithms outperform ex-

isting baselines in three complex, large-scale tasks. We will assume

stationary strategies as do other related previous work [10] [32].

Our full paper with appendices is available on arXiv [24].

2 BACKGROUND CONCEPTS
Reinforcement learning [25] is a problem formulated on top

of MDPs ⟨𝑆,𝐴, 𝑃, 𝑅⟩, where 𝑆 is the state space that contains the

environmental information accessible to an agent at each time step,

𝐴 gives the actions that the agent can take at each time step, the

reward function 𝑅 provides real-valued rewards at each time step,

and the transition dynamics 𝑃 is the probability of moving to a

state 𝑠 ′ when the agent takes action 𝑎 at state 𝑠 . 𝑄-learning [30]

learns a policy (𝑆 ↦→ 𝐴) by updating 𝑄-values based on experience.

Stochastic games generalize from single agent to𝑁 -agentMDPs.

Each step in a stochastic game (a stage game) depends on the ex-

periences of the agents in previous stages. A 𝑁 -player stochastic

game is defined as a tuple ⟨𝑆,𝐴1, . . . , 𝐴𝑁 , 𝑅1, . . . , 𝑅𝑁 , 𝑃,𝛾⟩, where
𝑆 is the state space, 𝐴 𝑗

is the action space of agent 𝑗 , and 𝑅 𝑗 :

𝑆 × 𝐴1 · · · × 𝐴𝑁 → ℜ is the reward function of agent 𝑗 . Agents

maximize their discounted sum of rewards with 𝛾 ∈ [0, 1) as
the discount factor. From this formulation, it can be seen that

agents can have completely different reward functions (competitive

and competitive-cooperative games) or can agree to maintain a

shared reward structure (cooperative games). Transition function

𝑝 : 𝑆 × 𝐴1 · · · × 𝐴𝑁 → Ω(𝑆), returns the probability distribu-

tion over the next state (Ω(𝑆)) when the system transitions from

state 𝑠 given actions (𝑎1, . . . , 𝑎𝑁) for all agents. The joint action is

𝒂 =
Δ [𝑎1, . . . , 𝑎𝑁]. The transition probabilities are assumed to satisfy∑
𝑠′ 𝑝 (𝑠 ′ |𝑠, 𝑎1, · · · , 𝑎𝑁) = 1. The joint policy (strategy) of agents can

be denoted by 𝝅 =
Δ [𝜋1, . . . , 𝜋𝑁]. Given an initial state 𝑠 , the value

function of agent 𝑗 is the expected cumulative discounted reward

given by 𝑣
𝑗
𝝅 (𝑠) =

∑∞
𝑡=0 𝛾

𝑡E𝝅 ,𝑝 [𝑟 𝑗𝑡 |𝑠0 = 𝑠]. The 𝑄-function can then

be formulated as 𝑄
𝑗
𝜋 (𝑠, 𝒂) = 𝑟 𝑗 (𝑠, 𝒂) + 𝛾E𝑠′∼𝑝 [𝑣 𝑗𝜋 (𝑠 ′)], where 𝑠 ′

represents the next state.

Nash Q-learning: Hu and Wellman [10] extended the Nash

equilibrium solution concept in game theory to stochastic games.

The Nash equilibrium of a general sum stochastic game is defined

as a tuple of strategies (𝜋1∗ , · · · , 𝜋𝑁∗), such that for all 𝑠 ∈ 𝑆 [10],

𝑣𝑖 (𝑠, 𝜋1∗ , · · · , 𝜋𝑖∗, · · · , 𝜋𝑁∗) ≥ 𝑣𝑖 (𝑠, 𝜋1∗ , · · · , 𝜋𝑖 , · · · , 𝜋𝑁∗) ∀𝜋𝑖 ∈ Π𝑖

Here, 𝑣𝑖 denotes the value function of agent 𝑖 . This implies that no

agent can deviate from its equilibrium strategy and get a strictly

higher payoff when all other agents are playing their equilibrium

strategies. The Nash 𝑄-function, 𝑄𝑖
∗ (𝑠, 𝒂), is the sum of agent 𝑖’s

current reward and its discounted future rewards when all agents

follow the Nash equilibrium strategy. Hu and Wellman proved

that under a set of assumptions, the Nash operator defined by

H Nash𝑸 (𝑠, 𝒂) = E𝑠′∼𝑝 [𝒓 (𝑠, 𝒂) + 𝛾𝒗Nash (𝑠 ′)] converges to the 𝑄

value of the Nash equilibrium. Here, 𝑸 =
Δ [𝑄1, . . . , 𝑄𝑁], 𝒓 (𝑠, 𝒂) =

[𝑟1 (𝑠, 𝒂), . . . , 𝑟𝑁 (𝑠, 𝒂)] and 𝒗𝑁𝑎𝑠ℎ (𝑠) =Δ [𝑣1𝝅∗ (𝑠), . . . , 𝑣
𝑁
𝝅∗ (𝑠)].

Mean field reinforcement learning extends the stochastic

game framework to environments where the number of agents are

infinite in the limit [14]. All agents are assumed to be indistinguish-

able and independent from each other. In this case, all the agents in

the environment can be approximated as a single virtual agent to

which the learning agent (called the central agent) formulates best

response strategies. Yang et al. [32] approximates the multi-agent

𝑄-function by the mean field 𝑄-function (MFQ) using an additive

decomposition and Taylor’s expansion (Eq. 1).

𝑄 𝑗 (𝑠𝑡 , a𝑡) ≈ 𝑄 𝑗 (𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎
𝑗
𝑡) (1)

The MFQ is recurrently updated using Eqs. 2 – 5:

𝑄 𝑗 (𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎
𝑗
𝑡) = (1 − 𝛼)𝑄

𝑗 (𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎
𝑗
𝑡) + 𝛼 [𝑟

𝑗
𝑡 + 𝛾𝑣

𝑗 (𝑠𝑡+1)] (2)

where 𝑣 𝑗 (𝑠𝑡+1) =
∑
𝑎
𝑗

𝑡+1

𝜋 𝑗 (𝑎 𝑗
𝑡+1 |𝑠𝑡+1, 𝑎

𝑗
𝑡)𝑄

𝑗 (𝑠𝑡+1, 𝑎 𝑗𝑡+1, 𝑎
𝑗
𝑡) (3)

𝑎
𝑗
𝑡 =

1

𝑁 𝑗

∑
𝑘≠𝑗

𝑎𝑘𝑡 , 𝑎
𝑘
𝑡 ∼ 𝜋𝑘 (·|𝑠𝑡 , 𝑎𝑘𝑡−1) (4)

and 𝜋 𝑗 (𝑎 𝑗𝑡 |𝑠𝑡 , 𝑎
𝑗

𝑡−1) =
exp(−𝛽𝑄 𝑗 (𝑠𝑡 , 𝑎 𝑗𝑡 , 𝑎

𝑗

𝑡−1))∑
𝑎
𝑗′
𝑡 ∈𝐴 𝑗

exp(−𝛽𝑄 𝑗 (𝑠𝑡 , 𝑎 𝑗
′
𝑡 , 𝑎

𝑗

𝑡−1))
(5)

𝑟
𝑗
𝑡 is the reward for agent 𝑗 , 𝑠𝑡 is the (global) old state, 𝑠𝑡+1 is the
(global) resulting state, 𝛼 is the learning rate, 𝑣 𝑗 is the value function

of 𝑗 and 𝛽 is the Boltzmann parameter. 𝑎
𝑗
𝑡 denotes the (discrete)

action of agent 𝑗 represented as a one-hot encoding whose compo-

nents are one of the actions in the action space. The 𝑎
𝑗
𝑡 is the mean

action of all other agents apart from 𝑗 and 𝜋 denotes the Boltzmann

policy. In Eq. 3, there is no expectation over 𝑎 𝑗 , because Yang et

al. [32] guaranteed that the MFQ updates will be greedy in the limit

(𝑡 −→ ∞). Finally, 𝑁 𝑗
is the number of agents in the neighbourhood

of 𝑗 . We highlight that, for the mean action calculation in Eq. 4, the

policies of all other agents needs to be maintained by the central

agent. Now, this policy can only be obtained by observing all other

agents at every time step, which is a strong assumption in a large

environment with many agents. Yang et al., overcome this prob-

lem by introducing neighbourhoods. However, the neighbourhood
needs to be large enough to contain the whole environment for

these methods to work, as agents can go in and out of the neigh-

bourhoods and go out of vicinity otherwise, which will make the

computation of mean action as in Eq. 4 inapplicable. In our work,

we will relax this strong assumption in estimating the mean field

action. We will not assume the observability of all other agents.

3 PARTIALLY OBSERVABLE MEAN FIELD
Q-LEARNING: FOR

In this section, we study the Fixed Observation Radius (FOR) ver-

sion of our problem, where all agents within a fixed neighbourhood

from the central agent are visible to the central agent, and the oth-

ers are not visible. Our setting is same as that in Yang et al. [32] but

we proceed to relax the assumption of global state observability.

We modify the update in Eqs. 2 – 5 by maintaining a categorical

distribution for the mean action parameter (𝑎). We will only use

the local state 𝑠 𝑗 of agent 𝑗 and not the global state. Eq. 6 gives

our corresponding 𝑄 update equation. Since the conjugate prior

of a categorical distribution is the Dirichlet distribution, we use a

Dirichlet prior for this parameter. Let 𝐿 be the size of the action

space. Let 𝜂 denote the parameters of the Dirichlet (𝜂1, . . . , 𝜂𝐿),
𝜃 denote a categorical distribution (𝜃1, . . . , 𝜃𝐿), and X denote an

observed action sample (𝑥1, . . . , 𝑥𝐺) of𝐺 agents. Then the Dirichlet

Main Track AAMAS 2021, May 3-7, 2021, Online

538

for agent 𝑗 can be given byD 𝑗 (𝜃 |𝜂) ∝ 𝜃𝜂1−1
1
· · · 𝜃𝜂𝐿−1

𝐿
and the like-

lihood is given by 𝑝 (X|𝜃) ∝ 𝜃 [X=1]
1

· · · 𝜃 [X=𝐿]
𝐿

∝ 𝜃𝑐1
1
· · · 𝜃𝑐𝐿

𝐿
, where

[𝑋 = 𝑖] is the Iverson bracket, which evaluates to 1 if 𝑋 = 𝑖 and 0

otherwise. This value corresponds to the number of occurrences of

each category (𝑐1, . . . , 𝑐𝐿), denoted by 𝑐 . Using a Bayesian update,

the posterior is a Dirichlet distribution given by Eq. 7 where the

parameters of this Dirichlet are given by D 𝑗 (𝜃 |𝜂 + 𝑐).
The modified 𝑄 updates are:

𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡) = (1 − 𝛼)𝑄

𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡) + 𝛼 [𝑟

𝑗
𝑡 + 𝛾𝑣 (𝑠

𝑗

𝑡+1)] (6)

D 𝑗 (𝜃) ∝ 𝜃𝜂1−1+𝑐1
1

· · · 𝜃𝜂𝐿−1+𝑐𝐿
𝐿

; D 𝑗 (𝜃 |𝜂 + 𝑐) (7)

Where 𝑣 𝑗 (𝑠 𝑗
𝑡+1) =

∑
𝑎
𝑗

𝑡+1

𝜋 𝑗 (𝑎 𝑗
𝑡+1 |𝑠

𝑗

𝑡+1, 𝑎
𝑗
𝑡)𝑄

𝑗 (𝑠 𝑗
𝑡+1, 𝑎

𝑗

𝑡+1, 𝑎
𝑗
𝑡) (8)

𝑎
𝑗
𝑖,𝑡
∼ D 𝑗 (𝜃 ;𝜂 + 𝑐); 𝑎

𝑗
𝑡 =

1

S

𝑖=S∑
𝑖=1

𝑎
𝑗
𝑖,𝑡

(9)

and 𝜋 𝑗 (𝑎 𝑗𝑡 |𝑠
𝑗
𝑡 , 𝑎

𝑗

𝑡−1) =
exp(−𝛽𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗

𝑡−1))∑
𝑎
𝑗′
𝑡 ∈𝐴 𝑗

exp(−𝛽𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗 ′
𝑡 , 𝑎

𝑗

𝑡−1))
(10)

We have replaced the mean field aggregation from Yang et al. (Eq.

4) with the Bayesian updates of the Dirichlet distribution from

Eq. 7 and we take S samples from this distribution in Eq. 9 to

estimate the partially observable mean action (𝑎). This approach

relaxes the assumption of complete observability of the global state.

We use samples from the Dirichlet to introduce noise in the mean

action parameter, enabling further exploration and helping agents

to escape local optima. Being stuck in a local optimum is one of

the major reasons for poor performance of learning algorithms in

large scale systems. For example, Guo et al. [7] show that MFQ and

Independent 𝑄-learning (IL) [27] remain stuck at a local optimum

and do not move towards a global optimum in many settings, even

after many training episodes. Yang et al. also report that the Mean

Field Actor Critic (MFAC) and MFQ algorithms may remain stuck

at a local optimum for a long period of training episodes in a simple

Gaussian squeeze environment as the number of agents becomes

exponentially large. Intuitively, this problem is even worse in a

partially observable setting as the agents get a smaller observation

and their best response policy is directed towards this observation

sample. Sampling methods as in Eq. 9 are also used in established

algorithms like Thompson sampling [19, 28]. Finally, we update

the Boltzmann policy like Yang et al. in Eq. 10. We provide more

theoretical guarantees for our update equations in Section 6.

This version of our problem is generally applicable to many

different environments. However, in some domains, agents may

not be able to see all the other agents in the vicinity, but closer

agents will have a high probability of being seen. The next section

considers a new version of our problem where some special kinds

of distributions are used to model the observed agents.

4 PARTIALLY OBSERVABLE MEAN FIELD
Q-LEARNING: PDO

This section considers the Probabilistic Distance-based Observabil-

ity (PDO) problem, assuming that each agent can observe other

agents with some probability that decreases as distance increases.

We introduce a distance vector D that represents the distance

of other agents in the environment to the central agent. Hence,

D = (𝑑1, . . . , 𝑑𝑁), where 𝑑𝑖 denotes the distance of agent 𝑖 from
the central agent. We use the exponential distribution to model the

probability of the distance of agent 𝑖 from the central agent. Expo-

nential distribution assigns a higher probability to smaller distances

and this probability exponentially drops off as distance increases.

Since, in a large environment the agents that matter are closer to

the central agent, than far off, the exponential distribution is appro-

priate to model this variable. We drop the subscript of 𝑑 for clarity.

This distribution is parameterized by
ˆ𝜃 so that 𝑑 | ˆ𝜃 ∝ exp(ˆ𝜃). Since

the conjugate prior of the exponential distribution is the gamma

distribution, we use a gamma prior, and the prior distribution is

parameterised by 𝛼, 𝛽 . Hence, we write ˆ𝜃 ∝ 𝐺𝑎𝑚𝑚𝑎(𝛼, ˆ𝛽).
We also maintain an additional parameter 𝑏𝑖 that determines

whether a given agent 𝑖 is visible to the central agent 𝑗 . The variable

𝑏𝑖 takes two values: 1 if this agent is in the field of view and 0

if this agent is not in the field of view. Again, we will drop the

subscript of 𝑏. We maintain a Bernoulli distribution conditioned

on the distance 𝑑 . The probability that an agent at a distance 𝑑

is visible is given by 𝑃𝑟 (𝑏 = 1|𝑑, 𝜆) = 𝜆𝑒−𝑑𝜆 . Note that this is

not an exponential distribution, but rather a Bernoulli distribution

with a probability defined by the same algebraic formula as the

exponential distribution. In this setting, we will assume that the

central agent will see varying numbers of other agents based on

this distribution. Since the parameter 𝜆 cannot be estimated by

an agent from observation (the agent needs to know which other

agents it is seeing and not seeing to infer 𝜆), we will assume that

the scalar value of 𝜆 is common knowledge for all the agents. Since

𝜆𝑒−𝜆𝑑 should be in [0, 1] because it is a probability, only 𝜆 values
in [0, 1] satisfy this requirement. We will fix the value of 𝜆 to be

1, but it could be any other value in the given range. This gives a

definite distribution that determines the conditional of 𝑏. We are

particularly interested in the posterior term 𝑃𝑟 (ˆ𝜃 |𝑑,𝑏 = 1), which
denotes the probability of

ˆ𝜃 , given the distance 𝑑 of another agent

𝑖 , and that 𝑖 is in the field of view of the central agent 𝑗 .

𝑃𝑟 (ˆ𝜃 |𝑑,𝑏 = 1) ∝ 𝑃𝑟 (𝑑 | ˆ𝜃, 𝑏 = 1)𝑃𝑟 (ˆ𝜃 |𝑏 = 1) ∝ 𝑃𝑟 (𝑑 | ˆ𝜃, 𝑏 = 1)𝑃𝑟 (ˆ𝜃)
(11)

In the last term of Eq. 11, the variable 𝜃 does not depend on the

variable 𝑏, so we remove the conditional. Now consider,

𝑃𝑟 (𝑑 | ˆ𝜃, 𝑏 = 1) = 𝑃𝑟 (𝑑,𝑏 | ˆ𝜃)/𝑃𝑟 (𝑏 | ˆ𝜃)

= 𝑃𝑟 (𝑏 = 1| ˆ𝜃, 𝑑)𝑃𝑟 (𝑑 | ˆ𝜃)/𝑃𝑟 (𝑏 = 1| ˆ𝜃)

= 𝑃𝑟 (𝑏 = 1|𝑑)𝑃𝑟 (𝑑 | ˆ𝜃)/𝑃𝑟 (𝑏 = 1| ˆ𝜃)

= 𝜆𝑒−𝑑𝜆 ˆ𝜃𝑒−𝑑
ˆ𝜃 /
∫
𝑑

𝑃𝑟 (𝑏 = 1|𝑑)𝑃𝑟 (𝑑 | ˆ𝜃)

= 𝑒−𝑑 ˆ𝜃𝑒−𝑑
ˆ𝜃 /
∫ 𝑑=∞

𝑑=0

ˆ𝜃𝑒−𝑑
ˆ𝜃𝜆𝑒−𝑑𝜆 = 𝑒−𝑑 ˆ𝜃𝑒−𝑑

ˆ𝜃 /
∫ 𝑑=∞

𝑑=0

ˆ𝜃𝑒−𝑑 (
ˆ𝜃+1)

= 𝑒−𝑑 ˆ𝜃𝑒−𝑑
ˆ𝜃 (ˆ𝜃 + 1)/ ˆ𝜃 (12)

Applying Eq. 12 in Eq. 11,

𝑃𝑟 (ˆ𝜃 |𝑑, 𝑏 = 1) ∝ 𝐺𝑎𝑚𝑚𝑎(𝛼, ˆ𝛽) × 𝑒−𝑑 ˆ𝜃𝑒−𝑑
ˆ𝜃 (ˆ𝜃 + 1)/ ˆ𝜃

∝ ˆ𝜃𝛼−1𝑒−
ˆ𝛽 ˆ𝜃 × 𝑒−𝑑 ˆ𝜃𝑒−𝑑

ˆ𝜃 (ˆ𝜃 + 1)/ ˆ𝜃
∝ ˆ𝜃𝛼𝑒−

ˆ𝜃 (ˆ𝛽+𝑑−𝑑/ ˆ𝜃) + ˆ𝜃𝛼−1𝑒−
ˆ𝜃 (ˆ𝛽+𝑑−𝑑/ ˆ𝜃)

Main Track AAMAS 2021, May 3-7, 2021, Online

539

The posterior of
ˆ𝜃 is therefore given by a mixture of Gamma distri-

butions (i.e.,𝐺𝑎𝑚𝑚𝑎(𝛼 +1, 𝑑 + ˆ𝛽−𝑑/ ˆ𝜃) and𝐺𝑎𝑚𝑚𝑎(𝛼,𝑑 + ˆ𝛽−𝑑/ ˆ𝜃)).
We can obtain a single Gamma posterior, corresponding to a pro-

jection of this mixture of Gammas, by updating the new value of 𝛼

as 𝛼 + 0.5. We sample from this single Gamma distribution to get a

new parameter 𝜆 (Eq. 15). We denote the Gamma distribution for

the agent 𝑗 using superscript 𝑗 (Eq. 14). Hence, we get:

𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡 , 𝜆

𝑗

𝑡) = (1 − 𝛼)𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗
𝑡 , 𝜆

𝑗

𝑡) + 𝛼 [𝑟
𝑗
𝑡 + 𝛾𝑣

𝑗 (𝑠 𝑗
𝑡+1)]

(13)

ˆ𝜃𝑃 ∝ 𝐺𝑎𝑚𝑚𝑎 𝑗 (𝛼 + 1, 𝑑 + ˆ𝛽 − 𝑑/ ˆ𝜃) +𝐺𝑎𝑚𝑚𝑎 𝑗 (𝛼,𝑑 + ˆ𝛽 − 𝑑/ ˆ𝜃)
(14)

Where:

𝜆
𝑗

𝑖,𝑡 ∼ [𝐺𝑎𝑚𝑚𝑎 𝑗 (𝛼 + 0.5, 𝑑 + ˆ𝛽 − 𝑑/ ˆ𝜃)]; 𝜆
𝑗

𝑡 =
1

G

𝑖=G∑
𝑖=1

𝜆
𝑗

𝑖,𝑡 (15)

𝑣 𝑗 (𝑠 𝑗
𝑡+1) =

∑
𝑎
𝑗

𝑡+1

𝜋 𝑗 (𝑎 𝑗
𝑡+1 |𝑠

𝑗

𝑡+1, 𝑎
𝑗
𝑡 , 𝜆𝑡)𝑄

𝑗 (𝑠 𝑗
𝑡+1, 𝑎

𝑗

𝑡+1, 𝑎
𝑗
𝑡 , 𝜆

𝑗

𝑡) (16)

𝜋 𝑗 (𝑎 𝑗𝑡 |𝑠
𝑗
𝑡 , 𝑎

𝑗

𝑡−1, 𝜆
𝑗

𝑡−1) =
exp(−𝛽𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎

𝑗
𝑡 , 𝑎

𝑗

𝑡−1, 𝜆
𝑗

𝑡−1))∑
𝑎
𝑗′
𝑡 ∈𝐴 𝑗

exp(−𝛽𝑄 𝑗 (𝑠 𝑗𝑡 , 𝑎
𝑗 ′

𝑡 , 𝑎
𝑗

𝑡−1, 𝜆
𝑗

𝑡−1))

(17)

All the variables above have the same meaning as in Eqs. 6 – 10.

The estimate of the 𝑎 is obtained as in Eq. 9. The
ˆ𝜃𝑃 denotes the

new (posterior) value of
ˆ𝜃 . The 𝜆 parameter is updated by sampling

from the Gamma distribution, as in Eq. 15, by taking G samples.

5 ALGORITHM IMPLEMENTATIONS
The implementation of POMFQ follows prior work [32] that uses

neural networks — 𝑄-functions are parameterized using weights 𝜙 ,

but tabular representations or other function approximators should

also work. Our algorithms are an integration of the respective up-

date equations with Deep𝑄-learning (DQN) [18]. Algorithm 1 gives

pseudo code for the algorithm for the “FOR” case and Algorithm

2 for the “PDO” case. The lines in Algorithm 2 that have changed

from Algorithm 1 are marked in blue. We provide a complexity

analysis of our algorithms in Appendix F.

6 THEORETICAL RESULTS
The goal of this section is to show that our FOR 𝑄-updates are

guaranteed to converge to the Nash 𝑄-value. We will begin by

providing a technical result that is generally applicable for any

stochastic processes of which the 𝑄-function is a specific example.

Then we have a sequence of theorems that lead us to bound the

difference between the POMF 𝑄-value and the Nash 𝑄-value in the

limit (𝑡 −→ ∞). We outline a number of common assumptions that

are needed to prove these theorems. For the purposes of a direct

comparison of the POMF 𝑄-function and the Nash 𝑄-function, we

assume that we have a system of 𝑁 agents where agents have the

full global state available and thus have the ability to perform a

MFQ update (Eqs. 2 – 5) or a POMFQ update (Eqs. 6 – 10). By

the definition of a Nash equilibrium, every agent should have the

knowledge of every other agent’s strategy. To recall, in a Nash

Algorithm 1 Partially observable mean field 𝑄 Learning - FOR

1: Initialize the weights of𝑄-functions𝑄
𝜙 𝑗 ,𝑄𝜙 𝑗

_

for all agents 𝑗 ∈ 1, . . . , 𝑁 .

2: Initialize the Dirichlet parameter D 𝑗 (𝜃) for all agents 𝑗 .
3: Initialize the mean action 𝑎 𝑗

for each agent 𝑗 ∈ 1, . . . , 𝑁 .

4: Initialize the total steps (T) and total episodes (E).

5: while Episode < E do
6: while Step < T do
7: For each agent 𝑗 , sample 𝑎 𝑗

from the policy induced by𝑄
𝜙 𝑗 according to

Eq. 10 with the current mean action 𝑎̃ 𝑗
and the exploration rate 𝛽 .

8: For each agent 𝑗 , update its Dirichlet distribution (Eq. 7).

9: For each agent 𝑗 , compute the new mean action 𝑎̃ 𝑗
(Eq. 9).

10: Execute the joint action a = [𝑎1, . . . , 𝑎𝑁]. Observe the rewards r =

[𝑟 1, . . . , 𝑟𝑁] and the next state s’ = [𝑠′1, . . . , 𝑠′𝑁].
11: Store ⟨s, a, r, s’, ã⟩ in replay buffer 𝐵, where ã=[𝑎̃1, . . . , 𝑎̃𝑁] is the mean

action.

12: end while
13: while 𝑗 = 1 to 𝑁 do
14: Sample a minibatch of K experiences ⟨s, a, r, s’, ã⟩ from 𝐵.

15: Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾𝑣𝑃𝑂𝑀𝐹

𝜙 𝑗
_

(𝑠′) according to Eq. 8.

16: Update Q network by minimizing the loss 𝐿 (𝜙 𝑗)= 1

𝑘

∑(𝑦 𝑗 −
𝑄

𝜙 𝑗 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎̃ 𝑗))2 .
17: end while
18: Update params of target network for each agent 𝑗 : 𝜙 𝑗

_
← 𝜏𝜙 𝑗 + (1 − 𝜏)𝜙 𝑗

_
.

19: end while

Algorithm 2 Partially observable mean field 𝑄 Learning - PDO

1: Initialize the weights of𝑄 functions𝑄
𝜙 𝑗 ,𝑄𝜙 𝑗

_

for all agents 𝑗 ∈ 1, . . . , 𝑁 .

2: Initialize the Dirichlet parameter 𝜃 in D 𝑗 (𝜃) for all agents 𝑗 .
3: Initialize 𝛼 and

ˆ𝛽 in𝐺𝑎𝑚𝑚𝑎 𝑗 (𝛼, ˆ𝛽) for all agents 𝑗 ∈ 1, . . . , 𝑁 .

4: Initialize the mean action 𝑎 𝑗
for each agent 𝑗 ∈ 1, . . . , 𝑁 .

5: Initialize the total steps (T) and total episodes (E).

6: while Episode < E do
7: while Step < T do
8: For each agent 𝑗 sample 𝑎 𝑗

from the policy induced by𝑄
𝜙 𝑗 according to

Eq. 17 with the current mean action 𝑎̃ 𝑗
and the exploration rate 𝛽 .

9: For each agent 𝑗 update its Dirichlet distribution (Eq. 7).

10: For each agent 𝑗 , update its Gamma distribution (Eq. 14).

11: For each agent 𝑗 , compute the new mean action 𝑎̃ 𝑗
(Eq. 9).

12: For each agent j, update parameter 𝜆 (Eq. 15).

13: Execute the joint action a = [𝑎1, . . . , 𝑎𝑁]. Observe the rewards r =

[𝑟 1, . . . , 𝑟𝑁] and the next state s’ = [𝑠′1, . . . , 𝑠′𝑁].
14: Store ⟨s, a, r, s’, ã,𝝀⟩ in replay buffer𝐵, s.t. ã=[𝑎̃1, ..., 𝑎̃𝑁],𝝀=[𝜆1, ..., 𝜆𝑁]
15: end while
16: while 𝑗 = 1 to 𝑁 do
17: Sample minibatch of K experiences ⟨s, a, r, s’, ã,𝝀⟩ from 𝐵.

18: Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾𝑣𝑃𝑂𝑀𝐹

𝜙 𝑗
_

(𝑠′) according to Eq. 16.

19: Update Q network by minimizing 𝐿 (𝜙 𝑗)= 1

𝑘

∑(𝑦 𝑗−𝑄
𝜙 𝑗 (𝑠 𝑗 , 𝑎 𝑗 , 𝑎 𝑗 , 𝜆))2 .

20: end while
21: Update params of target network for each agent 𝑗 : 𝜙 𝑗

_
← 𝜏𝜙 𝑗 + (1 − 𝜏)𝜙 𝑗

_
.

22: end while

equilibrium, no agent will have an incentive to unilaterally deviate,

given the knowledge of other agent strategies. Our objective is also

to make a direct comparison between the POMFQ update and the

MFQ update and hence we will use the FOR setting algorithms

of POMFQ update in the theoretical analysis as it is most directly

related to MFQ. In this section, we will show that a representative

agent 𝑗 ’s𝑄-value will remain at least within a small distance of the

Nash 𝑄-value in the limit (𝑡 −→ ∞) as it performs a POMFQ update,

which tells us that, in the worst case, the agents stay very close

to the Nash equilibrium. We have provided a proof sketch for all

our theorems in this section while the complete versions of our

proofs can be found in Appendix A. In a mean field setting, the

homogeneity of agents allows us to drop the agent index 𝑗 [14] for

Main Track AAMAS 2021, May 3-7, 2021, Online

540

the value and 𝑄-function, which we adopt for clarity. Also, “w.p.1”

represents “with probability one”.

Consider an update equation of the following form (using the

Tsitsiklis [29] formulation):

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝛼𝑖 (𝑡) (𝐹𝑖 (𝑥𝑖 (𝑡)) − 𝑥𝑖 (𝑡) +𝑤𝑖 (𝑡)) (18)

Here, 𝑥 (𝑡) is the value of vector 𝑥 at time 𝑡 and 𝑥𝑖 (𝑡) denotes its 𝑖th
component. Let, 𝐹 be a mapping from R𝑛

into itself. Let 𝐹1, . . . , 𝐹𝑛
: R𝑛 → R be the component mappings of 𝐹 , that is 𝐹 (𝑥) =

(𝐹1 (𝑥), . . . , 𝐹𝑛 (𝑥)) for all 𝑥 ∈ R𝑛
. Also,𝑤𝑖 (𝑡) is a noise term, and

𝑥𝑖 (𝑡) can be defined as 𝑥𝑖 (𝑡) = (𝑥1 (𝜏𝑖
1
(𝑡)), · · · , 𝑥𝑛 (𝜏𝑖𝑛 (𝑡))), where

each 𝜏𝑖
𝑗
(𝑡) satisfies 0 ≤ 𝜏𝑖

𝑗
(𝑡) ≤ 𝑡 .

Next, we state some assumptions. The first three are the same

as those in Tsitsiklis [29], but we modify the fourth assumption.

The first assumption guarantees that old information is eventu-

ally discarded with probability one. The second assumption is a

measurability condition and the third assumption is the learning

rate condition, both of which are common in RL [26] [29]. The

Assumption 4, is a condition on the 𝐹 mapping, which is a weaker

version than the fourth assumption in Tsitsiklis [29].

Assumption 1. For any 𝑖 and 𝑗 , lim𝑡→∞ 𝜏𝑖𝑗 (𝑡) = ∞ w.p.1.

Assumption 2. a) 𝑥 (0) is F (0)-measurable
b) For every 𝑖 , 𝑗 , and 𝑡 ,𝑤𝑖 (𝑡) is F (𝑡 + 1)-measurable
c) For every 𝑖 , 𝑗 , and 𝑡 , 𝛼𝑖 (𝑡) and 𝜏𝑖𝑗 (𝑡) are F (𝑡)-measurable
d) For every 𝑖 and 𝑡 , we have E[𝑤𝑖 (𝑡) |F (𝑡)] = 0

e) For deterministic constants 𝐴 and 𝐵,

E[𝑤2

𝑖 (𝑡) |F (𝑡)] ≤ 𝐴 + 𝐵𝑚𝑎𝑥 𝑗𝑚𝑎𝑥𝜏≤𝑡 |𝑥 𝑗 (𝜏) |
2

Assumption 3. The learning rates satisfy 0 ≤ 𝛼𝑖 (𝑡) < 1.

Assumption 4. a) The mapping 𝐹 is monotone; that is, if 𝑥 ≤ 𝑦,
then 𝐹 (𝑥) ≤ 𝐹 (𝑦)
b) The mapping 𝐹 is continuous
c) In the limit (𝑡 −→ ∞), the mapping 𝐹 is bounded in an interval
[𝑥∗ − 𝐷 , 𝑥∗ + 𝐷], where 𝑥∗ is some arbitrary point
d) If 𝑒 ∈ R𝑛 is the vector with all components equal to 1, and 𝑝 is a
positive scalar then, 𝐹 (𝑥) −𝑝𝑒 ≤ 𝐹 (𝑥 −𝑝𝑒) ≤ 𝐹 (𝑥 +𝑝𝑒) ≤ 𝐹 (𝑥) +𝑝𝑒

Now, we will state our first theorem. Theorem 1 is a technical

result that we obtain by extending Theorem 2 in Tsitsiklis [29]. We

will use this result to derive the main result in Theorem 4.

Theorem 1. A stochastic process of the form given in Eq. 18 re-
mains bounded in the range [𝑥∗ − 2𝐷, 𝑥∗ + 2𝐷] in the limit, if As-
sumptions 1 – 4 hold, and if the process is guaranteed not to diverge
to infinity. 𝐷 is the bound on the 𝐹 mapping in Assumption 4(c).

Proof (Sketch). Since the stochastic process in Eq. 18 is guaran-

teed to stay bounded (Assumption 4(c)), one can find other processes

that lower bounds and upper bounds this process. Let us assume

that we can show that the process in Eq. 18 always stays bounded

by these two processes after some finite time 𝑡 (that is for all 𝑡 ′ ≥ 𝑡).
Now, if we can prove that the process 𝐴 is upper bounded by a

finite value, this value will be the upper bound of the process in Eq.

18 after 𝑡 as well. Similarly, the lower bound of 𝐿 will be its lower

bound (after time 𝑡). □

Now we state three more assumptions, as used earlier [32].

Assumption 5. Each action-value pair is visited infinitely often
and the reward stays bounded.

Assumption 6. The agents’ policy is Greedy in the Limit with
Infinite Exploration (GLIE).

Assumption 7. The Nash equilibrium can be considered a global
optimum or a saddle point in every stage game of the stochastic game.

Assumption 5 is very common in RL [26]. Assumption 6 is needed

to ensure that the agents are rational [32] and this is satisfied

for POMFQ as the Boltzmann policy is known to be GLIE [21].

Assumption 7 has been adopted by previous researchers [10, 32].

Hu and Wellman [10] consider this to be a strong assumption, but

they note that this assumption is needed to prove convergence in

theory, even though it is not needed to observe convergence in

practice.

Let 𝑎𝑖 be a component of vector 𝑎 and 𝑎𝑖 be a component of

vector 𝑎. Now, we make a comparison between mean actions of the

MFQ update (Eq. 4) and the POMFQ update (Eq. 9).

Theorem 2. The MFQ mean action and the POMFQ mean action
both satisfy

|𝑎𝑖,𝑡 − 𝑎𝑖,𝑡 | ≤
√

1

2𝑛
log

2

𝛿

as time 𝑡 −→ ∞, with probability >= 𝛿 , where 𝑛 is the number of
samples observed. 𝑎 is the mean action as obtained from the Dirichlet
in Eq. 9 and 𝑎 is the mean action in Eq. 4.

Proof (Sketch). This theorem is an application of the Hoeffd-

ing’s bound which provides a probabilistic bound for the difference

between the sample mean and the the true mean of a distribution.

As 𝑎 is an empirical mean of the samples 𝑛 observed at each time

step, the Hoeffding’s bound is applied to obtain the result. □

Theorem 3. When the 𝑄-function is Lipschitz continuous (with
constant M) with respect to mean actions, then the POMF 𝑄-function
will satisfy the following relationship:

|𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1)−𝑄𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1) | ≤ 𝑀×𝐿×log
2

𝛿
× 1

2𝑛
(19)

as 𝑡 −→ ∞ with probability ≥ (𝛿)𝐿−1, where 𝐿 = |𝐴| and 𝑛 is the
number of samples.

Proof (Sketch). Once we have the bound on the mean actions

of POMFQ update and MFQ update as in Theorem 2, with the

assumption of Lipschitz continuity, a corresponding bound can be

derived for the respective𝑄-functions too. This is done by applying

the bound of the mean actions in the Lipschitz condition. □

From Theorem 3, we can see that in a similar setting, the POMFQ

updates will not see a significant degradation in performance as

compared to the MFQ updates. The probability of this holding is

inversely proportional to the size of the action space available to

each agent. In Theorem 3, the bound is between two 𝑄-functions

with the same state and action, but with different mean actions. Let

𝑍 = 𝑀×𝐿× log 2

𝛿
× 1

2𝑛 and from Theorem 3, |𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡−1) −
𝑄𝑀𝐹 (𝑠, 𝑎𝑡 , 𝑎𝑡−1) | ≤ 𝑍 . Now, we would like to directly compare the

value estimates of POMFQ andMFQ updates. Consider two different

actions 𝑎 𝑗 and 𝑏 𝑗 for agent 𝑗 . Under the assumption that the mean

field 𝑄-function is 𝐾-Lipschitz continuous with respect to actions,

Main Track AAMAS 2021, May 3-7, 2021, Online

541

|𝑄𝑀𝐹 (𝑠 𝑗𝑡 , 𝑎
𝑗
𝑡 , 𝑎

𝑗

𝑡−1) −𝑄
𝑀𝐹 (𝑠 𝑗𝑡 , 𝑏

𝑗
𝑡 , 𝑎

𝑗

𝑡−1) | ≤ 𝐾 |𝑎
𝑗
𝑡 − 𝑏

𝑗
𝑡 | ≤ 𝐾

√
2 (20)

In the last step, we applied the fact that all components of 𝑎 𝑗 and

𝑏 𝑗 are less than or equal to 1 (a one hot encoding). Assume that the

optimal action for 𝑄𝑃𝑂𝑀𝐹
is 𝑎∗ and for 𝑄𝑀𝐹

is 𝑏∗. Now consider,

|𝑣𝑃𝑂𝑀𝐹 (𝑠𝑡+1) − 𝑣𝑀𝐹 (𝑠𝑡+1) |

= |max

𝑎𝑡+1
𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡+1, 𝑎𝑡+1, 𝑎𝑡) −max

𝑏𝑡+1
𝑄𝑀𝐹 (𝑠𝑡+1, 𝑏𝑡+1, 𝑎𝑡) |

= |𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡+1, 𝑎∗𝑡+1, 𝑎𝑡) −𝑄
𝑀𝐹 (𝑠𝑡+1, 𝑎∗𝑡+1, 𝑎𝑡)

+𝑄𝑀𝐹 (𝑠𝑡+1, 𝑎∗𝑡+1, 𝑎𝑡) −𝑄
𝑀𝐹 (𝑠𝑡+1, 𝑏∗𝑡+1, 𝑎𝑡) | ≤ 𝑍 + 𝐾

√
2 =
Δ
𝐷

(21)

In the first step we apply the fact that the Boltzmann policy will

become greedy in the limit (𝑡 −→ ∞). The last step is coming from

Eqs. 19 and 20. We also reiterate that the Lipschitz continuity as-

sumptions on the 𝑄-function are consistent with prior work [32].

Theorem 4. When we update the 𝑄 functions using the partially
observable update rule in Eq. 6, the process satisfies the condition in
the limit (𝑡 →∞):

|𝑄∗ (𝑠𝑡 , 𝒂𝑡) −𝑄𝑃𝑂𝑀𝐹 (𝑠𝑡 , 𝑎𝑡 , 𝑎𝑡) | ≤ 2𝐷

when Assumptions 3, 5, and 7 hold. Here 𝑄∗ is the Nash Q-value
and 𝐷 is the bound for value functions in Eq. 21. This holds with
probability at least 𝛿𝐿−1, where 𝐿 = |𝐴|.

Proof (Sketch). This result is an application of Theorem 1,

where we show that all the assumptions of Theorem 1 are satisfied

by the conditions in this theorem. □

It is important to note that we need only threeminor assumptions

(Assumptions 3, 5, and 7) to hold for Theorem 4, which is our main

theoretical result. Theorem 4 shows that the POMFQ updates stay

very close to the Nash equilibrium in the limit (𝑡 −→ ∞). The lower
bound on the probability of this is high for a small action space and

low for a large action space. In a multi-agent setting, the𝑄-updates

are in the form of POMFQ updates, and do not have the (intuitive)

effect of having any fixed point as commonly seen in RL. Theorem

4 proves our update rule is very close to the Nash equilibrium, a

stationary point for the stochastic game. Hence, the policy in Eq. 5

is approximately close to this stationary point, which guarantees

that it becomes (asymptotically) stationary in the limit (𝑡 −→ ∞).
The distance between the POMF 𝑄-function and the Nash 𝑄-

function is inversely proportional to the number of samples from

the Dirichlet (𝑛). If the agent chooses to take a large number of

samples, the POMF𝑄-estimate is very close to the Nash𝑄-estimate,

but this may lead to a degradation in performance due to having no

additional exploratory noise as discussed in Section 3. In MARL, the

Nash equilibrium is not a guarantee of optimal performance, but

only a fixed point guarantee. The (self-interested) agents would still

take finite samples, for better performance. To balance the theory

and performance, the value of 𝑛 should not be too high nor too low.

Appendix C provides an experimental illustration of Theorem

4 in the Ising model, a mathematical model used to describe the

magnetic spins of atomic particles. This model was also used in [32].

We show that the distance (error) of the POMF 𝑄-function (tabular

implementation of the FOR updates) from the Nash 𝑄-function

stays bounded after a finite number of episodes as in Theorem 4.

7 EXPERIMENTS AND RESULTS
This section empirically demonstrates that using POMFQ updates

will result in better performance in a partially observable envi-

ronment than when using the MFQ updates. All the code for the

experiments is open sourced [5].

We design three cooperative-competitive games for each of the

two problems (FOR and PDO) within the MAgent framework [33]

to serve as testbeds. We will provide the important elements of

these experimental domains here, while the comprehensive details

(including exact reward functions and hyperparameter values) are

deferred to Appendix D. For all games, we have a two stage process:

training and faceoff (test). We consider four algorithms for all the

games: MFQ, MFAC, IL, and POMFQ. In each stage, there are two

groups of agents: group A and group B. Since the agents do not

know what kind of opponents they will see in the faceoff stage,

they train themselves against another group that plays the same

algorithm in the training stage. Thus, in the training stage, each

algorithm will train two networks (groups A and B). In the faceoff

stage, groups trained by different algorithms fight against each

other. Our formulation is consistent with past research using the

MAgent framework [6, 32]. We plot the rewards obtained by group

A in each episode for the training stage (group B also shows similar

trends — our games are not zero sum) and the number of games won

by each algorithm in the faceoff stage. For statistical significance, we

report p-values of an unpaired 2-sided t-test for particular episodes

in the training stage and a Fischer’s exact test for the average

performances in the faceoff stage. We treat p-values of less than

0.05 as statistically significant differences. The tests are usually

conducted between POMFQ and next best performing algorithm in

the final episode of training for the training results.

The Multibattle game has two groups of agents fight against each

other. There are 25 agents in each group for a total of 50. Agents

learn to cooperate within the group and compete across the group to

win. We analyse both the FOR and PDO cases. In FOR, information

about nearby agents is available, but agents further than 6 units are

hidden. In PDO, the game engine maintains a Bernoulli distribution

of visibility of each agent from every other agent as discussed in

Section 4. Based on this probability, each agent in PDO could see

different numbers of other agents at each time step. MFQ andMFAC

use a frequentist strategy where agents observed at each time step

are aggregated (Eq. 4) to obtain a mean action.We run 3000 episodes

of training in FOR and 2000 episodes in PDO. Each episode has a

maximum of 500 steps. For the faceoff, group A trained using the

first algorithm and group B trained using the second algorithm

fight against each other for 1000 games. We report all results as an

average of 20 independent runs for both training and faceoff (with

standard deviation). In our experiments, an average of 6 – 8 agents

out of 50 agents are visible to the central agent at a given time step

(averaged over the length of the game). Note that we use 50 agents

per game, more agents are used in previous research [6, 32]. In our

case, the ratio of agents seen vs. the total number of agents matters

more than the simple absolute number of agents in the competition.

In the FOR setting of the Multibattle domain (Figure 1 (a)) the

POMFQ algorithm plays the FOR variant (Algorithm 1). POMFQ

dominates other baselines from about 1800 episodes (p < 0.3) until

the end (p < 0.03). We see that MFAC quickly falls into a poor local

Main Track AAMAS 2021, May 3-7, 2021, Online

542

optimum and never recovers. The poor performance of MFAC in the

MAgent games, compared to the other baselines, is consistent with

previous work [6, 32]. Faceoff in the FOR case (Figure 1(c)) shows

that POMFQ wins more than 50% of the games against others (p

< 0.01). An ablation study in Appendix E shows that performance

improves with increase in viewing distance.

In the PDO setting, we use both the FOR variant of POMFQ algo-

rithm (no 𝜆 parameter) and the PDO variant of POMFQ algorithm

(Algorithm 2). We differentiate these two algorithms in the legends

of Figures 1(b) and 1(d). The FOR variant loses out to the PDO

algorithm that explicitly tracks the 𝜆 parameter (p < 0.02). If an

algorithm bases decisions only on 𝑎, as in Algorithm 1, the agents

do not know how risk seeking or risk averse their actions should

be (when agents nearby are not visible). In this game, agents can

choose to make an attack (risk seeking) or a move (risk averse). The

additional parameter 𝜆 helps agents understand the uncertainty

in not seeing some agents when making decisions. The PDO al-

gorithm takes a lead over the other algorithms from roughly 900

episodes (p < 0.04) and maintains the lead until the end (p < 0.03).

In faceoff, PDO wins more than 50% (500) of the games against all

other algorithms as seen in Figure 1(d) (p < 0.01).

The second game, Battle-Gathering, is similar to the Multibattle

game where a set of two groups of 50 agents are fighting against

each other to win a battle, but with an addition of food resources

scattered in the environment. All the agents are given an additional

reward when capturing food, in addition to killing the competition

(as in Multibattle). The training and faceoff are conducted similar

to Multibattle game. Figure 2(a) shows that the POMFQ algorithm

dominates the other three algorithms from about 900 episodes (p

< 0.03) till the end (p < 0.01). In the comparative battles (Figure

2(c)), POMFQ has a clear lead over other algorithms (p < 0.01).

MFQ and IL are similar in performance and MFAC loses to all other

algorithms. We also observe this in the PDO domain train (p < 0.02,

Figure 2(b)) and test experiments (p < 0.01, Figure 2(d)).

The third game is a type of Predator-Prey domain, where there

are two groups — predators and prey. There are a total of 20 predator

agents and 40 prey agents in our domain. The predators are stronger

than the prey and have an objective of killing the prey. The prey

are faster than the predator and try to escape from the predators.

The training is conducted and rewards are plotted using the same

procedure as in the Multibattle domain. Training performances are

in Figures 3(a) and 3(c). The standard deviation of the performance

in this game is considerably higher than the previous two games

because we have two completely different groups that are trying

to outperform each other in the environment. At different points

in training, one team may have a higher performance than the

other, and this lead can change over time. In the first setting, Figure

3(a), we can see that the POMFQ (FOR) shows a small lead over

other baseline algorithms (at the end of training, p < 0.1). In the

direct faceoff (Figure 3(c)), POMFQ wins more games than the other

algorithms (p < 0.01), In the PDO setting too, the POMFQ-PDO

algorithm has an edge over the others during the training phase

(p < 0.4) and the testing (p < 0.01)(Figure 3(b) and 3(d)). As the

p-values for the training suggest, POMFQ can be seen to have a

better performance, but the results are not statistically significant.

The faceoff results, on the other hand, are statistically significant (p

(a) FOR - Train (b) PDO - Train

(c) FOR - Test (d) PDO - Test

Figure 1: Multibattle results. The * in the legend of test plots
denotes the opponent. For example, first orange bar (from
the left) in the bar plots is result for IL. vs MFQ. The dashed
lines indicate bars that we set for symmetry. We do not run
faceoff experiments between the same algorithm.

< 0.01). We have run training for 2000 games and faceoff for 1000

games in the last two domains.

In three semantically different domains, we have shown that in

the partially observable case, the MFQ and MFAC algorithms using

frequentist strategies do not provide good performances. Also, the

frequentist strategies (MFQ and MFAC) have worse performance in

the harder PDO domain compared to the FOR domain. Sometimes,

they also lose out to a simpler algorithm that does not even track

the mean field parameter (IL). The FOR and PDO algorithms gives

the best performance across both settings, as evidenced by the

training and the test results. The training results clearly show that

POMFQ never falls into a very poor local optimum like MFAC

often does. The test results show that in a direct face-off, POMFQ

outperforms all other algorithms. The p-values indicate that our

results are statistically significant. Additionally, in Appendix B, we

provide comparisons of the POMFQ - FOR and PDO algorithms

with two more baselines, recurrent versions of IL and MFQ, in the

same three MAgent domains and the results show that POMFQ has

clear advantages compared to these recurrent baselines as well.

8 RELATEDWORK
Mean field games were introduced by Lasry and Lions [14], ex-

tending mean field theory [20, 22] to the stochastic games frame-

work. The stochastic games formulation was obtained by extending

MDPs to MARL environments [10, 15]. Recent research has actively

used the mean field games construct in a MARL setting, allowing

Main Track AAMAS 2021, May 3-7, 2021, Online

543

(a) FOR - Train (b) PDO - Train

(c) FOR - Test (d) PDO - Test

Figure 2: Training and faceoff results of Battle-Gathering
game.

(a) FOR - Train (b) PDO - Train

(c) FOR - Test (d) PDO - Test

Figure 3: Training and faceoff results of Predator-Prey game.

tractable solutions in environments in which many agents partic-

ipate. Model-based solutions have also been tried in this setting

[12], but the model is specific to the application domain and these

methods do not generalize well. Subramanian and Mahajan [23] an-

alyze the problem using a stationary mean field. In contrast to our

approach, this paper needs strict assumptions regarding this station-

arity, which do not hold in practice. Mguni et al. [16] approaches this

problem using the fictitious play technique. They provide strong

theoretical properties for their algorithms, but only in the finite

time horizon case. These results do not directly hold for infinite

horizons. Additionally, strict assumptions on the reward function

and fictitious property [1] assumption makes their algorithms less

generally applicable. In fictitious play, each agent assumes that its

opponents are playing stationary strategies. Thus, the response of

each agent is a best response to the empirical frequency of their

opponents. Another work by the same authors [17] introduces an

algorithm and provides theoretical analysis for the mean field learn-

ing problem in cooperative environments. Our methods, on the

other hand, work for both cooperative and competitive domains.

Along the same lines, the work by Elie et al. [2, 3] contributes ficti-

tious play based techniques to solve mean field games with general

theoretical properties based on quantifying the errors accumulated

at each time step. However, the strict assumptions on the reward

function in addition to the fictitious play assumption is also present

in the work by Elie et al. In our work, the agents do not make the

fictitious play assumption for best responses. Yang et al. [32] do not

have the limitations of other works noted here, but it assumes the

global state is observable for all agents and a local action is taken

from it. This has been relaxed by us.

9 CONCLUSION
This paper considers many agent RL problems where the exact

cumulative metrics regarding the mean field behaviour is not avail-

able and only local information is available. We used two variants

of this problem and provided practical algorithms that work in both

settings. We empirically showed that our approach is better than

previous methods that used a simple aggregate of neighbourhood

agents to estimate the mean field action. We theoretically showed

that POMFQ stays close to the Nash𝑄 under common assumptions.

In future work, we would like to relax some assumptions about

the Bayesian approach using conjugate priors and make our analy-

sis more generally applicable. Additionally, different observation

distributions could allow the direction of view to determine the

“viewable” agents, such as when agents in front of another agent

are more likely to be seen than agents behind it.

10 ACKNOWLEDGEMENTS
Resources used in preparing this research were provided by the

province of Ontario and the government of Canada through CIFAR,

NSERC and companies sponsoring the Vector Institute. Part of this

work has taken place in the Intelligent Robot Learning Lab at the

University of Alberta, which is supported in part by research grants

from the Alberta Machine Intelligence Institute (Amii), CIFAR, and

NSERC.

Main Track AAMAS 2021, May 3-7, 2021, Online

544

REFERENCES
[1] Ulrich Berger. 2007. Brown’s original fictitious play. Journal of Economic Theory

135, 1 (2007), 572–578.

[2] Romuald Elie, Julien Pérolat, Mathieu Laurière, Matthieu Geist, and Olivier

Pietquin. 2019. Approximate fictitious play for mean field games. arXiv preprint
arXiv:1907.02633 (2019).

[3] Romuald Elie, Julien Perolat, Mathieu Laurière, Matthieu Geist, and Olivier

Pietquin. 2020. On the Convergence of Model Free Learning in Mean Field

Games. In AAAI Conference on Artificial Intelligence (AAAI 2020).
[4] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter

Abbeel, and Igor Mordatch. 2018. Learning with opponent-learning awareness. In

Proceedings of the 17th International Conference on Autonomous Agents and Multi-
Agent Systems. International Foundation for Autonomous Agents and Multiagent

Systems, 122–130.

[5] Sriram Ganapathi Subramanian. [n.d.]. Partially Observable Mean Field Rein-

forcement Learning. https://github.com/Sriram94/pomfrl

[6] Sriram Ganapathi Subramanian, Pascal Poupart, Matthew E. Taylor, and Nidhi

Hegde. 2020. Multi Type Mean Field Reinforcement Learning. In Proceedings
of the Autonomous Agents and Multi Agent Systems (AAMAS 2020). IFAAMAS,

Auckland, New Zealand.

[7] Xin Guo, Anran Hu, Renyuan Xu, and Junzi Zhang. 2019. Learning mean-field

games. In Advances in Neural Information Processing Systems. 4967–4977.
[8] Matthew Hausknecht and Peter Stone. 2015. Deep recurrent Q-learning for

partially observable MDPs. In 2015 AAAI Fall Symposium Series.
[9] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. 2019. A survey and

critique of multiagent deep reinforcement learning. Autonomous Agents and
Multi-Agent Systems 33, 6 (2019), 750–797.

[10] Junling Hu and Michael P Wellman. 2003. Nash Q-learning for general-sum

stochastic games. Journal of machine learning research 4, Nov (2003), 1039–1069.

[11] Peter Karkus, David Hsu, and Wee Sun Lee. 2017. QMDP-net: Deep learning for

planning under partial observability. In Advances in Neural Information Processing
Systems. 4694–4704.

[12] Arman C Kizilkale and Peter E Caines. 2012. Mean field stochastic adaptive

control. IEEE Trans. Automat. Control 58, 4 (2012), 905–920.
[13] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl

Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. A unified game-

theoretic approach to multiagent reinforcement learning. In Advances in Neural
Information Processing Systems. 4190–4203.

[14] Jean-Michel Lasry and Pierre-Louis Lions. 2007. Mean field games. Japanese
journal of mathematics 2, 1 (2007), 229–260.

[15] Michael L Littman. 1994. Markov games as a framework for multi-agent rein-

forcement learning. In Machine learning proceedings 1994. Elsevier, 157–163.
[16] David Mguni, Joel Jennings, and Enrique Munoz de Cote. 2018. Decentralised

learning in systems with many, many strategic agents. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[17] David Mguni, Joel Jennings, Emilio Sison, Sergio Valcarcel Macua, Sofia Ceppi,

and Enrique Munoz de Cote. 2019. Coordinating the Crowd: Inducing Desirable

Equilibria in Non-Cooperative Systems. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems. International Founda-
tion for Autonomous Agents and Multiagent Systems, 386–394.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529–533.
[19] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.

Deep exploration via bootstrapped DQN. In Advances in neural information
processing systems. 4026–4034.

[20] P Ring. 1996. Relativistic mean field theory in finite nuclei. Progress in Particle
and Nuclear Physics 37 (1996), 193–263.

[21] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. 2000.

Convergence results for single-step on-policy reinforcement-learning algorithms.

Machine learning 38, 3 (2000), 287–308.

[22] H Eugene Stanley and Guenter Ahlers. 1973. Introduction to phase transitions

and critical phenomena. Physics Today 26 (1973), 71.

[23] Jayakumar Subramanian and Aditya Mahajan. 2019. Reinforcement learning in

stationary mean-field games. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems. International Foundation for

Autonomous Agents and Multiagent Systems, 251–259.

[24] Sriram Ganapathi Subramanian, Matthew E. Taylor, Mark Crowley, and Pascal

Poupart. 2020. Partially Observable Mean Field Reinforcement Learning. (2020).

arXiv:2012.15791 [cs.MA]

[25] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[26] Csaba Szepesvári and Michael L Littman. 1999. A unified analysis of value-

function-based reinforcement-learning algorithms. Neural Computation 11, 8

(1999), 2017–2060.

[27] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the tenth international conference on machine learning.
330–337.

[28] William R Thompson. 1933. On the likelihood that one unknown probability

exceeds another in view of the evidence of two samples. Biometrika 25, 3/4 (1933),
285–294.

[29] John N Tsitsiklis. 1994. Asynchronous stochastic approximation and Q-learning.

Machine learning 16, 3 (1994), 185–202.

[30] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[31] Jiachen Yang, Xiaojing Ye, Rakshit Trivedi, Huan Xu, and Hongyuan Zha. 2018.

Learning Deep Mean Field Games for Modeling Large Population Behavior. In

International Conference on Learning Representations (ICLR).
[32] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.

2018. Mean Field Multi-Agent Reinforcement Learning. In Proceedings of the 35th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmäs-

san, Stockholm Sweden, 5567–5576.

[33] Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang,

and Yong Yu. 2018. Magent: A many-agent reinforcement learning platform for

artificial collective intelligence. In Thirty-Second AAAI Conference on Artificial
Intelligence.

[34] Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. 2017. On improving

deep reinforcement learning for POMDPs. arXiv preprint arXiv:1704.07978 (2017).

Main Track AAMAS 2021, May 3-7, 2021, Online

545

https://github.com/Sriram94/pomfrl
https://arxiv.org/abs/2012.15791

	Abstract
	1 Introduction
	2 Background Concepts
	3 Partially Observable Mean Field Q-Learning: FOR
	4 Partially Observable Mean Field Q-Learning: PDO
	5 Algorithm Implementations
	6 Theoretical Results
	7 Experiments and Results
	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References

