
Action Advising with Advice Imitation
in Deep Reinforcement Learning

Ercüment İlhan
School of Electronic Engineering and

Computer Science
Queen Mary University of London

London, UK
e.ilhan@qmul.ac.uk

Jeremy Gow
School of Electronic Engineering and

Computer Science
Queen Mary University of London

London, UK
jeremy.gow@qmul.ac.uk

Diego Perez-Liebana
School of Electronic Engineering and

Computer Science
Queen Mary University of London

London, UK
diego.perez@qmul.ac.uk

ABSTRACT
Action advising is a peer-to-peer knowledge exchange technique
built on the teacher-student paradigm to alleviate the sample ineffi-
ciency problem in deep reinforcement learning. Recently proposed
student-initiated approaches have obtained promising results. How-
ever, due to being in the early stages of development, these also have
some substantial shortcomings. One of the abilities that are absent
in the current methods is further utilising advice by reusing, which
is especially crucial in the practical settings considering the budget
constraints in peer-to-peer interactions. In this study, we present an
approach to enable the student agent to imitate previously acquired
advice to reuse them directly in its exploration policy, without any
interventions in the learning mechanism itself. In particular, we
employ a behavioural cloning module to imitate the teacher pol-
icy and use dropout regularisation to have a notion of epistemic
uncertainty to keep track of which state-advice pairs are actually
collected. As the results of experiments we conducted in three Atari
games show, advice reusing via imitation is indeed a feasible option
in deep RL and our approach can successfully achieve this while
significantly improving the learning performance, even when it is
paired with a simple early advising heuristic.

KEYWORDS
Deep Reinforcement Learning; Deep Q-Networks; Action Advising

ACM Reference Format:
Ercüment İlhan, Jeremy Gow, and Diego Perez-Liebana. 2021. Action Advis-
ing with Advice Imitation in Deep Reinforcement Learning. In Proc. of the
20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Deep reinforcement learning (RL) has made it possible to build end-
to-end learning agents without having to handcraft task-specific
features, as it is showcased in various challenging domains such
as StarCraft II [29] and DotA II [3] in the recent years. These feats
make deep RL a great candidate to be employed in complex real-
world sequential decision-making problems. However, achieving
the reported levels of performance usually requires millions of envi-
ronment interactions due to the deep learning induced complexity
as well as the exploration challenges in RL itself. Even though this

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

may seem negligible in most of the experimental domains consid-
ering the immense amount of computing power available to be
utilised through parallel simulations, it usually poses a problem
in the real-world scenarios due to the interaction costs and safety
concerns. Furthermore, since RL is an inherently online learning
approach, it is desired for the agents to be continually learning
after they have been deployed too. For these reasons, it is crucial to
improve sample efficiency in deep RL, which is actively investigated
in several lines of research. One promising approach to tackle this
setback is leveraging some legacy knowledge acquired from other
entities such as agents, programs or humans.

Peer-to-peer knowledge transfer in deep RL has been investi-
gated in various forms to this date [9]. A popular approach, namely
Learning from Demonstrations (LfD), focuses on incorporating a
previously recorded dataset in the learning process. By taking some
dataset generated by another competent [15] or imperfect [13]
peer, the learning agent tries to make the most out of the available
information through off-policy learning and extra loss terms. An-
other promising, yet under-investigated class of techniques, namely
Action Advising [27], aims to take advantage of a competent peer
interactively when there is no pre-recorded data. The learning agent
acquires advice in the form of actions from a teacher for a limited
number of times defined by a budget that resembles the practical
limitations of communication and attention. This approach is espe-
cially beneficial in the situations where there is no way to access
the actual task before the online training, data collection is costly
or the relevant data that will do the most contribution in the learn-
ing can not be determined. Action advising methods in deep RL
today are quite limited and therefore have several shortcomings.
An important one of these as we address in this study is not being
able to make further use of the advice beyond its collection.

The scope of the action advising problem is generally limited
to answering “when to ask for advice?”. It is commonly not of any
interest how the collected advice is utilised by the student agent’s
task-level RL algorithm, e.g., how it is stored, replayed, discarded;
especially since these are dealt with by the studies that focus on off-
policy experience replay dynamics in general [10, 23], or the specific
case of having demonstration data as in LfD. However, even without
interfering with the student’s task-level learning mechanism, it is
still possible to make more of advice through reuse. Current action
advising algorithms in deep RL have no way of telling if they have
asked for advice in a very similar or even identical state already
in the learning session. Thus, they do not record these in any way,
and usually end up requesting advice from the teacher redundantly.
In order to address this, we incorporate a separate neural network

Main Track AAMAS 2021, May 3-7, 2021, Online

629

to do behavioural cloning [22] on the samples (state-action pairs
which are equal to the state-advice pairs in the context of action
advising) collected from the teacher. This network then will be
able to serve as a state-conditional generative model that will let
us sample advice for any given observation. However, since this
model should also have a notion of distinguishing the recorded
states from the unrecorded ones to avoid producing false advice
for unfamiliar states, we also propose incorporating a well known
regularisation mechanism called Dropout [24] within this network
to serve as an epistemic uncertainty estimator [12] which will allow
the student to determinewhether the state is recorded by comparing
this estimation with a threshold.

Our contributions in this study are as follows: First, we show
that it is possible to generalise teacher advice across similar states
in deep RL with high accuracy. Second, we present a RL algorithm-
agnostic approach to memorise and imitate the collected advice
that is suitable with the deep RL settings. Finally, we demonstrate
that advice reuse via imitation provides significant boosts in the
learning performance in deep RL even when it is paired with a
simple baseline like early advising.

2 RELATEDWORK
The majority of action advising studies to date have been conducted
in classical RL settings. [27] was the first study to formalise action
advising within a budget constrained teacher-student framework.
Specifically, they studied the teacher-initiated scenario and came
up with several heuristics to distribute the advising budget to max-
imise the student’s learning performance, such as early advising
and importance advising. This work was then extended to introduce
several new state importance metrics [26]. In [33], action advising
problem was approached as a meta-RL problem itself. Instead of re-
lying on heuristics, the authors attempted to learn the optimal way
to distribute advising budget by using a measurement of the stu-
dent’s learning acceleration as the meta-level reward. Besides these
studies that only consider the teacher’s perspective, [1] explored
student-initiated and jointly-initiated variants considering the im-
practicality of requiring the teacher’s attention constantly. They
achieved results on-par with the previous work without requiring
the teacher full-time. [31] shed light in the theoretical aspects of
action advising problem by using a more general setting involv-
ing multiple teachers and demonstrated the effects of having good
or bad teachers. In [7], the authors adopted the teacher-student
framework in cooperative multi-agent RL where the agents learn
from scratch and hold no assumptions of their teacher roles and
expertise. By proposing state counting as a new heuristic in this
setting, they successfully accelerate team-wide learning of indepen-
dent learners. More recently, learning to teach concepts was further
investigated in [11] with a focus on the properties that make for
a good teacher. In this work, besides learning when to advise, the
teachers also learn what to advise. Similarly, [21] adopted the meta
RL approach, this time as a deep RL scale. They considered a team
of two agents that learn to cooperate from scratch in tabular multi-
agent tasks. [32] is one of the most recent studies conducted in
tabular settings. The idea of reusing the previously collected advice
in order to make the most out of a given small budget was studied.
By devising several heuristics to serve as reusing schedules, they

demonstrated promising results that outperform the algorithms
incapable of advice reusing.

The domain of deep RL is a fairly new area for action advising
where the primary choice is the student-initiated approaches. [6] is
one of the first studies to explore the idea of action advising in deep
RL. They combined the LfD paradigm [15] with interactive advice
exchange under the name of active learning from demonstrations to
collect demonstration data on-the-fly to be utilised via imitation
capable loss terms as used in [15]. Furthermore, they proposed us-
ing epistemic uncertainty estimations of the student agent’s model
to time this advice. Later, [18] was proposed as an extension of
[21]. This time, meta deep RL to address learning to teach idea was
applied in the problems that are deep RL in the task-level. Through
multiple centralised learning sessions, agents in a set of cooperative
multi-agent tasks were made to learn taking student and teacher
roles as needed in order to improve team-wide knowledge. To do so,
they adopted hierarchical reinforcement learning [20] to deal with
the meta-level credit assignment problem of the teacher actions. In
[16], the formal action advising framework was scaled up to deep
RL level for the first time. Similarly to [7], a team of agents in a
cooperative multi-agent scenario were made to exchange advice
by embracing teacher or student roles as needed. This was accom-
plished by using random network distillation (RND) [4] to replace
state counting with state novelty, hence introducing a new heuris-
tic that is applicable in non-linear function approximation domain.
Later on, [8] proposed the idea of uncertainty-based action advising
as in [6], though without employing any additional loss terms. To
access uncertainty estimations, they studied the case of student
agent with a multi-headed network architecture in particular. In a
more recent work [17], student-initiated scenario is further studied
to devise a more robust heuristic able to handle extended periods
of absence of teacher as well as having no requirements in the stu-
dent’s task-level architecture by completely decoupling the module
that is responsible for advice timing from the student’s model. Even
though this method also uses the state novelty heuristic proposed
in [16], they operated on the advised states directly rather than
every encountered state.

Clearly, none of the related work in deep RL addressed further
utilisation of collected advice, besides [6] which does it through
interferingwith the student’s learningmechanism (via a custom loss
function), unlike our approach. The study that is closest to the idea
we present in this paper is [32]; though, it is limited to the tabular
RL domains only. Such a setting makes it more straightforward for
the agent to precisely memorise the state-advice pairs in a look-up
table to be able to reuse anytime. Furthermore, the executed advice
usually has an instantaneous impact on the agent behaviour in the
case of tabular RL, which presents unique options to assess their
usefulness. Since these advantages are absent in deep RL, our work
deals with different challenges than those in [32].

3 BACKGROUND
3.1 Reinforcement Learning
Reinforcement Learning (RL) [25] is a trial-and-error learning par-
adigm that deals with sequential decision-making problems where
the environment dynamics are unknown. In RL, Markov Decision
Process (MDP) formalisation is used to model the environment

Main Track AAMAS 2021, May 3-7, 2021, Online

630

and the interactions within. According to this, an environment is
defined by a tuple ⟨S,A,R,T , 𝛾⟩ where S is the finite set of states,
A is the finite set of actions, R : S×A×S → R is the reward func-
tion, T : S ×A → Δ(S) defines the state transitions and 𝛾 ∈ [0, 1]
is the discount factor. The agent to interact within an environment
receives a state observation 𝑠𝑡 at each timestep 𝑡 , and executes an
action 𝑎𝑡 to advance to the next state 𝑠𝑡+1 while obtaining a reward
𝑟𝑡 . Actions of the agent are determined by its policy 𝜋 : 𝑆 → 𝐴, and
the agent’s objective is to construct a policy that maximises the
expected sum of discounted rewards in any timestep, which can be
formulated as

∑𝑇
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘 for a horizon of 𝑇 timesteps.

3.2 Deep Q-Networks
Deep Q-Network (DQN) [19] is a prominent RL algorithm that tries
to obtain the optimal policy in complex domains by employing
non-linear function approximation via neural networks to learn
mapping any given state into state-action values (𝑄 (𝑠, 𝑎)). Specifi-
cally, a neural network𝐺\ with randomly initialised weights \ is
trained over the course of learning to minimise the loss (𝑟𝑘+1 +
𝛾 max𝑎′ 𝑄\̄ (𝑠𝑘+1, 𝑎′) −𝑄\ (𝑠𝑘 , 𝑎))2 with batches of transitions that
are collected on-the-fly and stored in a component called replay
memory. Periodically using the samples from this memory, which
is referred to as experience replay, is an essential mechanism in
DQNs. As well as improving sample efficiency by reusing samples
multiple times, it also breaks the non-i.i.d. property of sequentially
collected data. Furthermore, DQNs also employ another trick to aid
convergence. Since both the Q-value targets and network weights
are learned at the same time, there is a significant amount of non-
stationarity seen in these target values used in the loss function,
which may introduce further instabilities due to the bootstrapped
updates. In order to alleviate this, a separate copy of 𝐺 is held with
weights \̄ that are updated periodically with copies of \ , to be used
in the target term in the loss function.

Due to its end-to-end learning and discarding the need for hand-
crafted features, DQN has become a very popular approach in the
field of RL that is followed by further enhancements over the years.
The most substantial ones among these are identified and combined
in a version called Rainbow DQN [14]. In our study, we employ
double Q-learning [28] and dueling networks [30] among these
essential modifications.

3.3 Behavioural Cloning
Behavioural cloning [22] refers to the ability of imitating a demon-
strated behaviour. It is especially useful in the situations where it
is more difficult to specify reward functions than to provide some
expert demonstration. The simplest way of achieving this in the
domain of deep RL is to train a non-linear function approxima-
tor, e.g. neural network 𝐺𝜔 with weights 𝜔 , through supervised
learning on the provided demonstration samples in the form of
state-action pairs denoted by ⟨𝑠, 𝑎⟩. This is done by treating these
as i.i.d. samples andminimising an appropriate loss function such as
L(𝜔) = ∑

(𝑠,𝑎) ∈𝐷 −𝑙𝑜𝑔𝐺𝜔 (𝑎 | 𝑠). Consequently, a state-conditional
generative model is obtained that is capable of imitating the ex-
pert actions for the demonstrated states. In practice, however, this
approach is unreliable to be used as a task policy as it is. This is
because the agent often encounters states that are not contained in

the provided dataset, and therefore, end up exhibiting sub-optimal
behaviour in these states which lead to further divergence in the
trajectories. However, adopting the idea in this most basic form is
sufficient in our study as it provides us the adequate functionality of
generating actions correctly for the states we ensure 𝐺𝜔 is trained
with.

3.4 Dropout
Dropout [24] is a simple yet powerful regularisation method devel-
oped to prevent neural networks from overfitting. Its working prin-
ciple is based on involving some random noise in the hidden layers
of the networks. A neural network layer with the feed-forward oper-
ation can be described as𝒚 = 𝑓 (𝒘𝒙 +𝑏), where the output is𝒚 ∈ R𝑞 ,
the input is 𝒙 ∈ R𝑝 , the network weights for this particular layer
are 𝒘 ∈ R𝑞×𝑝 and 𝑏 ∈ R𝑞 , 𝑓 is any activation function, for input
size of 𝑝 and output size of 𝑞. In a layer with dropout, this equation
takes the form of 𝒚 = 𝑓 (𝒘�̃� + 𝑏) where �̃� = 𝒓 ∗ 𝒙 represent ran-
domly dropped out input which is determined by 𝑟 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝).
Hence, the learning process gets to be regularised with this random
noise which is re-determined in every forward pass. The value 𝑝
controls the rate of dropout and is responsible for the regularisation
strength.

In addition to its regularisation capability, dropout can also be
used to estimate epistemic uncertainty of a neural network model,
as shown in [12]. For any particular input, performing forward
passes multiple times yield different outputs due to the dropout
induced stochasticity, which can be treated as an approximation
of probabilistic deep Gaussian process. Following this idea, the
variance in these output values can therefore be interpreted as
a representation of the model’s uncertainty. Finally, since these
forward passes can be performed concurrently, this approach pro-
vides a practically viable option to evaluate the uncertainty in deep
learning models.

3.5 Action Advising
Action advising [27] is a knowledge exchange approach built on the
teacher-student paradigm. Requiring only a common set of actions
and a communication protocol between the teacher and the student
makes this a very flexible framework. In its originally proposed
form, the learning agent (student) is observed by an experienced
peer (teacher) and is given action advice to be treated as high quality
explorative actions to accelerate its learning. However, maximum
number of these interactions are limited with a budget constraint
considering the real-world conditions where communication and
attention span are usually limited. Therefore, the approaches that
adopt this idea address the question of when to exchange advice
in order to maximise the learning performance. This is usually
accomplished either by performing meta-learning over multiple
learning sessions or by following heuristics as we do in this study.

Currently, there are several heuristic approaches with varying
complexities and advantages in the deep RL domain such as early
advising, random advising, uncertainty-based advising and novelty-
based advising. In this paper, we incorporate early advising as the
baseline to build our method on. Despite its simplicity, this method
performs very well in deep RL especially with small budget scenar-
ios [17]. This is because the earlier samples have far more impact

Main Track AAMAS 2021, May 3-7, 2021, Online

631

on the learning in deep RL models since providing high quality tran-
sitions that contains rewards provide more stable Q-value targets
early on which can significantly reduce the non-stationarity in the
learning process. Finally, since the teacher is followed consistently
in this approach, the student is more likely to encounter the critical
states that would require deep exploration. This is an important
property to have when it comes to spending the budget wisely.

4 PROPOSED APPROACH
We follow the standard MDP formalisation given in Section 3.1 in
our problem definition. In this setting, a student agent that employs
an off-policy deep RL algorithm performs learning in an episodic
single-agent environment through trial-and-error interactions. It
receives an observation 𝑠𝑡 and then executes an action 𝑎𝑡 generated
by its policy 𝜋𝑆 to receive a reward 𝑟𝑡 at each timestep 𝑡 , in order
to maximise its cumulative discounted rewards in any episode.
According to the teacher-student paradigm (Section 3.5) we adopt,
there is also an isolated peer that is competent in this same task, and
is referred to as the teacher. For a limited number of times defined
by the action advising budget 𝑏, the student is allowed to acquire an
action advice from the teacher for the particular state 𝑠 it is in.While
the teacher can have its own teaching strategies to generate actions
to advise, in our setting, we determine the action to be advised
greedily from the teacher’s behaviour policy as 𝜋𝑇 (𝑠). This is a
commonly followed approach with the assumption of the teacher
and the student’s optimal task-level strategies are equivalent. The
student considers this advice as a part of a high-reward strategy and
follows them upon collection. In this final form of the problem, the
student’s objective is to spend its budget at the most appropriate
times to maximise its learning performance.

We aim to devise a method that will enable the student to mem-
orise the collected advice to be able to re-execute them in the
similar states; therefore, avoiding wasting its budget in redun-
dant states and potentially being able to follow the teacher ad-
vice many more times than its budget. In tabular RL, this is trivial
to achieve simply by storing the advised actions paired with the
states in a look-up table. When it comes to deep RL where any
particular observation is not expected to be encountered more
than once, however, there needs to be a generalisable approach.
For this purpose, we propose the student agent to employ a sepa-
rate behavioural cloning module, which consists of a neural net-
work as the state-conditional generative model 𝐺𝜔 : S → A. By
training𝐺𝜔 in a supervised fashion with the obtained state-advice
pairs (stored in a buffer 𝐷) to minimise the negative log-likelihood
loss L(𝜔) = ∑

(𝑠,𝑎) ∈𝐷 −𝑙𝑜𝑔𝐺𝜔 (𝑎 | 𝑠), the student can imitate the
teacher’s advice to reuse them accordingly. However, this method
does not have any mechanisms to prevent the student from generat-
ing incorrect advice from the states it has not collected. Therefore,
we also employ Dropout regularisation in 𝐺𝜔 in order to grant
this behavioural cloning module a notion of epistemic uncertainty
through measuring the variance in the outputs obtained from mul-
tiple forward passes for a particular input state. We denote this
uncertainty estimation by 𝐺`

𝜔 (𝑠). The states 𝐺𝜔 is trained on will
be less susceptible to the variance caused by the dropout and yield
smaller uncertainty values. By this means, the student can deter-
mine how likely a state is to be already recorded as advised when

it comes to reusing them, and can make a decision according to a
threshold.

An obvious question regarding the feasibility of reusing advice
in deep RL arises here: can the teacher’s advice be generalised over
similar states accurately? As we investigate in the experiments in
Section 7, actions generated by the teacher policy usually span over
similar states. Clearly, the uncertainty threshold to consider a state
as recorded is responsible for the trade-off between the reusing
amount and the accuracy of the self-generated teacher advice. A
small threshold value makes the student reuse its budget in fewer
states with higher accuracy, whereas a larger value results in more
frequent reusing with lower accuracy.

The detailed breakdown of our approach is summarised with an
emphasis on the proposed modifications as follows (as also shown
in Algorithm 1): The student starts with a randomly initialised 𝐺𝜔

and empty 𝐷 . At each timestep 𝑡 with the (observed) state 𝑠𝑡 and
an undecided action 𝑎𝑡 , the student first checks if 𝐷 has any new
samples. As soon as 𝐷 reaches the size defined by 𝑛𝐷 ,𝐺𝜔 is trained
with mini-batch gradient descent over the samples in 𝐷 for 𝑘𝑏𝑐
iterations. Afterwards, if the environment was reset (a new episode
started), the student determines whether to enable advice reuse via
imitation for this particular episode with a probability of Y𝑟𝑒𝑢𝑠𝑒 ,
which is combined with other conditions too later on in the algo-
rithm. The idea behind employing this condition is to ensure that
the student can also execute its own exploration policy in order
to increase the data diversity in its replay memory, which is cru-
cial to improve the quality of learning. Furthermore, determining
this variable on an episodic basis lets the agent follow consistent
policies in the exploration steps, rather than dithering between
two policies. In the next phase, the student deals with the advice
collection. We adopt the simple yet strong baseline of early advising
here. According to this, the agent just collects advice without any
conditions until its budget runs out. In the next phase, the student
decides whether to reuse advice generated by its 𝐺𝜔 . There are
several conditions to be satisfied for this to occur in addition to
the advice reuse being allowed for this particular episode. Firstly,
𝑎𝑡 must be non-determined, which implies the agent has not col-
lected any advice from the teacher already. Secondly, 𝐺𝜔 must be
already trained, so that it can generate meaningful actions. Then,
the student also checks if its own action 𝜋𝑆 (𝑎 | 𝑠𝑡) is explorative.
This condition limits the action advising actions to the exploration
steps only in order to prevent overriding the student’s actual policy
which may result in lack of Q-value corrections and cause deterio-
rative effects when too much advising occurs. Finally, it is checked
whether 𝐺`

𝜔 (𝑠𝑡) is smaller than the reuse threshold 𝜏𝑟𝑒𝑢𝑠𝑒 . Incor-
porating such threshold is important to limit the imitated advice
to the states that have low uncertainty according to 𝐺𝜔 to achieve
higher accuracy of generating correct teacher actions. On one hand,
having this threshold too high would make the student consistently
follow𝐺𝜔 which would result in a dataset with lower diversity. On
the other hand, if 𝜏𝑟𝑒𝑢𝑠𝑒 is set too small, then𝐺𝜔 would be ignored
in the most of the cases and the student would be following its own
exploration policy. After all these steps, if 𝑎𝑡 is still non-determined,
the student follows its own policy and decide 𝑎𝑡 by 𝜋𝑆 (𝑎 | 𝑠𝑡).

Main Track AAMAS 2021, May 3-7, 2021, Online

632

Algorithm 1 Action Advising with Advice Imitation
1: Input: action advising budget 𝑏, student policy 𝜋𝑆 , teacher

policy 𝜋𝑇 , number of training iterations 𝑡𝑚𝑎𝑥 , advice reuse
uncertainty threshold 𝜏𝑟𝑒𝑢𝑠𝑒 , advice reuse probability (episodic)
Y𝑟𝑒𝑢𝑠𝑒 , behavioural cloning variables:
• generative network 𝐺𝜔 (𝐺`

𝜔 denotes uncertainty)
• dataset 𝐷 (𝑠𝑖𝑧𝑒 (𝐷) denotes the number of samples in 𝐷)
• dataset size to trigger training 𝑛𝐷
• number of training iterations 𝑘𝑏𝑐

2: 𝐷 ← ∅ ⊲ initialise empty dataset
3: 𝑡𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ← 0 ⊲ remaining timesteps to collect advice set as 0
4: reuse allowed ← 𝐹𝑎𝑙𝑠𝑒 ⊲ set advice reuse off by default
5: for training steps 𝑡 ∈ {1, 2, . . . 𝑡𝑚𝑎𝑥 } do
6: if 𝑠𝑖𝑧𝑒 (𝐷) == 𝑛𝐷 then
7: Train 𝐺𝜔 for 𝑘𝑏𝑐 iterations ⊲ behavioural cloning
8: end if
9: 𝑎𝑡 ← 𝑁𝑜𝑛𝑒 ⊲ set action as non-determined
10: if 𝐸𝑛𝑣 is reset then
11: 𝑢 ∼ U(0, 1) ⊲ draw a number uniformly at random
12: if 𝑢 < Y𝑟𝑒𝑢𝑠𝑒 then
13: reuse allowed ← 𝑇𝑟𝑢𝑒

14: else
15: reuse allowed ← 𝐹𝑎𝑙𝑠𝑒

16: end if
17: end if
18: get observation 𝑠𝑡 ∼ 𝐸𝑛𝑣 if 𝐸𝑛𝑣 is reset
19: if 𝑏 > 0 then
20: 𝑎𝑡 ∼ 𝜋𝑇 ⊲ collect advice
21: add ⟨𝑠𝑡 , 𝑎𝑡 ⟩ to 𝐷
22: 𝑏 ← 𝑏 − 1 ⊲ decrement budget by 1
23: end if
24: if 𝑎𝑡 is 𝑁𝑜𝑛𝑒 and 𝜋𝑆 (𝑎 | 𝑠𝑡) is explorative and

𝐺𝜔 is trained and 𝐺
`
𝜔 (𝑠𝑡) < 𝜏𝑟𝑒𝑢𝑠𝑒 and

reuse allowed then
25: 𝑎𝑡 ← arg max

𝑎
𝐺𝜔 (𝑎 | 𝑠𝑡) ⊲ generate imitated advice

26: end if
27: if 𝑎𝑡 is 𝑁𝑜𝑛𝑒 then
28: 𝑎𝑡 ∼ 𝜋𝑆 ⊲ e.g., epsilon-greedy
29: end if
30: Execute 𝑎𝑡 and obtain 𝑟𝑡 , 𝑠𝑡+1 ∼ 𝐸𝑛𝑣

31: Update task-level model, e.g., DQN.
32: 𝑠𝑡 ← 𝑠𝑡+1
33: end for

5 EVALUATION DOMAIN
In order to have a significant complexity level as well as the chal-
lenges that are relevant to the deep RL methods in our experiments,
we chose three Atari 2600 games from the commonly used Arcade
Learning Environment (ALE) [2] as our evaluation domain:
• Enduro: The player controls a racing car in a long-distance
track over multiple in-game days. In each day, if the player
manages to pass a certain number of other cars (200 in the
first day, 300 in the rest) in the race, it gets to advance to
the next day. Progression during the days is visualised by

(a) Enduro (b) Freeway (c) Pong

Figure 1: Screenshots from the games of Enduro (a), Freeway
(b) and Pong (c) within the Arcade Learning Environment.

different colour schemes that resemble the day-night cycle.
Furthermore, there are other factors of seasonal events that
affect the gameplay such as fogs and icy patches appearing
on the road. Finally, as the days progress, the game increases
in difficulty due to the other cars’ behaviour becoming more
aggressive.
• Freeway: In this game, the objective is to cross a chicken
across a highway comprised of ten laneswith vehicles travers-
ing in different directions and speeds. If the player hits the
cars along the way, it gets pushed back towards starting
point. Every time the player manages to reach the goal, it
acquires a reward and gets teleported back at the starting
point.
• Pong: This game consists of two paddles on the each side
of the screen and a ball traversing around. The paddles are
controlled by one player each. The players must hit the
incoming balls to avoid them passing through their side
as well as getting them thrown back at the opponent. If a
player lets the ball pass through the gap behind its paddle,
the opponent earns 1 point. In the single-agent variant of
this game used in our study, the player controls the right
side paddle while the other one is controlled by a built-in AI.

Each of these games has an observation size of 160 × 210 × 3,
representing RGB images of the game screen that are produced at
60 frames per second (FPS). To make experimenting in these games
computationally tractable, we employ some preprocessing steps
that are also followed commonly in other studies [5]. First of all,
each observation is made greyscale and resized down to the size of
80×80×1. Since the games run at a high FPS, the frame that is shown
to the player is set to be only every 4th one (which is composed of
the maximum pixel values of previous 3 frames), and the player’s
actions are repeated for the skipped frames. Moreover, since these
games contain a fair amount of partial observability, such as the
direction of the ball in Pong, the final form of the observation to
be perceived by the player is made to be a stack of 4 pre-processed
frames with a size of 84 × 84 × 4 (which contains the information
of the most recent 16 actual game frames). In order to deal with
the varying range of reward scales and reward mechanisms within
these games, every reward obtained in a single step in the game is
clipped to be in [−1, 1]. Finally, every game episode is limited to last
for maximum 108k frames, which corresponds to approximately 30
minutes of actual gameplay time in real-life.

Another set of modifications also take place to introduce more
stochasticity within the games to turn them into more challenging

Main Track AAMAS 2021, May 3-7, 2021, Online

633

RL tasks. In the beginning of the games, the player takes no-op
actions for a random number of times in [0, 30], to simulate the
effect of having different initial states. Additionally, with a proba-
bility of 0.25, the actions executed by the player are repeated for
an additional step, which is referred to as sticky actions.

6 EXPERIMENTAL SETUP
The goal of our experiments1 is to demonstrate that it is possible to
generalise the teacher advice to the unseen yet similar states with
our method, and that it is an effective way of improving perfor-
mance of action advising, in complex domains especially. Therefore
we choose the games described in Section 5 as our test-beds. The
set of the student agent variants we compare are listed as follows:
• No Advising (None): No action advising procedure is fol-
lowed; the student learns as normal.
• Early Advising (EA): The student follows early advising
heuristic to distribute its advising budget. Specifically, the
teacher is queried for an advice at every step until the budget
runs out.
• Early Advising with Advice Reuse via Imitation (AR):
The student follows our proposed strategy (Section 4) com-
bined with early advising heuristic. It starts off by greedily
asking for advice until its budget runs out; then, it activates
its behavioural cloning module to imitate and reuse the pre-
viously collected advice in the remaining exploration steps.

All student agent variants employ the identical task-level RL algo-
rithm which is DQN with double Q-learning and dueling networks
enhancements, and 𝜖-greedy policy as the exploration strategy.
The convolutional neural network structure within the DQN in
input-to-output order is as follows: 32 8 × 8 filters with a stride of
4, 64 4 × 4 filters with a stride of 2, 64 3 × 3 filters with a stride of
1, followed by a fully-connected layer with 512 hidden units and
multiple streams that add up in the end (dueling). Additionally, the
student agent variant AR also incorporates a behaviour cloning
module, which is a neural network with an identical structure mi-
nus the dueling stream. All the layer activations are set to be ReLU.
The hyperparameters are tuned prior to experiments and kept the
same across all experiments can be seen in Table 1.

In this teacher-student setup, we also need a teacher from which
the student can get good quality action advice. For this purpose, we
trained a DQN agent for each of these games for 10M steps (40M
actual game frames) to achieve a competent level performance in
each.

The experiments are conducted by executing every student vari-
ant through a learning session 3M steps (12M actual game frames)
for every game. The learning steps are kept relatively small com-
pared to the teacher training since it is expected for the students
to achieve high performance much quicker with the aid of advice.
Through the learning sessions, the agents are also evaluated at
every 25k𝑡ℎ step in a separate instance of the environment for 10
episodes. During evaluation, any form of exploration and teaching
is disabled in order to assess the actual proficiency of the students.

In terms of action advising setup, we set the action advising
budget as 10k steps which corresponds to only approximately 0.3%
1Code for our experiments can be found at https://github.com/ercumentilhan/naive-
advice-imitation

Table 1: Hyperparameters used in the student’s DQN (top
section) and Behaviour Cloning Network (bottom section).

Hyperparameter name Value

Replay memory initial size and capacity 50k, 500k
Target network update period 7500
Minibatch size 32
Learning rate 625 × 10−7

Train period 4
Discount factor 𝛾 0.99
𝜖 initial, 𝜖 final, 𝜖 decay steps 1.0, 0.01, 500k

Minibatch size 32
Learning rate 0.0001
Dropout rate 0.2
of forward passes to assess uncertainty 100

of the interactions in a learning session and also to almost one third
of a full game episode (27k steps). Besides the budget, our proposed
method AR also uses some additional hyperparameters which were
tuned prior to the full length experiments and are kept the same
across every game. The dataset size 𝑛𝐷 to train 𝐺𝜔 is set as 10k
which is the action advising budget as we employ early advising
prior to behavioural cloning training. The number iterations to
train 𝐺𝜔 is set as 50k. Episodic advice reuse probability Y𝑟𝑒𝑢𝑠𝑒
is set as 0.5 meaning that the student will follow 𝐺𝜔 in half the
episodes (in the appropriate states). Finally, advice reuse uncertainty
threshold 𝜏𝑟𝑒𝑢𝑠𝑒 is set as 0.01 (determined empirically) and kept
the same across all games. In the experiments with AR, we also
record the actual advice actions generated by the teacher at every
step (not seen by the student) to have access to the ground-truth
values to measure the accuracy of the behavioural cloning module.
Every particular experiment case is repeated and aggregated over
3 different random seeds.

7 RESULTS AND DISCUSSION
The results of our experiments are presented in Figures 2,3 and
Table 2. Figure 2 contains the plots for the evaluation scores ob-
tained by None, EA and AR modes of the student in the games of
Enduro, Freeway, Pong. In Figure 3, the plots of the advice reuse
trends of AR in this set of games are displayed as cumulatively (top
row) and in every 100 steps windows (bottom row). These plots
are limited to the first 500k steps to only consider the exploration
stage determined by the agent’s 𝜖-greedy schedule. Purple lines
here represent all advice reuses combined, while the green lines
indicate only the correctly imitated (in terms of being equal to the
ground-truth teacher advice) advice pieces. These results are also
reported in Table 2 in the numerical form where the evaluation
scores are broken down in two parts of final value and area-under-
the-curve, which represent the final agent performance and the
learning speed, respectively. Furthermore, the table also contains
the total number of exploration steps taken, as well as the percent-
age of the number of reused advice in the exploration steps and the
percentage of correctly imitated advice in total number of reused
advice (denoted in parentheses).

Main Track AAMAS 2021, May 3-7, 2021, Online

634

https://github.com/ercumentilhan/naive-advice-imitation
https://github.com/ercumentilhan/naive-advice-imitation

Figure 2: Evaluation scores of the student variants None, EA, AR obtained in the Atari games of Enduro (leftmost column),
Freeway (middle column), Pong (rightmost column) aggregated over 3 runs. Shaded areas show the standard deviation across
the runs.

Figure 3: Number of advice reuses performed by the student with AR mode in the Atari games of Enduro (leftmost column),
Freeway (middle column), Pong (rightmost column) over 3 runs, plotted cumulatively (top row) and in every 100 steps (bottom
row). Purple lines represent the number of all advice reuses while the green lines represent the number of correctly imitated
ones among these. Shaded areas show the standard deviation across the runs.

In the evaluation scores, we see different outcomes in each of
these games. In Enduro, we see that AR provides a significant
amount of jump start and performs the best in terms of learning
speed while being far ahead of EA and None which are quite similar.
When it comes to the final performance however, while EA and AR
both outperform None, they do not differ much from each other. In
Freeway, EA and AR perform very similarly in terms of learning
speed and final performance with AR being slightly ahead of EA.
However, they outperform None significantly. This shows that it
matters to be advised initially, though their repetitions may not
always yield much acceleration in learning. Finally, in Pong, we
see a great difference between the performances in every aspect.
Our AR comes out far ahead than its closest follower EA both in
terms of final score and learning speed. This is an example of how
getting a very little advice in the beginning as well as repeating
them across further explorative actions can cause a great impact
on the learning. Overall, AR manages to be the best in every game
and suffers no performance loss even with high advice utilisation
(as high as 104k in Freeway) which was shown to be harmful to
learning in previous studies. Even though its performance boost

over None seems to be not huge in every scenario, it should be
noted that this is the case of it being combined with EA baseline.
With more complicated methods, AR can be capable of training its
imitation learning module with a more diverse set of experience
and therefore, have a larger coverage which can potentially yield
superior performance.

The task-level performance of our approach is affected primar-
ily by two factors: the accuracy of advice imitation and its cover-
age/usage in the remainder of the exploration steps (the process
of reusing). Therefore, we also analyse the advice reuse statistics
of AR to form links between these outcomes. First of all, it should
be noted that the decreasing trend in these plots is caused by the
𝜖-greedy annealing. Enduro is the game with the smallest advice
reuse rate as well as the lowest imitation accuracy. This is possi-
bly because of the game episodes lasting long regardless of the
agent’s performance, which is likely to reduce the proportion of
the familiar states according to the behavioural cloner. In Freeway,
we observe a fairly high advice reuse rate with high accuracy of
imitation. However, this is not reflected in the performance differ-
ence obtained versus EA, unlike in Enduro and Pong. Finally, in

Main Track AAMAS 2021, May 3-7, 2021, Online

635

Table 2: Final and area-under-the-curve (AUC) values of evaluation score plots (Figure 2), the number of exploration steps, the
number of advice reuses (all and correctly imitated) of None, EA, AR student modes obtained in the Atari games of Enduro,
Freeway, Pong aggregated over 3 runs. The numbers denoted by ± indicate standard deviation. The numbers in the parentheses
show the percentage of reused advices in the exploration steps (in the column titled “All”) and the percentage of correctly
imitated advices in total number of reused advices (in the column titled “Correctly Imitated”).

Evaluation Score # of Exp. Steps # of Advice Reuses

Game Mode Final AUC (×102) All Correctly Imitated

Enduro
None 1021.54 ± 79.5 570.61 ± 38.4 326939 ± 92.1 — —
EA 1095.55 ± 45.9 616.29 ± 58.1 326753 ± 220.9 — —
AR 1112.79 ± 16.6 782.98 ± 8.4 326889 ± 230.5 67198 ± 3061.0 (20.55%) 36534 ± 1210.9 (54.44%)

Freeway
None 26.87 ± 2.3 15.73 ± 1.7 326872 ± 199.9 — —
EA 30.44 ± 0.2 20.31 ± 0.4 327158 ± 6.2 — —
AR 31.28 ± 0.2 21.52 ± 1.0 326778 ± 494.4 104770 ± 12522.2 (32.05%) 88829 ± 10950.5 (84.74%)

Pong
None −2.78 ± 4.3 −16.24 ± 2.6 326744 ± 25.2 — —
EA 6.66 ± 1.6 −8.83 ± 0.4 326872 ± 199.9 — —
AR 13.35 ± 1.7 −1.36 ± 1.0 326933 ± 371.2 72581 ± 7615.7 (22.20%) 49538 ± 4853.8 (68.32%)

Pong, where the performance improvement is the most significant,
advice reuse ratio seems to be similar to Enduro, but with far higher
imitation accuracy.

Clearly, as we see from all these results combined, we can say
that it is definitely a viable idea to extend the teacher advice over
future states through imitation since this can be achieved with rela-
tively high accuracy. However, even when we have access to these
imitated competent policies, it is still non-trivial to construct a good
exploration policy. While a higher advice reuse rate produces a
more consistent exploration policy with less random dithering, it
also has the risk of limiting the sample diversity in the replay mem-
ory, which can be problematic especially if the imitation quality
is also poor. As long as the reuse amount does not get excessively
high, it is safe to have the imitation learning accuracy around these
reported levels, which makes tuning the uncertainty threshold
straightforward. This is especially important for the realistic ap-
plications where it is not possible to access the tasks to tune such
hyperparameters beforehand.

Finally, we also analyse our approach’s computational burden,
which may be the primary concern when adopting it. Specifically, it
involves two extra operations: behavioural cloning network train-
ing and uncertainty estimations. The former happens only once
in the beginning and therefore is negligible. The uncertainty esti-
mations that require multiple forward passes (which is 100 in our
experiments) happens in every exploration step and was found to
cause a maximum of 2× slowdown in our experiments. Consider-
ing that the exploration steps only spans approximately 10% of a
learning session, we can expect the runs to be taking at most 10%
longer in total when AR is employed in a similar setting to ours;
and, this becomes even smaller when the learning sessions last
longer in terms of the total number of environment steps. Clearly,
this is a small setback considering the sample efficiency benefits
our method brings.

8 CONCLUSIONS AND FUTUREWORK
In this study, we developed an approach for the student to imitate
and reuse advice previously collected from the teacher. This is the
first time such an approach has been proposed in deep reinforce-
ment learning (RL). In order to do so, we followed an idea similar to
behavioural cloning, employing a separate neural network that is
trained with the advised state-action pairs via supervised learning.
Thus, this module can imitate the teacher’s policy in a generalisable
way that lets us apply it to the unseen states. We also incorporated a
notion of epistemic uncertainty via dropout in this neural network
to be able to limit the imitations to the states that are similar to the
advice collected states.

The results of the experiments in 3 Atari games have shown
that it is a feasible idea to accurately generalise a small set of
teacher advice over unseen yet similar states in future. Further-
more, our approach of employing behavioural cloning was found
to be a successful way of achieving this, as it yielded a consider-
ably high accuracy of imitation in multiple games. Additionally,
reusing these self-generated advice across the exploration steps
provided significant improvements in the learning speeds and the
final performances without any over-advising induced performance
deterioration. Therefore, our method can be considered as a promis-
ing enhancement to the existing action advising methods, especially
since it is also very straightforward to implement and tune, with
only a small computational burden. Finally, it was also seen that
utilisation of such imitated advice policies to construct good quality
exploration is non-trivial and requires further investigation.

Our study lies at the intersection of action advising and explo-
ration in RL and can be extended in various interesting ways. It
is unclear how far the different qualities of imitation and reuse
rates can affect performance in one particular game; it will be a
worthwhile study to analyse these. Furthermore, evaluating the ad-
vice in terms of its contribution to learning progress is a promising
direction to take.

Main Track AAMAS 2021, May 3-7, 2021, Online

636

REFERENCES
[1] Ofra Amir, Ece Kamar, Andrey Kolobov, and Barbara J. Grosz. 2016. Interactive

Teaching Strategies for Agent Training. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, Subbarao Kambhampati (Ed.). IJCAI/AAAI Press, 804–811.

[2] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The
Arcade Learning Environment: An Evaluation Platform for General Agents. J.
Artif. Intell. Res. 47 (2013), 253–279.

[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christo-
pher Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki,
Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Sali-
mans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
Filip Wolski, and Susan Zhang. 2019. DotA 2 with Large Scale Deep Reinforce-
ment Learning. CoRR abs/1912.06680 (2019).

[4] Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. 2018. Explo-
ration by Random Network Distillation. CoRR abs/1810.12894 (2018).

[5] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and
Marc G. Bellemare. 2018. Dopamine: A Research Framework for Deep Reinforce-
ment Learning. CoRR abs/1812.06110 (2018).

[6] Si-An Chen, Voot Tangkaratt, Hsuan-Tien Lin, and Masashi Sugiyama. 2018.
Active Deep Q-learning with Demonstration. CoRR abs/1812.02632 (2018).

[7] Felipe Leno da Silva, Ruben Glatt, and Anna Helena Reali Costa. 2017. Simulta-
neously Learning and Advising in Multiagent Reinforcement Learning. In Pro-
ceedings of the 16th Conference on Autonomous Agents and Multi-Agent Systems,
AAMAS 2017, São Paulo, Brazil, May 8-12, 2017. ACM, 1100–1108.

[8] Felipe Leno da Silva, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor.
2020. Uncertainty-Aware Action Advising for Deep Reinforcement Learning
Agents. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 5792–5799.

[9] Felipe Leno da Silva, Garrett Warnell, Anna Helena Reali Costa, and Peter Stone.
2020. Agents teaching agents: a survey on inter-agent transfer learning. Auton.
Agents Multi Agent Syst. 34, 1 (2020), 9.

[10] Tim De Bruin, Jens Kober, Karl Tuyls, and Robert Babuška. 2015. The importance
of experience replay database composition in deep reinforcement learning. In
Deep reinforcement learning workshop, NIPS.

[11] Anestis Fachantidis, Matthew E. Taylor, and Ioannis P. Vlahavas. 2019. Learning
to Teach Reinforcement Learning Agents. Machine Learning and Knowledge
Extraction 1, 1 (2019), 21–42.

[12] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016 (JMLR Workshop and Conference Proceedings, Vol. 48), Maria-
Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 1050–1059.

[13] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. 2018.
Reinforcement Learning from Imperfect Demonstrations. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Workshop Track Proceedings.

[14] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David
Silver. 2018. Rainbow: Combining Improvements in Deep Reinforcement Learn-
ing. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
30th innovative Applications of Artificial Intelligence 8th AAAI Symposium on
Educational Advances in (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, Sheila A. McIlraith and Kilian Q.Weinberger (Eds.). AAAI Press, 3215–3222.

[15] Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold,
John P. Agapiou, Joel Z. Leibo, and Audrunas Gruslys. 2018. Deep Q-learning
From Demonstrations. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 3223–3230.

[16] Ercüment Ilhan, Jeremy Gow, and Diego Pérez-Liébana. 2019. Teaching on a
Budget in Multi-Agent Deep Reinforcement Learning. In IEEE Conference on
Games, CoG 2019, London, United Kingdom, August 20-23, 2019. 1–8.

[17] Ercüment Ilhan and Diego Pérez-Liébana. 2020. Student-Initiated Action Advising
via Advice Novelty. arXiv:2010.00381

[18] Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew
Riemer, Golnaz Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, and
Jonathan P. How. 2020. Learning Hierarchical Teaching Policies for Cooperative
Agents. In Proceedings of the 19th International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020,
Amal El Fallah Seghrouchni, Gita Sukthankar, Bo An, and Neil Yorke-Smith (Eds.).
International Foundation for Autonomous Agents and Multiagent Systems, 620–
628.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013).

[20] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. 2018. Data-Efficient
Hierarchical Reinforcement Learning. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada. 3307–3317.

[21] Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer,
Christopher Amato, Murray Campbell, and Jonathan P. How. 2019. Learning
to Teach in Cooperative Multiagent Reinforcement Learning. In The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 6128–6136.

[22] Dean Pomerleau. 1991. Efficient Training of Artificial Neural Networks for
Autonomous Navigation. Neural Comput. 3, 1 (1991), 88–97.

[23] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. In 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

[24] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929–1958.

[25] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[26] Matthew E. Taylor, Nicholas Carboni, Anestis Fachantidis, Ioannis P. Vlahavas,
and Lisa Torrey. 2014. Reinforcement learning agents providing advice in complex
video games. Connect. Sci. 26, 1 (2014), 45–63.

[27] Lisa Torrey and Matthew E. Taylor. 2013. Teaching on a budget: agents advising
agents in reinforcement learning. In International conference on Autonomous
Agents and Multi-Agent Systems, AAMAS ’13, Saint Paul, MN, USA, May 6-10, 2013.
1053–1060.

[28] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, Dale
Schuurmans and Michael P. Wellman (Eds.). AAAI Press, 2094–2100.

[29] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John P. Aga-
piou, Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen
Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Timothy P. Lillicrap,
Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence, Anders Ek-
ermo, Jacob Repp, and Rodney Tsing. 2017. StarCraft II: A New Challenge for
Reinforcement Learning. CoRR abs/1708.04782 (2017).

[30] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. 2016. Dueling Network Architectures for Deep Reinforcement
Learning. In Proceedings of the 33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR Workshop and
Conference Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger
(Eds.). JMLR.org, 1995–2003.

[31] Yusen Zhan, Haitham Bou-Ammar, and Matthew E. Taylor. 2016. Theoretically-
Grounded Policy Advice from Multiple Teachers in Reinforcement Learning
Settings with Applications to Negative Transfer. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016. 2315–2321.

[32] Changxi Zhu, Yi Cai, Ho-fung Leung, and Shuyue Hu. 2020. Learning by Reusing
Previous Advice in Teacher-Student Paradigm. In Proceedings of the 19th In-
ternational Conference on Autonomous Agents and Multiagent Systems, AAMAS
’20, Auckland, New Zealand, May 9-13, 2020, Amal El Fallah Seghrouchni, Gita
Sukthankar, Bo An, and Neil Yorke-Smith (Eds.). International Foundation for
Autonomous Agents and Multiagent Systems, 1674–1682.

[33] Matthieu Zimmer, Paolo Viappiani, and Paul Weng. 2014. Teacher-Student Frame-
work: A Reinforcement Learning Approach. In AAMAS Workshop Autonomous
Robots and Multirobot Systems.

Main Track AAMAS 2021, May 3-7, 2021, Online

637

https://arxiv.org/abs/2010.00381

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Reinforcement Learning
	3.2 Deep Q-Networks
	3.3 Behavioural Cloning
	3.4 Dropout
	3.5 Action Advising

	4 Proposed Approach
	5 Evaluation Domain
	6 Experimental Setup
	7 Results and Discussion
	8 Conclusions and Future Work
	References

