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ABSTRACT
In this paper, we study the problem of learning to satisfy temporal
logic specifications with a group of agents in an unknown environ-
ment, which may exhibit probabilistic behaviour. From a learning
perspective these specifications provide a rich formal language
with which to capture tasks or objectives, while from a logic and
automated verification perspective the introduction of learning
capabilities allows for practical applications in large, stochastic,
unknown environments. The existing work in this area is, how-
ever, limited. Of the frameworks that consider full linear temporal
logic or have correctness guarantees, all methods thus far consider
only the case of a single temporal logic specification and a single
agent. In order to overcome this limitation, we develop the first
multi-agent reinforcement learning technique for temporal logic
specifications, which is also novel in its ability to handle multiple
specifications. We provide correctness and convergence guarantees
for our main algorithm – Almanac (Automaton/Logic Multi-Agent
Natural Actor-Critic) – even when using function approximation.
Alongside our theoretical results, we further demonstrate the ap-
plicability of our technique via a set of preliminary experiments.
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1 INTRODUCTION
Much recent work from the control and machine learning com-
munities has considered the task of learning to satisfy temporal
logic specifications in unknown environments [9, 17, 19, 21, 22, 29–
31, 38, 45, 52, 53, 56]. In these frameworks the agent is given a
goal, typically specified using Linear Temporal Logic (LTL), and the
dynamics of the agent’s environment are assumed to be captured
by some unknown Markov Decision Process (MDP). The task of
the agent is then to learn a policy that maximises the probability
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of satisfying the LTL specification. Importantly, the proposed Re-
inforcement Learning (RL) algorithms are model-free, and so do
not require evaluating the LTL specification against a model of
the MDP (as is typically done in probabilistic model-checking, for
instance), allowing for greater flexibility and scalability. These tech-
niques have several advantages. From the perspective of RL, LTL
forms an expressive and compact language with which to express
infinite-horizon rewards that may be non-Markovian or exhibit
special logical structure, and has provided a basis for new reward
signal languages [23, 33]. From the perspective of logic, control and
automated verification, the introduction of learning allows system
designers to ensure that agents satisfy certain desirable properties
in large, stochastic, unknown environments [22].

The existing work in this area is, however, limited. Of the frame-
works that consider full LTL or have correctness guarantees, all
methods thus far consider only the case of a single specification
and agent. Modern AI and control systems on the other hand are in-
creasingly multi-agent and often multi-objective. Simply applying
single-agent learning algorithms in a multi-agent setting can lead to
poor performance and a lack of convergence [11, 60]. Furthermore,
even in the single-agent setting, no previous work has provided any
correctness guarantees when using function approximation, which
is crucial for scenarios that require both rigour and scalability.

1.1 Related Work
Our contributions in this paper draw on many areas. The most
closely related of these is a recent line of work investigating the
problem of learning to satisfy temporal logic specifications in MDPs.
These works can in turn be partitioned by whether they focus on
full LTL or on a fragment of LTL. Within the former category,
early approaches used model-based algorithms and encoded LTL
specifications using Deterministic Rabin Automtata (DRAs) [17, 45].
To overcome scalability issues resulting from DRAs and model-
based algorithms, later works employed model-free algorithms and
Limit-Deterministic Büchi Automata (LDBAs) [9, 19, 21, 38] and in
some cases function approximation [22]. However, these works only
consider the case of a single specification and a single agent, and
none have provided correctness guarantees when using function
approximation.

Other works have instead restricted their attention to fragments

of LTL [30, 31, 56]. One strand of research uses ‘reward machines’
(finite state transducers) to capture finite-horizon objectives to
allow for a natural decomposition of tasks [52], and also for the in-
troduction of multiple objectives [53]. Concurrently with this work,
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one recent effort has sought to generalise reward machines to the
multi-agent and multi-objective case [29]. However, this approach
simply optimises the conjunction of all objectives via a single re-
ward machine and independent Q-learning, which is well-known
to suffer from convergence issues and sub-optimality in the multi-
agent setting [11]. Besides not supporting full LTL, the methods
that use function approximation lack theoretical guarantees.

Similar problems to the one we tackle in this work have been
considered by the verification community. Brázdil et al. propose
a Probably Approximate Correct (PAC) Q-learning algorithm for
unbounded reachability properties in tabular settings with a single
agent and single objective [10]. Probabilistic or statistical model-
checking algorithms have also been proposed for Markov Games
(MGs), although so far these only handle known models and highly
restricted forms of game, such as the turn-based two-player case
[4], or those that are composed of two coalitions of players and can
thus be reduced to a two-player game [28]. Related paradigms such
as rational verification [57] and rational synthesis [15] only consider
non-stochastic games without learning agents.

Finally, our work can also be viewed in the context of the RL,
Multi-Agent RL (MARL), and game theory literature [3, 8, 12, 32,
42, 55]. The main algorithm we develop in this paper, Almanac
(Automaton/Logic Multi-Agent Natural Actor-Critic), builds upon
natural actor-critic algorithms [6, 40, 51] and generalises this to
the multi-agent setting via the derivation of a multi-agent natural
gradient. Multi-agent actor-critic algorithms enjoy state-of-the-
art performance [16, 34] and have also been the focus of efforts
to provide theoretical guarantees of convergence [39, 43, 59]. We
refer the reader to Zhang et al. for a recent survey of MARL [58]
and to Nowé et. al for a more game-theoretic perspective [37]. All
of these works, however, use traditional scalar reward functions,
whereas we focus on satisfying temporal logic formulae that provide
a rich and rigorous language in which to express complex tasks
and specifications over potentially infinite horizons.

1.2 Contribution
We overcome the limitations described above by proposing the

first multi-agent reinforcement learning algorithm for temporal logic

specifications with correctness and convergence guarantees, even
when using function approximation. Generalising from the single-
objective, single-agent, non-approximate framework to the multi-
objective, multi-agent, approximate setting is far from trivial and
introduces several new challenges. We provide theoretical solutions
to these challenges in the form of a new algorithm, Almanac,
which provably converges to either locally or globally optimal joint
policies with respect to multiple LTL specifications, depending
on whether agents use local or global policies, respectively (the
notions of local and global are made precise in later sections). We
also evaluate our algorithm against ground-truth probabilities using
PRISM, a state-of-the-art probabilistic model-checker [27].

We proceed as follows. In Section 2 we provide the requisite tech-
nical background on MARL and LTL and in Section 3 we formalise
our problem statement. We then introduce our full algorithm in
Section 4 and report briefly on our experiments in Section 5. Full
proofs are relegated to the supplementary material.1

1Available online at https://arxiv.org/abs/2102.00582.

2 PRELIMINARIES
Unless otherwise indicated we use superscripts 𝑖 ∈ 𝑁 to denote
affiliation with a player 𝑖 , or 𝑗 ∈ 𝑀 to denote affiliation with a spec-
ification 𝜑 𝑗 , and with subscripts 𝑡 ∈ N to index variables through
time. We denote true or optimal versions of functions or quantities
using superscripts ∗, and approximate versions using superscripts .̂

2.1 Multi-Agent Reinforcement Learning
Markov games (MGs), also known as (concurrent) stochastic games,
are the lingua franca of MARL, in much the same way that MDPs
are for standard RL [32]. In this setting the game proceeds, at each
time step 𝑡 , from a state 𝑠𝑡 by each player 𝑖 selecting an action 𝑎𝑖𝑡 ,
after which a new state 𝑠𝑡+1 is reached and individual rewards 𝑟 𝑖

𝑡+1
are received. Formally, we have the following statement.

Definition 1. A (finite) Markov Game (MG) is a tuple 𝐺 =

(𝑁, 𝑆,𝐴,𝑇 ,𝛾, 𝑅) where 𝑁 = {1, . . . , 𝑛} is a set of players, 𝑆 is a
(finite) state space, 𝐴 = {𝐴1, . . . , 𝐴𝑛} is a set of finite action spaces,
𝑇 : 𝑆 ×𝐴1 × · · · ×𝐴𝑛 ×𝑆 → [0, 1] is a stochastic transition function,
𝛾 ∈ (0, 1) is an (optional) discount rate, and 𝑅 = {𝑅1, . . . , 𝑅𝑛} is a
set of reward functions defined as 𝑅𝑖 : 𝑆 ×𝐴1 × · · · ×𝐴𝑛 ×𝑆 → R. A
(memoryless) policy 𝜋𝑖 : 𝑆 ×𝐴𝑖 → [0, 1] maps states to a distribu-
tion over player 𝑖’s actions. If the range of 𝜋𝑖 is in fact {0, 1} then
we say that 𝜋 is deterministic. A joint policy 𝜋 = (𝜋1, . . . , 𝜋𝑛)
is the combined policy of all players in 𝑁 . We denote also by
𝜋−𝑖 = (𝜋1, . . . , 𝜋𝑖−1, 𝜋𝑖+1, . . . , 𝜋𝑛) the joint policy without player 𝑖 .

Each player’s objective in an MG is to maximise their cumulative
discounted expected reward over time, given that the other players
are playing some joint policy 𝜋−𝑖 . Observe that given a starting
state 𝑠 a joint policy 𝜋 induces a Markov chain Pr𝜋

𝐺
(·|𝑠) over the

states of theMG. By taking the expectation over time of this Markov
chain we define the value function as𝑉 𝑖∗

𝜋 (𝑠) B E𝜋 [
∑∞
𝑡=0 𝛾

𝑡𝑟 𝑖
𝑡+1 | 𝑠]

where 𝑅𝑖 (𝑠𝑡 , 𝑎1, . . . , 𝑎𝑛, 𝑠𝑡+1) = 𝑟 𝑖𝑡+1. The core solution concept in
MGs is that of a Markov Perfect Equilibrium (MPE) [35]. Informally,
in the games we consider, an MPE is a set of memoryless strategies
that forms a Nash Equilibrium when starting from any state.

Definition 2. Consider an MG 𝐺 . For each agent 𝑖 and joint pol-
icy 𝜋−𝑖 , a policy 𝜋𝑖 is a best response to 𝜋−𝑖 if it is in the set
𝐵𝑅𝑖 (𝜋−𝑖 ) B {𝜋𝑖 : 𝑉 𝑖∗

(𝜋𝑖 ,𝜋−𝑖 ) (𝑠) = max𝜋𝑖 𝑉 𝑖∗
(𝜋𝑖 ,𝜋−𝑖 ) (𝑠),∀𝑠 ∈ 𝑆}. A

joint policy 𝜋 = (𝜋1, . . . , 𝜋𝑛) in 𝐺 is a Markov Perfect Equilib-
rium (MPE) if 𝜋𝑖 ∈ 𝐵𝑅𝑖 (𝜋−𝑖 ) for all 𝑖 ∈ 𝑁 . If, in addition, we have
that 𝑉 𝑖∗

𝜋 (𝑠) = max𝜋 𝑉 𝑖∗
𝜋 (𝑠) for all 𝑠 ∈ 𝑆 and for all 𝑖 ∈ 𝑁 , then we

say that 𝜋 is team-optimal. If there exists a team-optimal joint
policy in 𝐺 , then we call 𝐺 a common-interest game.

Intuitively, a common-interest game captures a setting in which
there is a joint policy under which ‘everyone is happy’. In many
games no such policy exists, and so a trade-off may be neces-
sary. We may thus instead wish to maximise a weighted sum of
rewards 𝑉 ∗𝜋 (𝑠) =

∑
𝑖∈𝑁 𝑤 [𝑖]𝑉 𝑖∗

𝜋 (𝑠). In this general and popular set-
ting (which generalises both team and common-interest games)
that we adopt for the remainder of the paper we describe a joint
policy 𝜋 as locally optimal if it forms an MPE and globally optimal if
that MPE is team-optimal. Maximising a weighted sum of rewards
means that there is always a deterministic optimal joint policy [49]
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(as we can view a joint policy as a policy for a single agent in an
MDP), and hence a deterministic MPE, in the games we consider.

2.2 Linear Temporal Logic
When defining specifications for a system (e.g., tasks for an agent),
a natural idea is to introduce requirements on the possible traces
that may arise as the system executes over time. LTL captures this
idea and provides a logic for reasoning about the properties of such
traces [41], which here we view as infinite paths 𝜌 through a state
space 𝑆 , where each 𝜌 [𝑡] ∈ 𝑆 for 𝑡 ∈ N and 𝜌 [𝑡 ..] denotes the path
𝜌 from time 𝑡 onwards. Additionally, we introduce a set of atomic
propositions 𝐴𝑃 and a labelling function 𝐿 : 𝑆 → Σ where Σ = 2𝐴𝑃 .

Definition 3. The syntax of Linear Temporal Logic (LTL) for-
mulae is defined recursively using the following operators:

𝜑 :B ⊤ | 𝛼 | 𝜑 ∧ 𝜑 | ¬𝜑 | X𝜑 | 𝜑 U𝜑

where 𝛼 ∈ 𝐴𝑃 is an atomic proposition and ⊤ is read as ‘true’. The
semantics of said formulae are also defined recursively:
𝜌 |= ⊤
𝜌 |= 𝛼 ⇔ 𝛼 ∈ 𝐿(𝜌 [0])
𝜌 |= 𝜓1 ∧𝜓2 ⇔ 𝜌 |= 𝜓1 and 𝜌 |= 𝜓2

𝜌 |= ¬𝜓 ⇔ 𝜌 ̸ |= 𝜓
𝜌 |= X𝜓 ⇔ 𝜌 [1..] |= 𝜓
𝜌 |= 𝜓1 U𝜓2 ⇔ ∃𝑡 ∈ N s.t. 𝜌 [𝑡 ..] |= 𝜓2,∀𝑡 ′ ∈ [0, 𝑡), 𝜌 [𝑡 ′..] |= 𝜓1

Alongside the standard operators from propositional logic, from
which we may derive ∨,→, and↔, we have the temporal operators
X (‘next’) and U (‘until’), from which we may derive F𝜑 ≡ ⊤U𝜑
(‘finally’) and G𝜑 ≡ ¬ F¬𝜑 (‘globally’). An LTL formula 𝜑 thus
describes a set of infinite traces {𝜌 ∈ 𝑆𝜔 : 𝜌 |= 𝜑} through 𝑆 .
Alternatively, one may encode such a set by using an automaton.

Definition 4. A Non-deterministic Büchi Automaton (NBA)
is a tuple 𝐵 = (𝑄,𝑞0, Σ, 𝐹 , 𝛿) where 𝑄 is a finite set of states, 𝑞0 ∈
𝑄 is the initial state, Σ = 2𝐴𝑃 is a finite alphabet over a set of
atomic propositions 𝐴𝑃 , 𝐹 ⊆ 𝑄 is a set of accepting states, and
𝛿 : 𝑄 × Σ→ 2𝑄 is a (non-deterministic) transition function. We say
that an infinite word𝑤 ∈ Σ𝜔 is accepted by 𝐵 if there exists an
infinite run 𝜌 ∈ 𝑄𝜔 such that 𝜌 [0] = 𝑞0, 𝜌 [ 𝑗 + 1] ∈ 𝛿 (𝜌 [ 𝑗], 𝜔 [ 𝑗])
for all 𝑗 ∈ N, and we have inf (𝜌) ∩ 𝐹 ≠ ∅, where inf (𝜌) is the set
of states in 𝑄 that are visited infinitely often on run 𝜌 .

In this work, we use a specific variant of NBAs, called Limit-
Deterministic Büchi Automata (LDBAs). Intuitively, LDBAs rele-
gate all non-determinism to a set of E-transitions between two
halves of the automaton, an initial component 𝑄𝐼 and an accepting
component 𝑄𝐴 ⊇ 𝐹 . This level of non-determinism is, perhaps
surprisingly, sufficient for encoding any LTL formula. We refer the
reader to Sickert et al. for details of this LTL-to-LDBA conversion
process [46], which often yields smaller automata for formulas with
deep nesting of modal operators compared to other approaches.

Definition 5. ALimit-Deterministic BüchiAutomaton (LDBA)
is an NBA 𝐵 = (𝑄,𝑞0, Σ∪{E}, 𝛿, 𝐹 ) where𝑄 can be partitioned into
two disjoint subsets 𝑄𝐼 and 𝑄𝐴 such that: |𝛿 (𝑞, 𝛼) | = 1 for every
𝑞 ∈ 𝑄 and every 𝛼 ∈ Σ; 𝛿 (𝑞, E) = ∅ for every 𝑞 ∈ 𝑄𝐴; 𝛿 (𝑞, 𝛼) ⊆ 𝑄𝐴

for every 𝑞 ∈ 𝑄𝐴 and every 𝛼 ∈ Σ; and 𝐹 ⊆ 𝑄𝐴 .

3 PROBLEM STATEMENT
We now combine MARL and LTL to consider the task of learning
to satisfy temporal logic specifications with maximal probability
in unknown multi-agent environments. The problem we seek to
address in this work is:

Given an (unknown) environment with a team of
𝑛 agents characterised as an MG 𝐺 , and a set of 𝑚
LTL specifications, compute (without first learning
a model) a joint policy 𝜋 that maximises a weighted
sum of the probabilities of satisfying each of the LTL
specifications.

To formalise this problem, we first define the satisfaction probability
of 𝜋 in 𝐺 with respect to an LTL specification 𝜑 .

Definition 6. Given an MG 𝐺 and a joint policy 𝜋 , denote by
Pr𝜋

𝐺
(·|𝑠) the induced Markov chain over the states of 𝐺 starting

from 𝑠 . Then, given an LTL formula𝜑 , the satisfaction probability
of 𝜋 in 𝐺 with respect to 𝜑 starting from a state 𝑠 is given by
Pr𝜋

𝐺
(𝑠 |= 𝜑) B Pr𝜋

𝐺
({𝜌 : 𝜌 |= 𝜑} | 𝜌 [0] = 𝑠).

Thus, our problem can be formally expressed as computing a
policy 𝜋∗ in an unknown MG 𝐺 , given a set of LTL specifications
{𝜑 𝑗 }0≤ 𝑗≤𝑚 and vector of weights𝑤 of length𝑚, such that:

𝜋∗ ∈ argmax
𝜋

∑︁
𝑗

𝑤 [ 𝑗]
𝜋
Pr
𝐺
(𝑠 |= 𝜑 𝑗 ) ∀𝑠 ∈ 𝑆

This forms a natural extension of the single-agent single-objective
case, in which one agent seeks to compute a policy that maximises
the probability of satisfying a single LTL specification.

Our solution to this problem crucially relies on the definition of
a product game which, while never explicitly constructed, defines
the full environment over which our agents learn. Note that in the
following definition we consider anMGwith a generic discount rate
𝛾 and reward functions 𝑅⊗ , though in our algorithm we redefine
these to capture the original LTL specification, as in similar single-
agent constructions [46]. The idea behind this construction is that
by learning to act optimally in the (implicit) product game, agents
learn to satisfy the LTL specification(s) in the original game.

Definition 7. Given an LDBA 𝐵 = (𝑄,𝑞0, Σ∪ {E}, 𝛿, 𝐹 ) associated
with a set of agents 𝑁𝐵 ⊆ 𝑁 , where𝑄 = 𝑄𝐼 ∪𝑄𝐴 , a (finite) MG𝐺 =

(𝑁, 𝑆,𝐴,𝑇 ,𝛾, 𝑅), and a labelling function 𝐿 : 𝑆 → Σ, the resulting
Product MG is a tuple𝐺 ⊗𝐵 = 𝐺𝐵 = (𝑁, 𝑆⊗, 𝐴⊗,𝑇 ⊗, 𝛾, 𝑅⊗) where:
𝑆⊗ = 𝑆×𝑄 is a product state space;𝐴⊗ = {𝐴1

⊗, . . . , 𝐴
𝑛
⊗} where each

𝐴𝑖⊗ = 𝐴𝑖 ∪ {E𝑞′ |∃𝑞 ∈ 𝑄𝐼 , 𝑞
′ ∈ 𝛿 (𝑞, E)} for 𝑖 ∈ 𝑁𝐵 and 𝐴𝑖⊗ = 𝐴𝑖

otherwise; 𝑇 ⊗ : 𝑆⊗ ×𝐴1
⊗ × · · · ×𝐴𝑛⊗ × 𝑆⊗ → [0, 1] is a stochastic

transition function such that 𝑇 ⊗ ((𝑠, 𝑞), 𝑎1, . . . , 𝑎𝑛, (𝑠 ′, 𝑞′)) =
𝑇 (𝑠, 𝑎1, . . . , 𝑎𝑛, 𝑠 ′) if ∀𝑖 ∈ 𝑁𝐵, 𝑎𝑖 ∈ 𝐴𝑖 , 𝑞′ ∈ 𝛿 (𝑞, 𝐿(𝑠 ′))
1 if ∃𝑖 ∈ 𝑁𝐵 s.t. 𝑎𝑖 = E𝑞′, 𝑞′ ∈ 𝛿 (𝑞, E), 𝑠 = 𝑠 ′

0 otherwise

and 𝑅⊗ is a set of reward functions {𝑅1
⊗, . . . , 𝑅

𝑛
⊗} such that 𝑅𝑖⊗ :

𝑆⊗ × 𝐴1
⊗ × · · · × 𝐴𝑛⊗ × 𝑆⊗ → R for each 𝑖 ∈ 𝑁 . A (memoryless)

policy 𝜋𝑖 : 𝑆⊗ × 𝐴𝑖⊗ → [0, 1] for a player 𝑖 in the product MG is
defined as before, using 𝑆⊗ and 𝐴⊗ .
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We also extend the initial state distribution 𝜁 to 𝜁 ⊗ in the product
game, where 𝜁 ⊗ (𝑠, 𝑞1

0, . . . , 𝑞
𝑚
0 ) = 𝜁 (𝑠) for all 𝑠 ∈ 𝑆 and is equal to

0 for all other 𝑠⊗ ∈ 𝑆⊗ . We write 𝐺 ⊗ 𝐵1 ⊗ · · · ⊗ 𝐵𝑚 = 𝐺𝐵1,...,𝐵𝑚

for the product of 𝐺 with multiple automata 𝐵1, . . . , 𝐵𝑚 , defined
by sequentially taking individual products (as a product MG is
simply another MG). In fact, given 𝐺 , this operation can easily be
seen to be associative (up to the ordering of elements forming a
product state) if we assume that: 𝐿 𝑗 (𝑠, 𝑞1, . . . , 𝑞 𝑗−1) = 𝐿 𝑗 (𝑠) ⊆ Σ 𝑗

only depends on the state of 𝐺 for each labelling function 𝐿 𝑗 (for
automaton 𝐵 𝑗 ); and that E-transitions can be made for multiple
automata at the same time step, i.e., there is no order in which
E-transitions are prioritised between groups 𝑁𝐵 𝑗

when defining
the new product transition function 𝑇 ⊗ . At each time step 𝑡 every
agent in some set 𝑁𝐵 𝑗

has the opportunity to make an E-transition
at which point their corresponding automaton state 𝑞 𝑗𝑡 changes to
𝑞
𝑗

𝑡+1 with probability one and other elements of the product state
remain the same. If no E-transitions are made by any agent in
any set 𝑁𝐵 𝑗

then the transition probabilities are simply defined by
the original transition function. Previous works have considered
a similar multi-objective product construction, though only in the
simpler case of a single agent [13].

4 AUTOMATON/LOGIC MULTI-AGENT
NATURAL ACTOR-CRITIC

We now present our solution to the problem statement, in the
form of our algorithm, Almanac (Automaton/Logic Multi-Agent
Natural Actor-Critic). Almanac falls into a category of model-free
RL algorithms known as actor-critic methods [6, 26, 40], whereby a
policy 𝜋 (the actor) is optimised via gradient descent using the value
function 𝑉𝜋 (the critic) which is updated via bootstrapping. These
two functions are typically learnt separately and simultaneously
using a two-timescale approach in which the critic is updated faster
than the actor in order to learn the value function with respect
to the current policy. Such methods form a powerful, flexible, and
highly scalable class of algorithms which can be applied to a wide
range of (MA)RL problems and regularly achieve state-of-the-art
performance [16, 34]. We begin by introducing a novel temporal
difference (TD) algorithm with state-dependent discounts such that
the learnt critics capture the LTL specifications. We then combine
this with a natural policy gradient scheme to update the actors,
forming our full algorithm. In the final subsection we provide proof
sketches of correctness and convergence, with full proofs available
in the supplementary material.

4.1 Patient Temporal Difference Learning
We wish to solve the problem of learning a critic𝑉𝜋 given any fixed
joint policy 𝜋 such that for any 𝑠 ∈ 𝑆 :

𝜋∗ ∈ argmax
𝜋

𝑉 ∗𝜋 (𝑠⊗) ⇒ 𝜋∗ ∈ argmax
𝜋

∑︁
𝑗

𝑤 [ 𝑗]
𝜋
Pr
𝐺
(𝑠 |= 𝜑 𝑗 ), (1)

where 𝑠⊗ = (𝑠, 𝑞1
0, . . . , 𝑞

𝑚
0 ). The main idea is that by defining a

new reward function 𝑅⊗ and discount rate Γ we can learn a value
function 𝑉𝜋 in the product MG 𝐺𝐵1,...,𝐵𝑚 (where 𝐵 𝑗 is the LDBA
corresponding to 𝜑 𝑗 ) such that any policy 𝜋 that maximises 𝑉 ∗𝜋 in
𝐺𝐵1,...,𝐵𝑚 is guaranteed to maximise

∑
𝑗 𝑤 [ 𝑗] Pr𝜋

𝐺
(𝑠 |= 𝜑 𝑗 ) when

projected down into the original game 𝐺 . In this way, the states of
the automata 𝐵1, . . . , 𝐵𝑚 can be thought of as a finite memory for
𝜋 in the original game.

Remark 1. An MPE in our setting is simply a Subgame Perfect
Equilibrium (SPE) in which all players use memoryless strategies,
where a subgame in an MG is defined by a starting state [18]. If (1)
holds, then any joint policy 𝜋∗ ∈ argmax𝜋 𝑉 ∗𝜋 (𝑠⊗) forms an MPE in
the product game, but when viewed in terms of the original game,
a policy 𝜋∗ ∈ argmax𝜋

∑
𝑗 𝑤 [ 𝑗] Pr𝜋

𝐺
(𝑠 |= 𝜑 𝑗 ) for all 𝑠 is merely an

SPE, as the policies of each agent are no longer memoryless.

The problem defining 𝑅⊗ and Γ such that the limit 𝑉 ∗𝜋 of the
learnt value function𝑉𝜋 satisfies (1) is trickier than it might initially
seem. Previous approaches for MDPs have either been open to
counterexamples in which an agent learns to prioritise the length
of the path taken to satisfy𝜑 over the probability of satisfying it [21],
or involved constructions that hinder learning by increasing the
state-space size [38], increasing reward sparsity [19], or increasing
learning rates [9]. We propose a novel solution that is far simpler
and more natural. Given a state 𝑠⊗ = (𝑠, 𝑞1, . . . 𝑞𝑚) the basic idea
is, for each automaton, to issue a reward when 𝑞 𝑗 ∈ 𝐹 𝑗 and to use a
state-dependent discount factor which is equal to 1 when no reward
is seen and equal to a constant 𝛾𝑉 ∈ (0, 1) otherwise. Formally, for
each specification 𝜑 𝑗 we define 𝑅 𝑗⊗ and Γ 𝑗 as follows:

𝑅
𝑗
⊗ (𝑠
⊗) B

{
1 if 𝑞 𝑗 ∈ 𝐹 𝑗

0 otherwise ,
Γ 𝑗 (𝑠⊗) B

{
𝛾𝑉 if 𝑅 𝑗⊗ (𝑠⊗) = 1
1 otherwise .

(2)

We then define 𝑉 𝑗∗
𝜋 (𝑠⊗) B E𝜋

[ ∑∞
𝑡=0 Γ

𝑗

1:𝑡𝑅
𝑗
⊗ (𝑠
⊗
𝑡+1)

�� 𝑠⊗] where
Γ
𝑗

1:𝑡 =
∏𝑡

𝜏=1 Γ
𝑗 (𝑠⊗𝜏 ) for 𝑡 ≥ 1 and and Γ

𝑗

1:0 = 1. While earlier
works have considered a similar solution in MDPs [20, 21], they
fail to mention that the problem with this scheme is that if used to
update a value function naively (such as in the vanilla Q-learning
algorithms these works make use of) the update process can con-
verge to the wrong values. This lack of convergence arises because
of possible loops in the product MG that do not contain any reward-
ing states. To overcome this limitation we use a patient TD scheme
whereby agents update their estimates of the value function only
once a reward is seen (or when the next state has value 0), meaning
that value estimates for states on such loops cannot be artificially
inflated.

We begin by considering the standard TD(0) update rule with
learning rate 𝛼 = {𝛼𝑡 }𝑡 ∈N and fixed policy 𝜋 given by [48]:

𝑉
𝑗
𝜋 (𝑠⊗𝑡 ) ← (1 − 𝛼𝑡 )𝑉

𝑗
𝜋 (𝑠⊗𝑡 ) + 𝛼𝑡

[
𝑅
𝑗
⊗ (𝑠
⊗
𝑡+1) + Γ

𝑗

𝑡+1:𝑡+1𝑉
𝑗
𝜋 (𝑠⊗𝑡+1)

]
,

where 𝑅 𝑗⊗ (𝑠
⊗
𝑡+1) + Γ(𝑠⊗

𝑡+1)𝑉
𝑗
𝜋 (𝑠⊗𝑡+1) =: 𝐺 𝑗

𝑡 :𝑡+1 is a one-step target,
though one may also use a k-step target instead, given by:

𝐺
𝑗

𝑡 :𝑡+𝑘 B 𝑅
𝑗
⊗ (𝑠
⊗
𝑡+1) + Γ

𝑗

𝑡+1:𝑡+1𝑅
𝑗
⊗ (𝑠
⊗
𝑡+2) + · · ·

+ Γ 𝑗
𝑡+1:𝑡+𝑘−1𝑅

𝑗
⊗ (𝑠
⊗
𝑡+𝑘 ) + Γ

𝑗

𝑡+1:𝑡+𝑘𝑉
𝑗
𝜋 (𝑠⊗𝑡+𝑘 ).

It is well-known that using longer trajectories as targets can im-
prove bootstrapping as much more can be learnt from a single
episode [49]. Our motivation is different: by not immediately up-
dating 𝑉𝜋 (𝑠⊗𝑡 ) when we either do not see a reward, or when the
value of the successor state 𝑉𝜋 (𝑠⊗𝑡+1) is non-zero, then we avoid
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increasing the values of zero-reward loop states in terms of them-
selves. Instead, we set 𝑘 ‘on the fly’ to be the least 𝑘 such that
either 𝑅 𝑗⊗ (𝑠

⊗
𝑡+𝑘 ) > 0 or 𝑉 𝑗

𝜋 (𝑠⊗𝑡+𝑘 ) = 0, i.e.,we wait to update 𝑉 𝑗
𝜋 (𝑠⊗𝑡 )

until we see a reward. Observe that for any 0 < 𝑙 < 𝑘 we have
𝑅
𝑗
⊗ (𝑠
⊗
𝑡+𝑙 ) = 0, Γ 𝑗 (𝑠⊗

𝑡+𝑙 ) = 1, and Γ 𝑗 (𝑠⊗
𝑡+𝑘 ) = 𝛾𝑉 , hence:

𝐺𝑡 :𝑡+𝑘 = 𝑅
𝑗
⊗ (𝑠
⊗
𝑡+𝑘 ) + Γ

𝑗 (𝑠⊗
𝑡+𝑘 )𝑉

𝑗
𝜋 (𝑠⊗𝑡+𝑘 ) = 𝑅

𝑗
⊗ (𝑠
⊗
𝑡+𝑘 ) + 𝛾𝑉𝑉

𝑗
𝜋 (𝑠⊗𝑡+𝑘 ).

Almanac implements an (approximate) patient TD scheme to learn
each value function𝑉 𝑗

𝜋 in the product MG under a joint policy 𝜋 by
maintaining a temporary set of zero-reward states {𝑠⊗𝑡 , . . . , 𝑠

⊗
𝑡+𝑘−1}

(with respect to 𝑅 𝑗⊗) whose values it waits to update. The conver-
gence of this update rule is proven in Theorem 1. What remains to
show here is that the resulting𝑉𝜋 B

∑
𝑗 𝑤 [ 𝑗]𝑉

𝑗
𝜋 satisfies (1), which

gives us a critic for correctly capturing the given LTL specifica-
tions. In the next subsection we show how this critic can be learnt
synchronously alongside an actor (i.e., a joint policy) for optimally
satisfying said specifications.

Proposition 1. Given an MG 𝐺 and LTL objectives {𝜑 𝑗 }1≤ 𝑗≤𝑚
(each equivalent to an LDBA 𝐵 𝑗

), let 𝐺𝐵 = 𝐺 ⊗ 𝐵1 ⊗ · · · ⊗ 𝐵𝑚 be

the resulting product MG with newly defined reward functions 𝑅
𝑗
⊗

and state-dependent discount functions Γ 𝑗 given by (2). Then there

exists some 0 < 𝛾𝑉 < 1 such that (1) is satisfied by the patient value

function 𝑉𝜋 B
∑

𝑗 𝑤 [ 𝑗]𝑉
𝑗
𝜋 .

Proof (Sketch). We begin by observing that:

𝑉 ∗𝜋 (𝑠⊗) =
∑︁
𝑗

𝑤 [ 𝑗]
∑︁
𝜌

[
𝑃𝑟𝜋

𝐺𝐵
(𝜌 |𝑠⊗)

∞∑︁
𝑡=0

Γ
𝑗

1:𝑡𝑅
𝑗
⊗ (𝑠
⊗
𝑡+1)

]
.

We denote the number of times a path 𝜌 in 𝐺𝐵 passes through
the accepting set 𝐹 𝑗 of automaton 𝐵 𝑗 by 𝐹 𝑗 (𝜌), and let 𝐹 (𝜌) =∑

𝑗 𝐹
𝑗 (𝜌). Then when 𝐹 𝑗 (𝜌) = ∞we have that

∑∞
𝑡=0 Γ

𝑗

1:𝑡𝑅
𝑗
⊗ (𝑠
⊗
𝑡+1) =

1
1−𝛾𝑉 and when 𝐹 𝑗 (𝜌) = 𝑓 𝑗 < ∞ we have that

∑∞
𝑡=0 Γ

𝑗

1:𝑡𝑅
𝑗
⊗ (𝑠
⊗
𝑡+1) =

(1−𝛾 𝑓
𝑗

𝑉
) 1

1−𝛾𝑉 . We show that if 𝜋 ∉ argmax𝜋
∑

𝑗 𝑤 [ 𝑗] Pr𝜋
𝐺
(𝑠 |= 𝜑 𝑗 )

then there exists 0 < 𝛾𝑉 < 1 such that 𝜋 ∉ argmax𝜋 𝑉 ∗𝜋 (𝑠⊗) and
for some 𝜋 ′ ∈ argmax𝜋

∑
𝑗 𝑤 [ 𝑗] Pr𝜋

𝐺
(𝑠 |= 𝜑 𝑗 ), we have 𝑉 ∗

𝜋 ′ (𝑠
⊗) >

𝑉 ∗𝜋 (𝑠⊗). Define the sets fin𝑗 (𝑠⊗) B {𝜌 : 𝜌 [0] = 𝑠⊗ ∧ 𝐹 𝑗 (𝜌) ≠ ∞}
and inf 𝑗 (𝑠⊗) B {𝜌 : 𝜌 [0] = 𝑠⊗ ∧ 𝐹 𝑗 (𝜌) = ∞}. Then we have:

𝑉 ∗𝜋 ′ (𝑠
⊗) ≥

∑︁
𝑗

𝑤 [ 𝑗]
[ ∑︁
𝜌∈inf 𝑗 (𝑠⊗)

𝑃𝑟𝜋
′

𝐺𝐵
(𝜌 |𝑠⊗) 1

1 − 𝛾𝑉

]
=

𝑎⊤𝑤
1 − 𝛾𝑉

,

where 𝑎 is a vector such that 𝑎[ 𝑗] = ∑
𝜌∈inf 𝑗 (𝑠⊗) 𝑃𝑟

𝜋 ′
𝐺𝐵
(𝜌 |𝑠⊗) =

𝑃𝑟𝜋
′

𝐺𝐵

(
inf 𝑗 (𝑠⊗)

)
. Similarly, we have:

𝑉 ∗𝜋 (𝑠⊗) ≤
𝑏⊤𝑤

1 − 𝛾𝑉
+ (1 − 𝑏)⊤𝑤

1 − 𝛾 𝑓
𝑉

1 − 𝛾𝑉
,

where 𝑏 [ 𝑗] = ∑
𝜌∈inf 𝑗 (𝑠⊗) 𝑃𝑟

𝜋
𝐺𝐵
(𝜌 |𝑠⊗) = 𝑃𝑟𝜋

𝐺𝐵
(inf 𝑗 (𝑠⊗)) and 𝑓 =

max𝑗 max
𝜌∈fin𝑗 (𝑠⊗) 𝐹

𝑗 (𝜌). Given that
∑

𝑗 𝑤 [ 𝑗] Pr𝜋
′

𝐺
(𝑠 |= 𝜑 𝑗 ) >∑

𝑗 𝑤 [ 𝑗] Pr𝜋
𝐺
(𝑠 |= 𝜑 𝑗 ) by assumption, then by a straightforward

extension of the result (see the supplementary material and [46])
that there exists a canonical extension of 𝜋 to𝐺𝐵 such that Pr𝜋

𝐺
(𝑠 |=

𝜑) = Pr𝜋
𝐺𝐵
({𝜌 : 𝐹 (𝜌) = ∞}|𝑠⊗), we have 1 ≥ 𝑎⊤𝑤 > 𝑏⊤𝑤 ≥ 0. The

proof is concluded by setting 𝛾𝑉 >
𝑓
√︃

1−𝑎⊤𝑤
1−𝑏⊤𝑤 . □

Finally, we remark that as well as a ‘patient’ value function 𝑉 ,
we also learn a (standard) ‘hasty’ value function𝑈 . This is because,
if for some specification 𝜑 and two possible joint policies 𝜋 and
𝜋 ′, we have that Pr𝜋

𝐺
(𝑠 |= 𝜑) = Pr𝜋

′
𝐺
(𝑠 |= 𝜑) then agents have no

reason to use 𝜋 over 𝜋 ′, even if 𝜋 results in a much more efficient
trajectory. In many ways this is a feature and not a bug; LTL has
no emphasis on ‘hastiness’ by design. In reality, however, whilst
we may not want to forsake the satisfaction of a constraint for the
sake of speed, we would like the agents to find the most efficient
policy that maximises the probability of satisfying the constraint.
We solve this problem by learning two value functions and then
using lexicographic RL [44, 47] to maximise the hasty objective
subject to maximising the patient objective, and thus satisfying (1).
Further details are provided in the following section.

4.2 Multi-Agent Natural Actor-Critic
For the remainder of the paper, we assume that each agent’s pol-
icy 𝜋𝑖 is parameterised by 𝜃𝑖 ∈ Θ𝑖 , potentially using a non-linear
function approximator giving 𝜋𝑖 (𝑎 |𝑠;𝜃𝑖 ), and that the value func-
tions are linearly approximated using some state basis functions
𝜙 (𝑠⊗) and parameters 𝑣 and 𝑢, such that 𝑉 (𝑠⊗) = 𝜙 (𝑠⊗)⊤𝑣 and
𝑣 =

∑
𝑗 𝑤 [ 𝑗]𝑣 𝑗 (and likewise for 𝑈 ). Note that these assumptions

subsume the tabular setting which most prior work on RL with
LTL specifications has focused on. We use 𝜃 = [𝜃1⊤, . . . , 𝜃𝑛⊤]⊤
to denote the joint set of parameters for all agents and write joint
actions as 𝑎 = (𝑎1, . . . , 𝑎𝑛). We also replace 𝜋 by 𝜃 in our notation
for clarity where appropriate.

When formulated in terms of our parametrisation, and given
that (1) holds, our task can be viewed as optimising the objec-
tive function 𝐽 (𝜃 ) B ∑

𝑠⊗ 𝜁
⊗ (𝑠⊗)𝑉𝜃 (𝑠⊗) =

∑
𝑗 𝑤 [ 𝑗] 𝐽 𝑗 (𝜃 ) where

𝐽 𝑗 (𝜃 ) B ∑
𝑠⊗ 𝜁

⊗ (𝑠⊗)𝑉 𝑗

𝜃
(𝑠⊗) is the objective for specification 𝜑 𝑗 .

Then, within argmax𝜃 𝐽 (𝜃 ), we also wish to select the parameters
that maximise the objective function with respect to our ‘hasty’
value function, which is given by 𝐾 (𝜃 ) B ∑

𝑠⊗ 𝜁
⊗ (𝑠⊗)𝑈𝜃 (𝑠⊗) =∑

𝑗 𝑤 [ 𝑗]𝐾 𝑗 (𝜃 ). The following derivations are provided for 𝐽 , the
case for 𝐾 is analogous. We can improve 𝜃 with respect to an ob-
jective function 𝐽 using the gradient ∇𝜃 𝐽 (𝜃 ) which, by the policy
gradient theorem [50], is:

∇𝜃 𝐽 (𝜃 ) =
∑︁
𝑗

𝑤 [ 𝑗]
∑︁
𝑠⊗
𝑑
𝑗

𝜃,𝜁
(𝑠⊗)

∑︁
𝑎

𝑄
𝑗

𝜃
(𝑠⊗, 𝑎)∇𝜃𝜋 (𝑎 |𝑠⊗ ;𝜃 )

where 𝑑 𝑗
𝜃,𝜁
(𝑠⊗) is the (patient) discounted state distribution in the

product game for specification 𝜑 𝑗 , given initial distribution 𝜁 ⊗ :

𝑑
𝑗

𝜃,𝜁
(𝑠⊗) B E𝑠⊗0 ∼𝜁 ⊗

[∑︁
𝜌

𝜃
Pr
𝐺𝐵

(𝜌 |𝑠⊗0 )
(

1∑∞
𝑡=0 Γ

𝑗

0:𝑡

∞∑︁
𝑡=0

Γ
𝑗

0:𝑡 I(𝜌 [𝑡] = 𝑠
⊗)

)]
where I denotes an indicator function. Where unambiguous we
write simply 𝑑 𝑗 instead of 𝑑 𝑗

𝜃,𝜁
.

Remark 2. Producing unbiased samples with respect to each 𝑑 𝑗 (𝑠⊗)
in order to estimate the gradients used in policy evaluation and im-
provement raises several difficulties [36, 51]. It is possible, however,
to instead use trajectories from the undiscounted MG distribution
𝑑 (𝑠⊗) that are truncated after each transition to a state 𝑠⊗ with
probability 1 − Γ 𝑗 (𝑠⊗) [5], or to re-weight updates as a function of
Γ 𝑗 (𝑠⊗) [51]. We combine these two approaches in Almanac.
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A known problem with ‘vanilla’ gradients is that they can some-
times be inefficient due to large plateaus in the optimisation space,
leading to small gradients and thus incremental updates. A solution
to this problem is instead to use the natural policy gradient which is
invariant to the parametrisation of the policy, and can be computed
by applying the inverse Fisher matrix to the vanilla gradient [2, 24].
For each specification 𝑗 , the natural gradient of 𝐽 𝑗 (𝜃 ) can be shown
[40] to equal ∇̃𝜃 𝐽 𝑗 (𝜃 ) = 𝐺 𝑗 (𝜃 )−1∇𝜃 𝐽 𝑗 (𝜃 ) = 𝑥𝑉 𝑗 , where 𝐺 𝑗 (𝜃 ) is
the Fisher information matrix and 𝑥𝑉 𝑗 satisfies:

𝜓𝜃 (𝑎 |𝑠⊗)⊤𝑥𝑉 𝑗 = 𝑄
𝑗

𝜃
(𝑠⊗, 𝑎) −𝑉 𝑗

𝜃
(𝑠⊗) =: 𝐴 𝑗

𝜃
(𝑠⊗, 𝑎).

Here,𝐴 𝑗

𝜃
denotes the advantage function for specification 𝑗 (for the

hasty advantage functionwe use𝑍 𝑗

𝜃
) and𝜓𝜃 (𝑎 |𝑠⊗) = ∇𝜃 log𝜋 (𝑎 |𝑠⊗ ;𝜃 )

denotes the score function. Using a similar line of reasoning a deriva-
tion of a natural policy gradient for the multi-agent case is a simple
exercise (omitted here due to space constraints).

Lemma 1. Let 𝐺𝐵 be some (product) MG. Then for any set of pa-

rameters {𝜃𝑖 }𝑖∈𝑁 and any player 𝑖 ∈ 𝑁 , the natural policy gradi-

ent for player 𝑖 with respect to each 𝐽 𝑗 (𝜃 ) = ∑
𝑠⊗ 𝜁

⊗ (𝑠⊗)𝑉 𝑗

𝜃
(𝑠⊗)

is given by ∇̃𝜃𝑖 𝐽 𝑗 (𝜃 ) = 𝑥𝑖
𝑉 𝑗 , where 𝑥

𝑖
𝑉 𝑗 is a parameter satisfying

𝜓 𝑖
𝜃𝑖
(𝑎𝑖 |𝑠⊗)⊤𝑥𝑖

𝑉 𝑗 = ∇𝜃𝑖 log𝜋𝑖 (𝑎𝑖 |𝑠⊗ ;𝜃 )⊤𝑥𝑖
𝑉 𝑗 = 𝐴

𝑗

𝜃
(𝑠⊗, 𝑎).

This implies that the gradient 𝑥𝑖
𝑉
with respect to our weighted

combination of objectives can be found by minimising the loss
𝐿𝑖
𝑉
(𝑥𝑖
𝑉

;𝜃, 𝜈𝜃,𝜁 ) B
∑

𝑗 𝑤 [ 𝑗]𝐿𝑖𝑉 𝑗 (𝑥𝑖𝑉 ;𝜃, 𝜈 𝑗
𝜃,𝜁
) where:

𝐿𝑖
𝑉 𝑗 (𝑥𝑖𝑉 ;𝜃, 𝜈 𝑗

𝜃,𝜁
) B E(𝑠⊗,𝑎)∼𝜈 𝑗

𝜃,𝜁

[��𝜓 𝑖
𝜃𝑖
(𝑎𝑖 |𝑠⊗)⊤𝑥𝑖𝑉 −𝐴

𝑗

𝜃
(𝑠⊗, 𝑎)

��]
and 𝜈 𝑗

𝜃,𝜁
(𝑠⊗, 𝑎) B 𝑑

𝑗

𝜃,𝜁
(𝑠⊗)𝜋 (𝑎 |𝑠⊗ ;𝜃 ). Similarly we may define

𝜇𝜃,𝜁 (𝑠⊗, 𝑎) = 𝑐𝜃,𝜁 (𝑠⊗)𝜋 (𝑎 |𝑠⊗ ;𝜃 ) as the hasty state-action distribu-
tion under a joint policy 𝜃 and with initial distribution 𝜁 ⊗ , where:

𝑐𝜃,𝜁 (𝑠⊗) B E𝑠⊗0 ∼𝜁 ⊗

[∑︁
𝜌

𝜃
Pr
𝐺𝐵

(𝜌 |𝑠⊗0 )
(

1
1 − 𝛾𝑈

∞∑︁
𝑡=0

𝛾𝑡𝑈 I(𝜌 [𝑡] = 𝑠
⊗)

)]
,

which does not depend on the specification 𝜑 𝑗 because of the con-
stant discount rate. As with 𝑑 𝑗 we drop subscripts for 𝑐 , 𝜈 𝑗 , and 𝜇
where unambiguous. Recall that our secondary objective is to opti-
mise 𝜃𝑖 according to 𝐾 (𝜃 ), given our lexicographic prioritisation of
𝐽 (𝜃 ). In other words, we wish to follow the hasty natural gradient
𝑥𝑖
𝑈
subject to following the patient natural gradient 𝑥𝑖

𝑉
. Formally,

the gradient we seek is given by:

𝑥𝑖∗ ∈ argmin 𝑥𝑖
𝑈
∈argmin

𝑥𝑖
𝑉
𝐿𝑖
𝑉
(𝑥𝑖

𝑉
;𝜃,𝜈) 𝐿

𝑖
𝑈 (𝑥

𝑖
𝑈 ;𝜃, 𝜇), (3)

where 𝐿𝑖
𝑈

is defined analogously to 𝐿𝑖
𝑉
. Note that both 𝐿𝑖

𝑉
and 𝐿𝑖

𝑈

are convex, and so we can find some 𝑥𝑖∗ satisfying (3) by simply first
following∇𝑥𝑖𝐿𝑖𝑉 (𝑥

𝑖 ;𝜃, 𝜈) until this gradient is zero, and then follow-
ing ∇𝑥𝑖𝐿𝑖𝑈 (𝑥

𝑖 ;𝜃, 𝜇) subject to the constraint that ∇𝑥𝑖𝐿𝑖𝑉 (𝑥
𝑖 ;𝜃, 𝜈) =

0. We use a multi-timescale lexicographic approach to perform
this operation simultaneously and compute 𝑥𝑖∗, which we then
use to update 𝜃𝑖 . More specifically, we minimise 𝐿𝑖

𝑉
(𝑥𝑖 ;𝜃, 𝜈) on a

faster timescale and so guarantee its convergence to some 𝑙𝑖 be-
fore 𝐿𝑖

𝑈
(𝑥𝑖 ;𝜃, 𝜇) has converged. On a slower timescale we solve

the Lagrangian dual corresponding to the constrained optimisation
problem of minimising 𝐿𝑖

𝑈
(𝑥𝑖 ;𝜃, 𝜇) such that 𝐿𝑖

𝑉
(𝑥𝑖 ;𝜃, 𝜈) − 𝑙𝑖 ≤ 0:

max
𝜆𝑖 ≥0

min
𝑥𝑖

𝐿𝑖𝑈 (𝑥
𝑖 ;𝜃, 𝜇) + 𝜆𝑖

[
𝐿𝑖𝑉 (𝑥

𝑖 ;𝜃, 𝜈) − 𝑙𝑖
]
. (4)

To form the gradients of 𝐿𝑖
𝑉
and 𝐿𝑖

𝑈
we use an unbiased estimate

of each 𝐴 𝑗

𝜃
and 𝑍 𝑗

𝜃
using samples of the TD error [6] which can be

trivially extended to the 𝑘-step version 𝛿𝑉
𝑗

𝑡 :𝑡+𝑘 = 𝐺𝑉 𝑗

𝑡 :𝑡+𝑘 − 𝑉
𝑗

𝜃
(𝑠⊗𝑡 )

[49]. We compute 𝑣 by minimising the following loss for each 𝑣 𝑗
(the case for the 𝑢 is analogous):

𝐿
𝑗
𝑣 (𝑣 𝑗 ;𝜃, 𝑑 𝑗 ) = E𝑠⊗∼𝑑 𝑗

[ (
𝑉

𝑗

𝜃
(𝑠⊗𝑡 ) − 𝜙 (𝑠

⊗)⊤𝑣 𝑗
)2

]
.

This can again be solved via gradient updates that use the tem-
poral difference 𝛿𝑉

𝑗

𝑡 :𝑡+𝑘 , corresponding to the linear semi-gradient
temporal difference algorithm [49]:

𝛿𝑉
𝑗

𝑡 :𝑡+𝑘 ← 𝑟
𝑗

𝑡+𝑘 + 𝛾𝑉𝜙 (𝑠
⊗
𝑡+𝑘 )

⊤𝑣 𝑗 − 𝜙 (𝑠⊗𝑡 )
⊤𝑣 𝑗

𝑣 𝑗 ← 𝑣 𝑗 + 𝛼𝑡𝛿𝑉
𝑗

𝑡 :𝑡+𝑘𝜙 (𝑠
⊗
𝑡 )

(5)

𝛿𝑈
𝑗

𝑡 :𝑡+1 ← 𝑟
𝑗
𝑡 + 𝛾𝑈𝜙 (𝑠

⊗
𝑡+1)
⊤𝑢 𝑗 − 𝜙 (𝑠⊗𝑡 )

⊤𝑢 𝑗

𝑢 𝑗 ← 𝑢 𝑗 + 𝛼𝑡𝛿𝑈
𝑗

𝑡 :𝑡+1𝜙 (𝑠
⊗
𝑡 ) .

(6)

Using these quantities we then update the natural gradient 𝑥𝑖 and
Lagrange multiplier 𝜆𝑖 :

𝑥𝑖 ← Ω𝑥𝑖

[
𝑥𝑖 +

(∑︁
𝑗

𝑤 [ 𝑗] (𝛽𝑉𝑡 + 𝛽𝑈𝑡 𝜆𝑖 )𝜒𝑉
𝑗

𝑡 + 𝛽𝑈𝑡 𝜒𝑈
𝑗

𝑡

)
𝜓 𝑖
𝜃𝑖
(𝑎𝑖𝑡 |𝑠⊗𝑡 )

]
,

𝜆𝑖 ← Ω𝜆

[
𝜆𝑖 + 𝜂𝑡

(∑︁
𝑗

𝑤 [ 𝑗]Γ 𝑗1:𝑡
��𝜓 𝑖
𝜃𝑖
(𝑎𝑖𝑡 |𝑠⊗𝑡 )

⊤𝑥𝑖𝑉 − 𝛿
𝑉 𝑗

𝑡 :𝑡+1
�� − 𝑙𝑖 )],

(7)

where 𝜒𝑉
𝑗

𝑡 B Γ
𝑗

1:𝑡 sgn
(
𝛿𝑉

𝑗

𝑡 :𝑡+1 −𝜓
𝑖
𝜃𝑖
(𝑎𝑖𝑡 |𝑠

⊗
𝑡 )⊤𝑥𝑖

)
is used to form an

estimate of −∇𝑥𝑖𝐿𝑖𝑉 𝑗 (𝑥𝑖 ;𝜃, 𝜈
𝑗

𝜃,𝜁
) in a piecewise fashion. Finally we

update the policy parameters using:

𝜃𝑖 ← Ω𝜃𝑖
[
𝜃𝑖 + 𝜄𝑡𝑥𝑖

]
. (8)

The functions Ω𝑥𝑖 ,Ω𝜆,Ω𝜃𝑖 are projections onto 𝑋 𝑖 , [0,∞), and Θ𝑖

respectively, which are commonly used within stochastic approxi-
mation to ensure boundedness of iterates, and is also standard in
the literature on natural actor-critic algorithms [6, 7]. We assume
that learning rates 𝛼, 𝛽𝑉 , 𝛽𝑈 , 𝜂, 𝜄 obey the following relationship:

∞∑︁
𝑡=0

𝛼𝑡 =

∞∑︁
𝑡=0

𝛽𝑉𝑡 =

∞∑︁
𝑡=0

𝛽𝑉𝑡 =

∞∑︁
𝑡=0

𝜂𝑡 =

∞∑︁
𝑡=0

𝜄𝑡 = ∞,

∞∑︁
𝑡=0

[
(𝛼𝑡 )2 + (𝛽𝑉𝑡 )2 + (𝛽𝑈𝑡 )2 + (𝜂𝑡 )2 + (𝜄𝑡 )2

]
< ∞,

lim
𝑡→∞

𝛽𝑉𝑡

𝛼𝑡
= lim

𝑡→∞
𝛽𝑈𝑡

𝛽𝑉𝑡

= lim
𝑡→∞

𝜂𝑡

𝛽𝑈𝑡

= 0.

(9)

Intuitively, this means that critics update on the fastest timescale,
followed by the patient updates to the natural gradient, the hasty
updates to the natural gradient, and then the Lagrange multipliers.
These updates occur in an inner loop, and the policy parameters
themselves are updated on an outer loop, once the natural gradients
have converged. The full procedure is shown in Algorithm 1.
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Algorithm 1 Almanac

Input: specifications {𝜑 𝑗 }0≤ 𝑗≤𝑚 , discount rates 𝛾𝑉 , 𝛾𝑈 , learn-
ing rates 𝛼, 𝛽𝑉 , 𝛽𝑈 , 𝜂, 𝜄, reset probability 𝑝
Output: policy 𝜋𝑖∗

1: convert each 𝜑 𝑗 into an LDBA 𝐵 𝑗

2: initialise parameters 𝜃𝑖 , 𝑥𝑖 , {𝑣 𝑗 }1≤ 𝑗≤𝑚 , {𝑢 𝑗 }1≤ 𝑗≤𝑚 , 𝜆𝑖

3: while 𝜃𝑖 not converged do
4: while 𝑥𝑖 not converged do
5: initialise 𝑡 ← 0, 𝑒𝑛𝑑 ← ⊥, and 𝑍 𝑗 ← ∅ for each 𝑗
6: sample 𝑠⊗0 ∼ 𝜁

⊗

7: while 𝑒𝑛𝑑 = ⊥ do
8: 𝑍 𝑗 ← 𝑍 ∪ {𝑠⊗𝑡 } for each 𝑗
9: sample 𝑎𝑖𝑡 ∼ 𝜋𝑖𝜃 (·|𝑠

⊗
𝑡 )

10: observe 𝑠⊗
𝑡+1 and 𝑟 𝑗

𝑡+1 for each 𝑗
11: if 𝑟 𝑗

𝑡+1 > 0 or 𝜙 (𝑠⊗
𝑡+1)
⊤𝑣 𝑗 = 0 then

12: for 𝑠⊗
𝑘
∈ 𝑍 𝑗 do update 𝑣 𝑗 using (5)

13: 𝑍 𝑗 ← ∅
14: update 𝑢 𝑗 using (6) for each 𝑗
15: update 𝑥𝑖 and 𝜆𝑖 using (7)
16: with probability 𝑝 set 𝑒𝑛𝑑 ← ⊤
17: update 𝜃𝑖 using (8)
18: return 𝜋𝑖

4.3 Convergence and Correctness
By making use of results from the stochastic approximation and
RL literature we provide an asymptotic convergence guarantee to
locally or globally optimal joint policies with respect to multiple
LTL specifications, depending on whether agents use local or global
policies respectively. We assume that the following conditions hold:

(1) 𝑆 and 𝐴 are finite, and all reward functions are bounded.
(2) The Markov chain induced by any 𝜃 is irreducible over 𝑆⊗ .
(3) 𝜋𝑖 (𝑎𝑖 |𝑠⊗ ;𝜃𝑖 ) is continuously differentiable ∀𝑖, 𝑠⊗, 𝑎𝑖
(4) Let Φ be the |𝑆⊗ | × 𝑐 matrix with rows 𝜙 (𝑠⊗). Then Φ has

full rank, 𝑐 ≤ |𝑆 |, and �𝑤 ∈𝑊 such that Φ𝑤 = 1.
(5) E𝑡

[
𝐿𝑖
𝑉 𝑗 (𝑥𝑖∗𝑡 ;𝜃𝑡 , 𝜈

𝑗
∗)

]
≤ 𝑒 𝑗𝑎𝑝𝑝𝑟𝑜𝑥 , where 𝑒

𝑗
𝑎𝑝𝑝𝑟𝑜𝑥 is some con-

stant, thusE𝑡
[
𝐿𝑖
𝑉
(𝑥𝑖∗𝑡 ;𝜃𝑡 , 𝜈∗)

]
≤ 𝑒𝑎𝑝𝑝𝑟𝑜𝑥 B

∑
𝑗 𝑤 [ 𝑗]𝑒

𝑗
𝑎𝑝𝑝𝑟𝑜𝑥 .

(6) ∃𝜎 < ∞ s.t. log𝜋𝑖 (𝑎𝑖 |𝑠⊗ ;𝜃 ) is a 𝜎-smooth in 𝜃𝑖 ∀𝑖, 𝑠⊗, 𝑎𝑖 .
(7) The relative condition number is finite.
(8) 𝜋𝑖 (·|𝑠⊗ ;𝜃𝑖 ) is initialised as the uniform distribution ∀𝑖, 𝑠⊗ .

Conditions 1–4 are standard within the literature on the conver-
gence of actor critic algorithms [6, 26]. Conditions 5–8 are taken
from recent work on the convergence of natural policy gradient
methods by Agarwal et al. [1]. Of particular note is condition 5,
where 𝑒𝑎𝑝𝑝𝑟𝑜𝑥 = 0 when 𝜋𝑖 is a sufficiently rich class, such as an
over-parametrised neural network. We recall that if log𝜋𝑖 (𝑎𝑖 |𝑠⊗ ;𝜃 )
is a 𝜎-smooth function of 𝜃𝑖 then for any 𝜃𝑖1, 𝜃

𝑖
2 ∈ Θ

𝑖 we have:

∇𝜃𝑖 log𝜋𝑖 (𝑎 |𝑠⊗ ;𝜃𝑖1) − ∇𝜃𝑖 log𝜋𝑖 (𝑎 |𝑠⊗ ;𝜃𝑖2)




2 ≤ 𝛼


𝜃𝑖1 − 𝜃𝑖2

2 .

Regarding 6we define Σ𝜈 (𝜃𝑖 ) B E(𝑠⊗,𝑎)∼𝜈
[
𝜓 𝑖
𝜃𝑖
(𝑎𝑖𝑡 |𝑠

⊗
𝑡 )𝜓 𝑖𝜃𝑖 (𝑎

𝑖
𝑡 |𝑠
⊗
𝑡 )⊤

]
where 𝜈 is some state-action distribution. Then the average relative
condition number [1] is defined and bounded as follows for each

player 𝑖 and each specification 𝜑 𝑗 :

E

[
sup
𝑥𝑖

𝑥𝑖
⊤
Σ
𝜈
𝑗
∗
(𝜃𝑖𝑡 )𝑥𝑖

𝑥𝑖
⊤Σ𝜉 (𝜃𝑖𝑡 )𝑥𝑖

]
≤ 𝜅,

where 𝜉 is some initial state-action distribution and:

𝜈
𝑗
∗ B 𝜈

𝑗

𝜃,𝜉
(𝑠⊗, 𝑎) =

∑︁
(𝑠⊗0 ,𝑎0) ∈𝑆⊗×𝐴

𝜉 ⊗ (𝑠⊗0 , 𝑎0)
∑︁
𝜌

𝜃
Pr
𝐺𝐵

(𝜌 |𝑠⊗0 , 𝑎0)

·
[

1∑∞
𝑡=0 Γ

𝑗

0:𝑡

∞∑︁
𝑡=0

Γ
𝑗

0:𝑡 I
(
𝜌 [𝑡, 𝑡 + 0.5] = (𝑠⊗, 𝑎)

) ]
and 𝜌 [𝑡 + 0.5] refers to the action taken along the trajectory 𝜌 at
time 𝑡 . Due to space limitations we refer the interested reader to
the cited works above for further discussion of these conditions.

Our proof follows the recent work of Agarwal et al. [1]. We begin
with a variant of the well-known performance difference lemma
[25], using which we prove an analogue of the ‘no regret’ lemma
from Agarwal et al. which is in turn based on the mirror-descent
approach of Even-Dar et al. [14]. The proofs are similar to the
originals, and so we relegate them to the supplementary material.

Lemma 2. Suppose that 𝑉𝜃 (𝑠⊗) ≥ 𝑉𝜃 ′ (𝑠⊗) for some state 𝑠⊗ and

two policies 𝜋 and 𝜋 ′ parametrised by 𝜃 and 𝜃 ′ respectively. Then:

𝑉𝜃 (𝑠⊗)−𝑉𝜃 ′ (𝑠⊗) ≤
∑︁
𝑗

𝑤 [ 𝑗]
(
E𝜌

[ ∞∑︁
𝑡=0

Γ
𝑗

0:𝑡𝐴
𝑗

𝜃 ′
(𝑠⊗𝑡 , 𝑎𝑡 )

��� 𝐹 𝑗 (𝜌) = ∞] )
.

Lemma3. Consider a sequence of natural gradient updates {𝑥𝑖𝑡 }0≤𝑡 ≤𝑇
found by Almanac such that ∥𝑥𝑖𝑡 ∥2 ≤ 𝑋 for all 𝑡 . Let us write

𝜄0:𝑇 =
∑𝑇
𝑡=0 𝜄𝑡 , and recall that 𝐹 𝑗 (𝜌) is the number of times a path

𝜌 in 𝐺𝐵 passes through the accepting set 𝐹 𝑗 of automaton 𝐵 𝑗
. Let us

write E𝜌∗ instead of E𝜌∼Pr𝜃∗
𝐺𝐵
( · |𝑠⊗),𝑠⊗∼𝜁 ⊗ and define 𝑒

𝑗
𝑡 by:

𝑒
𝑗
𝑡 B E𝜌∗

[ ∞∑︁
𝜏=0

Γ
𝑗

0:𝜏

(
𝐴
𝑗

𝜃𝑡
(𝑠⊗𝜏 , 𝑎𝜏 ) −𝜓 𝑖𝜃𝑖𝑡

(𝑎𝑖𝜏 |𝑠⊗𝜏 )⊤𝑥𝑖𝑡
) ��� 𝐹 𝑗 (𝜌) = ∞]

,

where 𝜏 indexes 𝜌 , i.e., 𝜌 [𝜏] = 𝑠⊗𝜏 . Then we have:

𝑉𝜃∗ (𝑠
⊗) − lim

𝑇→∞
E𝑡∼𝜄𝑇

[
𝑉𝜃𝑡 (𝑠

⊗)
]
= lim
𝑇→∞

E𝑡∼𝜄𝑇
[∑︁

𝑗

𝑤 [ 𝑗]𝑒 𝑗𝑡
]
,

where we define the distribution 𝜄𝑇 over 𝑡 with 𝜄𝑇 (𝑡) B 𝜄𝑡
𝜄0:𝑇

.

Finally, we use these results to prove that Almanac converges
to either locally or globally optimal joint policies (i.e., either an SPE
or a team-optimal SPE in the original MG) depending on whether
agents use local or global policy parameters. By local policy param-
eters we mean that the parameters 𝜃𝑖 stored and updated by agent 𝑖
only define 𝜋𝑖 , and thus 𝜋 (𝑎 |𝑠⊗ ;𝜃 ) = ∏

𝑖 𝜋
𝑖 (𝑎𝑖 |𝑠⊗ ;𝜃𝑖 ) is limited in

its representational power due to its factorisation. If, instead, agents
share a random seed and each 𝜃𝑖 = 𝜃 is sufficient to parametrise
the whole joint policy 𝜋 (hence global) then at each timestep every
agent 𝑖 can sample the same full joint action 𝑎 = (𝑎1, . . . , 𝑎𝑛) and
simply perform its own action 𝑎𝑖 . As rewards are shared between
agents then this means that updates to each agent’s version of 𝑣 ,
𝑢, and 𝑥𝑖 will also be identical, and therefore so too will updates
to 𝜃𝑖 = 𝜃 . Though more expensive in terms of computation and
memory, the use of global parameters guarantees convergence to
the globally optimal joint policy.
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Theorem 1. Given an MG 𝐺 and LTL objectives {𝜑 𝑗 }1≤ 𝑗≤𝑚 (each

equivalent to an LDBA 𝐵 𝑗
), let 𝐺𝐵 = 𝐺 ⊗ 𝐵1 ⊗ · · · ⊗ 𝐵𝑚 be the

resulting product MG with newly defined reward functions 𝑅
𝑗
⊗ and

state-dependent discount functions Γ 𝑗 . Assume that𝛾𝑉 satisfies Propo-

sition 1, that the learning rates 𝛼, 𝛽𝑉 , 𝛽𝑈 , 𝜂, 𝜄 are as in (9) and that

conditions 1–8 hold. Then if each agent 𝑖 uses local (global) parame-

ters 𝜃𝑖 with local policy 𝜋𝑖
𝜃𝑖

(global policy 𝜋𝑖
𝜃𝑖

= 𝜋𝜃 ) then as𝑇 →∞,
Almanac converges to within

lim
𝑇→∞

E𝑡∼𝜄𝑇


∑︁
𝑗

𝑤 [ 𝑗]
√︃
𝑒
𝑗
𝑎𝑝𝑝𝑟𝑜𝑥

𝑀 𝑗

(1 − 𝛾𝑉 )𝑃 𝑗


of a local (global) optimum of

∑
𝑗 𝑤 [ 𝑗] Pr𝜋

𝐺
(𝑠 |= 𝜑 𝑗 ), where 𝑃 𝑗 and

𝑀 𝑗
are constants.

Proof (Sketch). The proof proceeds via a multi-timescale sto-
chastic approximation analysis and is asymptotic in nature [7]. We
consider convergence of the critics, natural gradients, and actor
in three steps, dividing our attention between the local and global
settings, where required. Step 1. The convergence proof for the
critics follows that of Tsitsiklis and Van Roy [54]. The hasty critic
recursion is simply the classic linear semi-gradient temporal dif-
ference algorithm [49] which is known to converge to the unique
TD fixed point with probability 1. A similar argument can be made
for the patient critic. By waiting to update 𝑣 𝑗 until seeing a reward,
we ensure that a discount is applied and thus that the patient critic
recursion forms a contraction. The proof follows immediately from
previous work [54], but using a 𝑘-step version of the relevant Bell-
man equation. Step 2.Due to the learning rates chosen according to
(9) we may consider the more slowly updated parameters fixed for
the purposes of analysing the convergence of more quickly updated
parameters [7]. As the critic updates fastest we may consider it
converged, and since the policy is only updated in the outer loop
then it is fixed with respect to the natural gradient and Lagrange
multiplier updates. We show that these updates form unbiased esti-
mates of the relevant gradients and thus discrete approximations
of the following ODEs:

¤𝑥𝑖𝑡 = Ω𝑥𝑖
[
− ∇𝑥𝑖𝐿𝑖𝑉 (𝑥

𝑖 ;𝜃, 𝜈)
]

¤𝑥𝑖𝑡 = Ω𝑥𝑖

[
− ∇𝑥𝑖

(
𝐿𝑖𝑈 (𝑥

𝑖 ;𝜃, 𝜇) + 𝜆𝑖
(
𝐿𝑖𝑉 (𝑥

𝑖 ;𝜃, 𝜈) − 𝑙𝑖
) ) ]
,

¤𝜆𝑖𝜏 = Ω𝜆𝑖

[
∇𝜆𝑖

(
𝐿𝑖𝑈 (𝑥

𝑖 (𝜆𝑖𝜏 );𝜃, 𝜇) + 𝜆𝑖
[
𝐿𝑖𝑉 (𝑥

𝑖 (𝜆𝑖𝜏 );𝜃, 𝜈) − 𝑙𝑖
) ) ]
,

on timescales 𝛽𝑉 , 𝛽𝑈 , and 𝜂, respectively. Due to the convexity of
𝐿𝑖
𝑉
and 𝐿𝑖

𝑈
it can be shown that the recursions above lexicographi-

cally miminise 𝐿𝑖
𝑉
and then 𝐿𝑖

𝑈
and hence that the gradient 𝑥𝑖∗ satis-

fies (3) [44]. Step 3. Finally we use Lemma 3 and bound each term

𝑒
𝑗
𝑡 by

√︃
𝑒
𝑗
𝑎𝑝𝑝𝑟𝑜𝑥

𝑀 𝑗

(1−𝛾𝑉 )𝑃 𝑗 where𝑀 𝑗 and 𝑃 𝑗 are constants. In partic-

ular, we have:𝑀 𝑗 B max𝑘 E𝜌𝜁∗
[
𝑀

𝑗
𝜌 (𝑘)

�� 𝐹 𝑗 (𝜌) = ∞]
where𝑀 𝑗

𝜌 (𝑘)
is the number of steps along trajectory 𝜌 between the 𝑘th reward
and preceding reward, and 𝑃 𝑗 B min

( ∑
𝜌 Pr𝜃∗

𝐺𝐵
I(𝐹 𝑗 (𝜌) = ∞), 1

)
.

The proof structure follows that of Agarwal et al. [1] with minor
variations to handle our use of multiple agents and multiple state-
dependent discount rates. □

21 22 23 24 25 26 27 28 29 210

1 0.13 0.20 0.16 0.21 0.14 0.13 0.17 0.22 0.19 –
2 0.54 0.26 0.19 0.12 0.30 0.19 0.36 0.29 0.38 –
3 0.48 0.23 0.25 0.10 0.20 0.15 0.10 0.31 – –
4 0.44 0.21 0.02 0.16 0.22 0.26 0.23 0.34 – –
5 0.17 0.30 0.10 0.13 0.22 0.06 0.30 – – –

1 0.14 0.07 0.11 0.17 0.18 0.09 0.24 0.14 0.25 –
2 0.15 0.07 0.15 0.34 0.20 0.15 0.17 0.06 – –
3 0.15 0.14 0.12 0.25 0.23 0.52 0.28 – – –
4 0.12 0.25 0.23 0.23 0.22 – – – – –
5 0.23 0.21 0.28 0.45 0.01 – – – – –

Table 1: Average errors across a number of states (columns),
agents (rows), and specifications (top and bottom).

5 EXPERIMENTS
Evaluating our proposed algorithm is non-trivial for several reasons.
The first is its novelty; it is designed specifically to satisfy the
non-Markovian, infinite-horizon specifications that other MARL
algorithms are unable to learn, making a direct comparison less
meaningful. The second is that the satisfaction of the specifications
we wish to evaluate our algorithm against cannot be estimated
simply from samples. For example,𝜓 may be true at every state in
a set of samples despite G𝜓 being false with probability 1. Using a
probabilistic model-checker instead raises a third and final difficulty,
as even state-of-the-art tools are unable to handle the size of games
or number of specifications that Almanac is applicable to.

Despite this, we provide an initial set of results in which we
benchmark an implementation2 of our algorithm against ground-
truth models exported to PRISM, a probabilistic model-checker [27].
These results serve to demonstrate Almanac’s empirical conver-
gence properties, and how this performance varies as a function
of the size of the state space, the number of actors, and the num-
ber of specifications (though, unfortunately, PRISM only supports
multi-objective synthesis with two specifications). For each of these
combinations, we randomly generated tenMGs and sample the spec-
ifications and weights. We then ran our algorithm for 5000 episodes
and exported the resulting policy, game structure, and specifications
to PRISM. The differences between the weighted sum of satisfaction
probabilities resulting from Almanac and the ground-truth optimal
quantities are displayed in Table 1. We ran PRISM with a maximum
of 16GB of memory, 100,000 value iteration steps, and twelve hours
of computation, but for some combinations this was insufficient.
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