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ABSTRACT
We advocate the development of a discipline of interacting with and

extracting information from models, both mathematical (e.g. game-

theoretic ones) and computational (e.g. agent-based models). We

outline some directions for the development of a such a discipline:

- the development of logical frameworks for the systematic formal

specification of stylized facts and social mechanisms in (mathe-

matical and computational) social science. Such frameworks would

bring to attention new issues, such as phase transitions, i.e. dramati-

cal changes in the validity of the stylized facts beyond some critical

values in parameter space. We argue that such statements are useful

for those logical frameworks describing properties of ABM.

- the adaptation of tools from the theory of reactive systems (such

as bisimulation) to obtain practically relevant notions of two sys-

tems "having the same behavior".

- the systematic development of an adversarial theory of model per-

turbations, that investigates the robustness of conclusions derived

from models of social behavior to variations in several features

of the social dynamics. These may include: activation order, the

underlying social network, individual agent behavior.
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1 INTRODUCTION
Despite the recent surge in experimental studies of human behavior

induced by the availability of (mostly online) social data, a large

percentage of work in the mathematical and computational social

sciences is still devoted to theorizing, that is buildingmodels of social
phenomena, rather than analyzing social data. Whether mathemati-

cal or computational agent-based ones, a dizzying variety of models

is proposed and analyzed in the scientific literature.

And yet, controversy (if not outright dissatisfaction) about the

status and truemeaning of suchmodels, and of themodeling process

itself, is prevalent throughout the social sciences. An example is
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the vivid debate on the role of (mathematical) models in economics

[102]. Economic models can be interpreted as "credible worlds"

[101], analogies [46], (thought) experiments [72], parables/fables

[16], intermediate byproducts of robustness analysis [65], or ludic

devices similar to children’s toys [105]. In any case, the discussion

about the robustness of scientific models, currently taking place in

the Philosophy of Science literature [109], is highly relevant.

A similar debate takes place in the social simulation literature.

The critical research problem is that of verifying and validating
agent-based models (ABM) [4, 10] (in short, the V & V problem).

Theoretical frameworks have been proposed that attempt to deal

with this issue, such as the generative approach to social simulations
[34, 35], model calibration, docking/alignment [5, 32], replication
[112], model-to-model analysis [51], etc. But there is no consensus

on what verification and validation mean (see also [13, 66, 78, 113]).

There are multiple reasons that make the V&V problem impor-

tant and difficult. A first reason is scale: whereas Schelling [91]

could conceive his celebrated segregation model using pen and

paper only, recent simulations models and projects aim to reach

global dimensions [6, 7, 12, 36, 106]. A second reason has to deal

with the potential social consequences: social simulations increas-

ingly serve as consultants to (and implicitly affect) public policy

[73, 74, 80]. A dramatic illustration of this fact in the context of

the global pandemic of 2020 has been the controversy around the

recommendations of the Imperial College epidemiological model

[40]. This has led to significant discussion in the social simulation

community, illustrated e.g. by the programmatic article [98] and the

subsequent comments (e.g. [18, 24, 30, 31, 48, 99]). A final reason

that makes the V&V question difficult is the very nature of simula-

tion models, incomplete abstractions of reality, subject to complex

behavior [88] that often involves multiple types of emergence [45].

It has been noted [70] that the proposals put forward in the ABM

literature often have an ad-hoc nature, and that a more systematic

theory is needed. The goal of this paper is to advocate the use of logic
and formal methods as useful tools for the systematic development
of such theories. We discuss a number of ways in which this may

happen, and outline several research challenges associated with

our proposals. The distinctive feature of the kind of frameworks we

advocate is that they require a highly unusual combination
of two areas with very different languages: logic and formal
methods [20], on one hand, sociological theory [21], on the
other. Importantly, the logical frameworks we envision should

actively seek to avoid becoming what Edmonds [29] called the

“philosophical approach” to logic. Instead, they should attempt to

formalize genuine aspects of social theory (e.g. organizational logic,
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see e.g. [27, 49]), help with addressing issues related to V&V, and

serve as "middleware" to the agent-based simulations, helping in

advancing conclusions that are robust and believable.

2 FORMAL TOOLS FOR SOCIAL THEORY
Is there any role for logical formalizations in describing and analyz-

ing social dynamics, in ABM in particular ? This is a question that

seems to have been asked so many times, with so many different

interpretations in mind that a complete survey of this literature

would not be particularly enlightening. Early on, Elster [33] argued

that “logical theory can be applied not only in the formalization of

knowledge already obtained by other means, but that logic can enter

in the creative and constructive phase of scientific work” (op.cit. pp.

1). He explored the role of quantified modal logic in describing social
reality, with a particular focus towards developing his method as

an alternative to Hegelian dialectics. Closer to present Hannan et al.

[54] (see also [84, 85]) proposed a rational reconstruction of social

theory (organization science in particular) using techniques based

on first-order predicate logic. Logical methods are, of course, well-

established in economics. To give just one example, the so-called

interactive epistemology program [3] is by now a classical part of

theoretical economics, and a key ingredient of a recent proposal

for a common foundation of all social sciences [47].

The use of logic-based methods would certainly not be contro-
versial to a large part of the AAMAS audience: In fact, one could

justifiably ask what is novel in such a proposal. After all, formal

methods based on temporal logic are a particularly significant suc-

cess story - techniques such as model checking [20] and runtime
verification [8] lie behind eliminating errors in designing computer

circuits, in writing software for technological artifacts (from re-

mote controls and mobile devices to airplanes) or the Mars Rover

[15]. Logical methods are widely used in in the area of multiagent

systems [95, 114, 115]. Model checking techniques are useful in the

verification of software agents [68, 69, 116] and auctions [104].

Yet, the above optimism seems not to be shared by the
practicing social simulation community. The mentioned ad-

vances in software agents do not necessarily translate into corre-

sponding advances on simulating social agents [28]. The techniques
developed in the former literature rely too little on existing sociolog-

ical knowledge, and address to an insufficient degree the concerns

of social scientists. Unsurprisingly, they have been criticized (Ed-

monds [29], see also [26, 37, 44]) as "not useful given the state of

MAS" and "not [...] useful in either understanding or building MAS".

We believe that logical methods can indeed help in increasing the

reliability of conclusions derived from social simulations. However,

to be useful, such logics have to be tailored to the needs of the
social scientist, not defined as an object of intrinsic mathe-
matical interest, and have properties that make them useful:

- the logics to be developed should be expressive enough to help

formalize not only game-theoretic aspects of social theories (see e.g.

[81, 83, 86, 107]) but also a variety of aspects of sociological theory
[21, 56]. We give in the sequel two examples of concepts that we

would like to see formalized: stylized facts and social mechanisms.
- the study of logical frameworks we propose should be driven
by considerations related to their implementation in (and
applications to) ABM. Their primary goal should not be that of

enabling deductive reasoning about social phenomena. Instead, they

should be used to formally specify the observed social facts, in a

way that enables the construction of automated "monitors" serving as
"middleware" between the social simulation and the decision support
level by recognizing (and signaling) the emergence of the given fact
in a given simulation run. Our proposal is naturally related to the

recent call for the development of live simulations [103], i.e. contin-

uously feeding a simulation model with real-world data. In contrast,

however, our proposal is related to (automatically) extracting data
from the simulation, and using it to understand in a more systematic

fashion the unraveling of the social dynamics.

- it is not that important whether deciding implication in
the new logics is tractable (we can just run the simulation to

see if a certain fact becomes true). However the model checking
problem (given a description of the state of the world, is a stylized

fact true in it ?) should have efficient algorithms (see also [52]).

- one problem of significant importance is the monitoring question
for a logical formula 𝜙 : given a sequence of "states of the world"𝑊𝑖

(corresponding to a simulation run) and a statement 𝜙 , how do we

efficiently detect that 𝜙 becomes true at some point in (𝑊𝑖 ) ? This
is a question pertaining to runtime verification [9], so we should

use the inspiration from this literature but, given the rooting of

the logical frameworks in social theory, it is likely that a simple

adaptation of existing logics will not be enough.

- several new research topics, motivated by our vision of studying

"robust" stylized facts observed from simulation runs, may gain

preeminence. We give an example: the study of "continuity" prop-

erties of parameterized families of logical statements, as we vary

the parameters of a given model. The opposite scenario, that of

emergence of critical points (phase transitions) in the properties of

social systems (and in their logical description) is also interesting.

2.1 Parameterized logics of stylized facts:
"continuous statements" and "phase
transitions"

A first application domain for the logics we envision is the formal

specification of stylized facts. There is no agreement what a styl-

ized fact is (however, see [75], as well as [41] for some relevant

philosophical work). To advance a working definition, according

to the former paper, at least in microeconomics, ”stylized facts

are currently understood as broad, but robust enough statistical

properties pertaining to a certain economic phenomenon".

The requirement that stylized facts are robust is crucial in de-

ciding what is and what is not a useful stylized fact: consider e.g.

the following trivial baseline scenario (only important as a peda-

gogical example): Each of 𝑛 agents may be in one of two states,

𝐴 and 𝐵. Each agent prefers state 𝐴 to 𝐵. Agents are scheduled at

random; when scheduled, each agent changes its state according

to the best-response dynamics, moving to the state that gives it the

highest utility. Hence, when scheduled they will turn to state 𝐴

(and subsequently stay that way, even if scheduled again).

An obvious conclusion about the dynamics, and a candidate

stylized fact, could be the following: eventually every agent will
play strategy 𝐴. This is not, however, a robust stylized fact. This

can be seen by parameterizing the baseline model and modifying

agent behavior: we will assume a single parameter 𝜖 ≥ 0. When
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scheduled, an agent will choose𝐴 with probability 1−𝜖 and 𝐵 with

probability 𝜖 . The baseline model corresponds to the case 𝜖 = 0.

It is easy to see that the proposed stylized fact ceases to be

true for 𝜖 > 0, i.e. as soon as we move away from the baseline

model. In other words, the conclusion that every agent eventually
holds state 𝐴 is not robust to even the slightest variation in agents’
choice probability, hence it cannot be considered as a (robust)
stylized fact. A more robust formulation is one that claims that

agents’ state converges to a stationary distribution with each agent

independently being in 𝐴 w.p. 1 − 𝜖 and 𝐵 w.p. 𝜖 . Note that:

- to formalize the robust version of this stylized fact we don’t

deal anymore with individual statements, but with parameterized
families of logical statements. They encode a (single) social fact,

expressed slightly differently across variations of the model.

- in a very well-defined intuitive sense the baseline fact (all
agents eventually adopt state 𝐴) is "the limit", as 𝜖 → 0 of
the corresponding parameterized statements for 𝜖 > 0. Exist-
ing logical frameworks cannot, however, deal with such examples:

while probabilistic/continuous logical frameworks (and their model

checking) exist and might be useful in ABM [67, 87], and para-

metricity is important in such settings [2], at the metalevel logic
is still largely a discrete framework, with no concept of "distance

between statements", or "continuous limits of statements"

- in other scenarios the continuous behavior of stylized facts is

no longer true. Instead, social systems display phase transitions:
abrupt changes in the validity of certain stylized facts beyond some

critical value of a given parameter. While the study of phase transi-

tions is a well established topic in Complex Systems and A.I. [19, 92],

with phase transitions apearing even in settings relevant to model

checking [77], the logical study of such "phase transitions" is still a

relatively underdeveloped area. An exception is the topic of "zero-

one laws" in the theory of random graphs [96]. There are many

social phenomena where such concepts seem relevant. An example

is the discussion about tipping points. Whether one talks about

natural or social phenomena [17] there is a considerable interest

in anticipating such tipping points [89]. In the theory of random

graphs the characterization of monotone properties that have "phase
transitions" is fairly well understood: such properties have a "global"

nature, depending crucially on the presence of most of the edges of

the network [42]. In contrast "local properties", e.g. the existence of

a fixed subgraph, lack a phase transition [1]. The nature of logical

theories in which one formulates the stylized facts also impacts the

detection of tipping points: for instance, the emergence of the giant

component in a random graph cannot be "sensed" by first-order

logic [93]. Finally, similar results exist in scenarios with a dynamical
flavor: start with an empty graph, add random edges, measuring

the time when a certain graph property appears. It may be possible

to extend such results to settings relevant to ABM:

Challenge 1. Develop a theory of logical frameworks that admit
"parameterized statements", and study "phase transitions" in such
statements. Ideally this study would yield algorithmic methods to
anticipate "tipping points" in agent-based social simulations. Having
suchmethods would operationalize the discussion about the robustness
of stylized facts: to argue whether a given stylized fact holds in reality
one could ask whether the parameters of the real world lie in the region
of the parameter space where the stylized fact varies continuously.

2.2 Formalizing social mechanisms
It is not only (stylized) facts that are in need of a logical formal-

ization. After all, in a social simulation we are not interested in

facts only, but in illuminating the causal reasons that lead to their

emergence. Often (e.g. in the area of Analytical Sociology [56]) such

causal explanations involve social mechanisms [25, 55, 57].
There is little consensus what a social mechanism is: Hedström

([55] pp. 25) compiles a list of seven definitions (due to Bunge,

Craver, Elster, Hedström and Swedberg, Little and Stinchcombe).

Of these seven, the most useful is due to Machamer et al. [71] (also

[22, 23]). As paraphrased in [55] “mechanisms can be said to consist
of entities (with their properties) and the activities that these entities
engage in, either by themselves or in concert with other entities. These
activities bring about change [...]. A social mechanism, as here defined,
describes a constellation of entities and activities that are organized
such that they regularly bring about a certain type of outcome. We
explain a social phenomenon by referring to the social mechanism by
which such phenomena are regularly brought about”

Social mechanisms are complemented by other approaches: Hed-

ström lists covering-law explanations [58] and statistical explana-

tions. These alternatives are not mutually exclusive: social mech-

anisms can, e.g., be sometimes inferred from statistical considera-

tions; they can have themselves stochastic/statistical ingredients.

In any case, whatever social mechanisms are, they seem to have a

complex structure: they can appear in families [90], can concatenate
[43] and be hierarchically nested [22]. It seems, therefore, that:

- Verifying and validating social models (including simulation mod-

els) needs to address issues pertaining to explanation and causality.

Statistical testing guidelines pertaining to replication, such as those

discussed in [4], or generative explanations such as those proposed

in [34, 35] are necessary but not sufficient. On the other hand so-

cial mechanisms, being in one acception “interpretations in term

of individual behavior of a model that abstractly reproduces the

phenomenon that needs explaining” [90] naturally complete and

complement these methods (see also [53]).

- The role of social mechanisms in validating social models could

be informally described as follows: simulations should reproduce

known social mechanisms that are part of the expert knowledge in

the area of concern and, of course, perhaps suggest new ones.

- In accord with [97], “formalizing models is a prerequisite to il-

luminate social mechanisms” and may help in making this notion

precise. As a consequence we propose the following

Challenge 2. Give logical formalizations of the various notions
of social mechanism in Analytical Sociology, and use these formaliza-
tions for the automatic recognition and inference of concrete social
mechanisms in ABM runs.

2.3 Towards a systematic theory of adversarial
model perturbations

It is clear by now that some form of robustness analysis [109] is
crucial to the verification and validation of social models. The

concept has been heavily discussed in the Philosophy of Science

literature, and can be applied to both mathematical models (e.g. the

robust Volterra principle [111]) and to ABM (see [110]).

In contrast there is relatively little work on approaches to ro-

bustness with a practical potential: it is known, for instance, that
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scheduling order can severely impact the conclusions derived from

game-theoretic and relatedmodels [60, 108]: indeed, a rich literature

on this topic has developed in the cellular automata community (e.g.

[14, 38, 39]). A more general direction, the adversarial scheduling
approach put forward in [64] (see also [61, 62, 94]) advocates the

study of mathematical and computational models under generalized

models of agent activation, as a way to increase the robustness of

conclusions derived from these models. Paraphrasing [64], adver-

sarial scheduling is specified by the following principles:

- Start with a “base case” stylized fact 𝑃 , valid under a particular
(scheduling) model, often random. Then attempt to "break 𝑃" by
creating adversarial schedulers under which 𝑃 no longer holds true.

- Analyzing perhaps these examples, identify structural properties
of the scheduling order that causally impact the validity of 𝑃 . Use
these insights to generalize 𝑃 "from below" by identifying classes of
schedulers (including the random one) under which 𝑃 is valid.

- In the process we may need to reformulate the original state-
ment in a way that makes it hold under larger classes of
schedulers, thus making it more robust.
As described above, adversarial scheduling is obviously impor-

tant in increasing the robustness of conclusions drawn from math-

ematical models: But could something like this be systematically

implemented, and be useful for (logic-based specifications of) so-

cial simulations as well ? We believe that the answer is positive,

and are going to give a pedagogical example, using the baseline

scenario from Section 2.1. Indeed, one can logically describe the

candidate stylized fact in temporal logic as (∀𝑖)♢[𝑆𝑡𝑎𝑡𝑒 (𝑖) = 𝐴]
("every agent will eventually hold state𝐴"). Is such a statement true

under adversarial scheduling ? The answer is clearly no: informally,

an adversarial scheduler which never schedules a particular agent

𝑥 whose state is 𝐵 will preclude the system from reaching the state

"all 𝐴". In other words, to ensure that the baseline stylized fact

remains true under adversarial scheduling we need to require the

scheduler to be fair. The random scheduler is fair (at least with

probability 1 − 𝑜 (1), as the number of steps tends to ∞).

Could have we reached the above conclusion about the necessity

of fairness in scheduling in a logical framework ? The answer is

yes. To do so we need to consider a simple logical description of

the the effect axioms corresponding to the baseline dynamics:

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 (𝑖) → □[𝑆𝑡𝑎𝑡𝑒 (𝑖) = 𝐴]

("if an agent 𝑖 is scheduled then globally (fromnow on) the agentwill

have state 𝐴"; we formulated our axiom this way in order to avoid

having to deal in this pedagogical example with the frame problem).

Can we derive the statement (∀𝑖)♢[𝑆𝑡𝑎𝑡𝑒 (𝑖) = 𝐴], expressing the
baseline stylized fact from the action axiom described above ? The

answer is negative: to do so we would also need (∀𝑖)♢𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 (𝑖)
("eventually every agent is scheduled"). However, backward chain-
ing [100] applied to this example would identify the state-
ment expressing scheduler fairness as a necessary condition
for the validity of the stylized fact. This is evidence that adversarial

scheduling might be feasible even for ABM, thus we propose the

following:

Challenge 3. Extend the theory of adversarial scheduling to more
central models of social dynamics, including ABM.

Scheduling is not the only aspect of a mathematical or compu-

tational model which could be studied from an adversarial per-

spective. Many other aspects are susceptible of a similar treatment.

For instance, in many game-theoretic and agent-based models the

underlying dynamics takes place on a social network. One may

vary this social network and attempt to understand the robustness

of the baseline result to changes in the social network. The same

can be done with (adversarial perturbations of) initial conditions.

Some results in this direction have recently appeared [118].

Challenge 4. Develop a theory of adversarial perturbation of
social networks and initial conditions for models of social dynamics.
Extend it and apply it to ABM.

2.4 When are two models ”the same" ?
The verification and validation problem is related to the the question

in the title of this section: when can we really consider two such

models, perhaps with different ontologies (e.g. system dynamics

and ABM) as "equivalent" ? Again, there is little agreement what a

right answer may be. [32] argue that it is not enough to "eyeball" the

outputs of the two models. One of more interesting attempts at an

answer is [110] (Chapter 8), where model equivalence is formalized

as a "weighted feature-matching" problem.

The theory of reactive systems [76] provides an elegant mathe-

matical notion of system equivalence: in this setting, the equiva-

lence of two reactive systems is formalized by the notion of bisimu-
lation. A seminal theorem due to Hennesy and Milner [59] states

that two bisimilar systems satisfy the same statements in a certain

modal logic 𝑀 , and conversely. That is, bisimilar systems satisfy

the same set of "stylized facts" formalizable in 𝑀 . As impressive

as this result is, there is a wide gulf between such theory and the

realities of ABM. There are multiple reasons that bisimulation is

inadequate for social simulation. The most important one is that

bisimulation is too "microscopic": it requires the fact that every
single move of one of the system is enabled in the corresponding

state of the second system. In contrast, cross-validation of ABM

is coarser and often qualitative [79]. In an ABM we don’t mean to
reproduce the actions of every agents: it’s only macro patterns that
we care about.

There is some hope, though, that such methods are relevant to

the study of ABM after all: recent results [50, 82, 117], some even

from AAMAS [11] have related bisimulation to game-theoretic

scenarios. It is thus reasonable to propose

Challenge 5. Develop a theory of (bi)simulation of (social) sys-
tems aligned with (an relevant to) the practice of V& V in ABM.

3 CONCLUSION
We believe that logical formalization plays an important rule in

assessing (and increasing) the reliability of results in social simu-

lations. We have highlighted a couple of research directions that

(if successful) would orient and ground the current discussion on

model validity in (computational) social sciences. We don’t believe

that the directions we outlined are going to completely solve this

problem. But, besides the obvious intellectual interest of develop-

ing such concepts, they may contribute to turning simulation and

modeling in social settings from largely being an art (which still is

now) to an engineering discipline.
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