
Probabilistic Inference of Winners
in Elections by Independent Random Voters∗

Aviram Imber

Technion Israel Institute of Technology

Haifa, Israel

aviram.imber@cs.technion.ac.il

Benny Kimelfeld

Technion Israel Institute of Technology

Haifa, Israel

bennyk@cs.technoin.ac.il

ABSTRACT
We investigate the problem of computing the probability of winning

in an election where voter attendance is uncertain. More precisely,

we study the setting where, in addition to a total ordering of the

candidates, each voter is associated with a probability of attending

the poll, and the attendances of different voters are probabilisti-

cally independent. We show that the probability of winning can

be computed in polynomial time for the plurality and veto rules.

However, it is computationally hard (#P-hard) for various other

rules, including 𝑘-approval and 𝑘-veto for 𝑘 > 1, Borda, Condorcet,

and Maximin. For some of these rules, it is even hard to find a

multiplicative approximation since it is already hard to determine

whether this probability is nonzero. In contrast, we devise a fully

polynomial-time randomized approximation scheme (FPRAS) for

the complement probability, namely the probability of losing, for

every positional scoring rule (with polynomial scores), as well as

for the Condorcet rule.

KEYWORDS
Social Choice; Voting Rules; Probabilistic Voters; Approximation

ACM Reference Format:
Aviram Imber and Benny Kimelfeld. 2021. Probabilistic Inference ofWinners

in Elections by Independent Random Voters. In Proc. of the 20th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2021),
Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
The theory of social choice targets the question of how voter pref-

erences should be aggregated to arrive at a collective decision. It

spans centuries of research, from law making in Ancient Rome

to the 20th century’s fundamental theory and the recent study

of the algorithmic and computing aspects—computational social

choice. (See [6] for an overview.) In the common formal setting,

there are voters and candidates, each voter has an individual pref-

erence, namely ordering over the candidates, and a voting rule is

applied to the preference profile (collection of orderings) in order

to elect a winner. Past research has investigated various ways of

incorporating situations of uncertainty in this setting, including

incomplete and probabilistic preferences [1, 13, 15, 19, 20], prob-

abilistic candidate validity [5, 28], and probabilistic voter partic-

ipation [10, 23, 24, 27, 28]. Further settings include bribery with

∗
Supported by the US-Israel Binational Science Foundation (BSF) Grant 2017753.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

probabilistic voter cooperation [8, 9] and random elicitation for

efficient outcome determination [7, 22] .

In this work, we focus on the basic setting where voters are

randomly drawn. In particular, the election outcome is probabilistic

and, therefore, each candidate has a marginal probability of being

elected. More formally, each voter 𝑣𝑖 is associated with a total order

over the candidates, and she casts a vote with probability 𝑝𝑖 (and

steps outside the voter list with probability 1 − 𝑝𝑖). Importantly,

we assume that different voters are probabilistically independent.

For a candidate 𝑐 , the probability of winning is the probability

that the random set of casting voters elects 𝑐 . The aggregation of

the preferences of these voters is done by a voting rule, and we

consider several well-known alternatives: positional scoring rules,

theCondorcet rule, and theMaximin rule (also known as the Simpson
rule). We investigate the computational problem of calculating the

probability that a given candidate 𝑐 is a winner.

Our contribution is summarized in Table 1. We first consider

the complexity of exact evaluation (the first row of the table). We

start with positional scoring rules; recall that in such a rule, each

voter assigns to each candidate a score based on the position of

the candidate in the voter’s ranking, and the vector of scores is

shared among all voters. For example, in 𝑘-approval the top 𝑘

positions get the score 1 and the rest get 0, and in 𝑘-veto the bottom

𝑘 positions get 0 and the rest get 1. The probability of winning can

be computed in polynomial time for 𝑘 = 1 (i.e., the plurality and

veto rules), but #P-hard for every 𝑘 > 1. The problem is also hard

for other positional scoring rules such as the Borda rule. Beyond the

positional scoring rules, we also show that the problem is #P-hard

for the Condorcet and Maximin rules.

Since exact evaluation is often intractable, we consider the ap-

proximate version, that is, computing the probability of winning

up to an approximation. There are various natural notions of ap-

proximation guarantees. For an additive approximation, we can

get a Fully Polynomial-Time Randomised Approximation Scheme

(FPRAS) by straightforward sampling and averaging. So, we focus

on a multiplicative approximation. Yet, in some of the rules we

consider it is intractable to get any approximation guarantee of a

sub-exponential ratio, since it is already hard to decide whether the

probability of winning is nonzero (as shown in the second row of

Table 1). Exceptional are 𝑘-approval and 𝑘-veto where this decision

problem is solvable in polynomial time, but the existence of an

efficient approximation remains an open problem. Nevertheless,

we can also consider another kind of a multiplicative approxima-

tion, where we consider the complement probability of losing. (In
the additive variant, approximating the probability is the same as

approximating its complement, but it is not so in the case of a

multiplicative approximation.) Inspired by the work of Kenig and

Main Track AAMAS 2021, May 3-7, 2021, Online

647

Table 1: Overview of the complexity results.

Problem plurality, veto 𝑘-{approv., veto} Borda 𝑅(𝑓 , ℓ) other positional Condorcet Maximin

Pr[win] P #P-h #P-h #P-h for (𝑓 , ℓ) ≠ (1, 1)
?

#P-h #P-h
[Thm. 3.1] [Thm. 3.2] [Thm. 3.5] [Thm. 3.6] [Thm. 3.7] [Thm. 3.8]

Pr[win] > 0?

P P NP-c NP-c for (𝑓 , ℓ) ≠ (1, 1)
?

NP-c NP-c
[Thm. 3.1] [Thm. 4.6] [Thm. 4.1] [Cor. 4.4] [Thm. 4.5] [Thm. 4.5]

Approximate P FPRAS FPRAS FPRAS FPRAS for poly. scores FPRAS

?

Pr[lose] [Thm. 3.1] [Thm. 5.1] [Thm. 5.1] [Thm. 5.1] [Thm. 5.1] [Thm. 5.1]

Kimelfeld [19] on probabilistic preferences, we can apply the Karp-

Luby-Madras technique [18] to establish a multiplicative FPRAS for

the probability of losing. This applies to every positional scoring

rule (with the mild assumption that the scores are all polynomial in

the number of voters and candidates) and the Condorcet rule; the

problem remains open for Maximin.

While it is important to understand richer frameworks withmore

complex probabilistic modeling of voters, little has been known

about the computational aspects of our basic setting, to the best

of our knowledge. The closest studied problem is lot-based voting,
where we uniformly select 𝑘 voters for a pre-determined number

𝑘 [27], and its generalization that entails a preprocessing step of

choosing 𝑘 itself randomly from a given distribution [28]. Lot-based

polling relates to, and can adopt complexity results on, the problem

of control in elections, where the goal is to detect a small subset of

voters of whom elimination can lead to a desired outcome [28]. Yet,

it is not clear how to draw conclusions from lot-based voting to out

setting. The positive results in this model are based on counting,

so the algorithms do not immediately apply to our setting where

voters can have individual probabilities. As for the hardness results,

in some cases we adapt proofs from that work to our setting, while

in other cases the proofs are heavily based on the assumption that

the cardinality of the voter set is given. Moreover, that work focused

on the exact (but not approximate) computation of probabilities

where our problem is #P-hard in all the rules we consider with

the exception of plurality and veto. Also related is the problem

of predicting the winner of an election given sampled votes [10,

23]. This setting is quite different: the voter set is deterministic,

randomness is due to voter sampling, and the goal is to accurately

predict the outcome.

The remainder of the paper is organized as follows. In Section 2

we give preliminary definitions and terminology. We discuss exact

probability computation in Section 3, the hardness of multiplicative

approximation in Section 4, and the FPRAS algorithms for the

probability of losing in Section 5. We conclude in Section 6.

Due to lack of space, some of the proofs are excluded from the

paper and are presented in the full version of this work [17].

2 PRELIMINARIES
We first give definitions, notation, and terminology that we use

throughout the paper.

Voting Profiles and Voting Rules. We denote by𝐶 = {𝑐1, . . . , 𝑐𝑚} the
set of candidates and 𝑉 = {𝑣1, . . . , 𝑣𝑛} the set of voters. A voting
profile T = (𝑇1, . . . ,𝑇𝑛) consists of 𝑛 linear orders on𝐶 , where each

𝑇𝑖 is the ranking of (i.e., linear order over) 𝐶 by 𝑣𝑖 . A voting rule is
a function that maps every profile on 𝐶 to a set of winners from 𝐶 .

A positional scoring rule 𝑟 is a series {®𝑠𝑚}𝑚∈N+ of𝑚-dimensional

score vectors ®𝑠𝑚 = (®𝑠𝑚 (1), . . . , ®𝑠𝑚 (𝑚)) of natural numbers where

®𝑠𝑚 (1) ≥ · · · ≥ ®𝑠𝑚 (𝑚) and ®𝑠𝑚 (1) > ®𝑠𝑚 (𝑚). We make the conven-

tional assumption that ®𝑠𝑚 (𝑗) is computable in polynomial time in

𝑚. Examples of positional scoring rules include the plurality rule

(1, 0, . . . , 0), the 𝑘-approval rule (1, . . . , 1, 0, . . . , 0) that begins with
𝑘 ones followed by zeroes, the veto rule (1, . . . , 1, 0), the 𝑘-veto rule
(1, . . . , 1, 0, . . . , 0) that starts with ones and ends with 𝑘 zeros, and

the Borda rule (𝑚 − 1,𝑚 − 2, . . . , 0).
For two positive integers 𝑓 and ℓ , we denote by 𝑅(𝑓 , ℓ) the three-

valued rule with scoring vector ®𝑠𝑚 = (2, . . . , 2, 1, . . . , 1, 0, . . . , 0)
that begins with 𝑓 occurrences of two and ends with ℓ zeros. For

example, the scoring vector for 𝑅(1, 1) is ®𝑠𝑚 = (2, 1, . . . , 1, 0).
Given a voting profile T = (𝑇1, . . . ,𝑇𝑛), the score 𝑠 (𝑇𝑖 , 𝑐, 𝑟) that

the voter 𝑣𝑖 contributes to the candidate 𝑐 is ®𝑠𝑚 (𝑗) where 𝑗 is the

position of 𝑐 in 𝑇𝑖 . The score of 𝑐 in T is 𝑠 (T, 𝑐, 𝑟) = ∑𝑛
𝑖=1 𝑠 (𝑇𝑖 , 𝑐, 𝑟)

that we may denote simply by 𝑠 (T, 𝑐) if 𝑟 is clear from context. A

candidate 𝑐 is a winner (also referred to as co-winner) if 𝑠 (T, 𝑐) ≥
𝑠 (T, 𝑐 ′) for all candidates 𝑐 ′.1

For two candidates 𝑐, 𝑐 ′ ∈ 𝐶 , denote by 𝑁T (𝑐, 𝑐 ′) the number of

voters that prefer 𝑐 to 𝑐 ′. A candidate 𝑐 is a Condorcet winner if
𝑁T (𝑐, 𝑐 ′) > 𝑁T (𝑐 ′, 𝑐) for all 𝑐 ′ ≠ 𝑐 . (Note that a Condorcet winner

does not necessarily exist; when exists, it is unique.) Under theMax-
imin rule, the score of 𝑐 is 𝑠 (T, 𝑐) = min {𝑁T (𝑐, 𝑐 ′) : 𝑐 ′ ∈ 𝐶 \ {𝑐}}
and a winner is a candidate with a maximal score.

Probabilistic Voting Profiles. In the setting we study, voters partic-

ipate by being drawn randomly from 𝑉 . We are given as part of

the input a vector (𝑝1, . . . , 𝑝𝑛) ∈ [0, 1]𝑛 of probabilities. Define a

random variable 𝐼 ⊆ [𝑛], where every 𝑖 ∈ [𝑛] is in 𝐼 with prob-

ability 𝑝𝑖 and different indices are probabilistically independent.

(Note our notation of [𝑛] = {1, . . . , 𝑛}.) The random set of voters

that participate in the election is𝑉 ′ = {𝑣𝑖 : 𝑖 ∈ 𝐼 }, and the resulting
random profile is T′ = {𝑇𝑖 }𝑖∈𝐼 . The probability of 𝐼 being a subset

𝑈 ⊆ [𝑛] is Pr[𝐼 = 𝑈] = ∏
𝑖∈𝑈 𝑝𝑖

∏
𝑖∈[𝑛]\𝑈 (1 − 𝑝𝑖).

Denote byWin(𝑐 ;T′) the event that 𝑐 is a winner of T′ according
to a positional scoring rule 𝑟 . Similarly, denote by Lose(𝑐 ; T′) the
event that 𝑐 is not a winner. We will investigate the evaluation of

the probabilities Pr[Win(𝑐 ; T′)] and Pr[Lose(𝑐 ; T′)].
A Fully-Polynomial Randomized Approximation Scheme (FPRAS)

for a probability function 𝑝 (𝑥) is a randomized algorithm 𝐴(𝑥, 𝜖, 𝛿)

1
All of our results apply to, and can be easily adapted to, the unique winner semantics,

where 𝑐 is a unique winner if 𝑠 (T, 𝑐) > 𝑠 (T, 𝑐′) for all candidates 𝑐′ ≠ 𝑐 .

Main Track AAMAS 2021, May 3-7, 2021, Online

648

that given 𝑥 for 𝑝 and 𝜖, 𝛿 ∈ (0, 1), returns an 𝜖-approximation of

𝑝 (𝑥) with probability at least 1 − 𝛿 , in time polynomial in the size

of 𝑥 , 1/𝜖 , and log(1/𝛿). Formally, an FPRAS, satisfies:

Pr[(1 − 𝜖)𝑝 (𝑥) ≤ 𝐴(𝑥, 𝜖, 𝛿) ≤ (1 + 𝜖)𝑝 (𝑥)] ≥ 1 − 𝛿 .

Note that this notion of FPRAS refers to amultiplicative approxima-

tion, and we adopt this notion implicitly, unless stated otherwise.

Control by Voter Addition. Let 𝑟 be a voting rule. In the problem

of Constructive Control by Adding Voters (CCAV) we are given a

set 𝐶 of candidates, a voting profile M of voters who are already

registered, a voting profile Q of yet unregistered voters, a preferred

candidate 𝑐 ∈ 𝐶 , and a bound 𝑘 ∈ N. The goal is to test whether we
can choose a sublistQ′ ⊆ Q of size at most 𝑘 such that 𝑐 is a winner

ofM ◦Q′
, whereM ◦Q′

is the concatenation of the two profilesM
and Q′

. (The underlying rule 𝑟 will be clear from the context.)

Theorem 2.1 ([2, 12, 21, 25]). The problem of CCAV is solvable in
polynomial time for plurality, veto and 𝑘-approval for 𝑘 ≤ 3. CCAV
is NP-complete for Borda, Condorcet, and 𝑘-approval for 𝑘 ≥ 4.

In the corresponding counting problem #CCAV, studied by Woj-

tas and Faliszewski [28], the goal is to count the sublists Q′ ⊆ Q
of size at most 𝑘 such that 𝑐 is a winner of M ◦ Q′

. They showed

that #CCAV is in FP under plurality, and is #P-complete under

Condorcet, Maximin and 𝑘-approval for 𝑘 ≥ 2.

Note that in our model, where a random subset of voters is

drawn, there is no restriction on the number of voters. For a voting

rule 𝑟 , we define the problem of Constructive Control by Adding an
Unlimited number of Voters (CCAUV) as follows: We are given a set

𝐶 of candidates, a voting profile M of registered voters, a voting

profileQ of yet unregistered voters, and a preferred candidate 𝑐 ∈ 𝐶 .

We ask whether we can select a sublist Q′ ⊆ Q (of any cardinality)

such that 𝑐 is a winner ofM◦Q′
. We also denote the corresponding

counting problem by #CCAUV.

Additional Notation. For a set 𝐴 and a partition 𝐴1, . . . , 𝐴𝑡 of 𝐴,

we use 𝑂 (𝐴1, . . . , 𝐴𝑡) to denote an arbitrary linear order on 𝐴 that

satisfies 𝑎1 ≻ · · · ≻ 𝑎𝑡 for every 𝑎1 ∈ 𝐴1, . . . , 𝑎𝑡 ∈ 𝐴𝑡 . A lin-

ear order 𝑎1 ≻ · · · ≻ 𝑎𝑡 is also denoted as a vector (𝑎1, . . . , 𝑎𝑡).
The concatenation of two linear orders (𝑎1, . . . , 𝑎𝑡) ◦ (𝑏1, . . . , 𝑏ℓ) is
(𝑎1, . . . , 𝑎𝑡 , 𝑏1, . . . , 𝑏ℓ).

3 EXACTWINNING PROBABILITY
In this section, we study the complexity of computing the probabil-

ity that a given candidate is a winner. Recall that the input consists

of a voting profile T, a vector of voter probabilities and a candidate

𝑐 , and the goal is to compute Pr[Win(𝑐 ; T′)].

3.1 Tractability of Plurality and Veto
For plurality and veto, if the probabilities of all voters are identical,

we can easily compute Pr[Win(𝑐 ;T′)] in polynomial time by reduc-

ing the case of independent voters to the probability distribution

studied by Wojtas and Faliszewski [28]. For the general case, where

the probabilities can differ, we need a different algorithm.

Theorem 3.1. For the plurality and veto rules, Pr[Win(𝑐 ; T′)] is
computable in polynomial time.

Proof. We begin with plurality. Let T = (𝑇1, . . . ,𝑇𝑛) be a voting
profile and let (𝑝1, . . . , 𝑝𝑛) be the probabilities. In the plurality rule,

every voter increases the score of a single candidate by 1. Since

different voters are independent, the scores of different candidates

are independent. Therefore, we get the following (due to the law of

total probability).

Pr[Win(𝑐 ; T′)] =
𝑛∑
𝑠=0

Pr[Win(𝑐 ; T′) ∧ 𝑠 (T′, 𝑐) = 𝑠]

=

𝑛∑
𝑠=0

Pr[𝑠 (T′, 𝑐) = 𝑠] ·
∏
𝑐′≠𝑐

Pr[𝑠 (T′, 𝑐 ′) ≤ 𝑠]

We show that for all 𝑐 ′ ∈ 𝐶 and 𝑠 ∈ {0, . . . , 𝑛}, we can compute

Pr[𝑠 (T′, 𝑐 ′) = 𝑠] in polynomial time via dynamic programming.

Then, by summing and multiplying these values, we can compute

Pr[Win(𝑐 ; T′)].
For a candidate 𝑐 ′, a number 𝑡 ≤ 𝑛 of voters and an integer

score 0 ≤ 𝑦 ≤ 𝑛, define 𝑁 (𝑡, 𝑦) := Pr[∑𝑖∈𝐼∩[𝑡] 𝑠 (𝑇𝑖 , 𝑐 ′) = 𝑦]. In
particular, 𝑁 (𝑛, 𝑠) = Pr[𝑠 (T′, 𝑐 ′) = 𝑠]. For 𝑡 = 0 we have 𝑁 (𝑡, 𝑦) = 1

if 𝑦 = 0 and 𝑁 (𝑡, 𝑦) = 0 otherwise.

Let 𝑡 ≥ 1. If 𝑐 ′ is not ranked first in𝑇𝑡 , then the appearance of the
voter 𝑣𝑡 does not affect the score of 𝑐

′
, hence 𝑁 (𝑡, 𝑦) = 𝑁 (𝑡−1, 𝑦). If

𝑐 ′ is ranked first in𝑇𝑡 , then we consider two cases. If 𝑡 ∈ 𝐼 , then for

the event

∑
𝑖∈𝐼∩[𝑡] 𝑠 (𝑇𝑖 , 𝑐 ′) = 𝑦 we need

∑
𝑖∈𝐼∩[𝑡−1] 𝑠 (𝑇𝑖 , 𝑐 ′) = 𝑦−1;

otherwise, we need

∑
𝑖∈𝐼∩[𝑡−1] 𝑠 (𝑇𝑖 , 𝑐 ′) = 𝑦. Hence, we have the

following.

𝑁 (𝑡, 𝑦) = 𝑝𝑡 · 𝑁 (𝑡 − 1, 𝑦 − 1) + (1 − 𝑝𝑡) · 𝑁 (𝑡 − 1, 𝑦)

For the veto rule, denote by 𝑏 (T′, 𝑐) the (random variable that

holds the) number of voters in T′ who place 𝑐 at the bottom position.

Note that 𝑏 (T′, 𝑐) and 𝑏 (T′, 𝑐 ′) are independent for 𝑐 ≠ 𝑐 ′. We can

write the following.

Pr[Win(𝑐 ; T′)] =
𝑛∑

𝑏=0

Pr[𝑏 (T′, 𝑐) = 𝑏] ·
∏
𝑐′≠𝑐

Pr[𝑏 (T′, 𝑐 ′) ≥ 𝑏]

For 𝑐 ′ ∈ 𝐶 and 𝑏 ∈ {0, . . . , 𝑛}, we can compute Pr[𝑏 (T′, 𝑐 ′) = 𝑏] in
polynomial time similarly to Pr[𝑠 (T′, 𝑐 ′) = 𝑠] under plurality. □

3.2 Connection to CCAUV
In the remainder of this section, we show that computing Pr[Win(𝑐 ;
T′)] is #P-hard for several other voting rules. For every voting rule

we consider, we have a reduction from #CCAUV to computing

Pr[Win(𝑐 ; T′)], as follows. Let 𝐶 , M, Q and 𝑐 ∈ 𝐶 be an instance

of #CCAUV. Define probabilities for the voters as follows. The

voters of M participate with probability 1, and every voter of Q
participates with probability 1/2. Denote by 𝑘 the number of voters

of Q and by 𝛼 (Q,M) the number of subsets Q′ ⊆ Q such that 𝑐 is a

winner ofM ◦ Q′
. We get that Pr[Win(𝑐 ; T′)] = 2

−𝑘𝛼 (Q,M). We

conclude that #P-completeness of #CCAUV implies #P-hardness of
computing Pr[Win(𝑐 ;T′)]. Consequently, in this section the proofs

of our hardness results are essentially showing that #CCAUV is

#P-complete under the voting rule in consideration.

3.3 𝑘-Approval and 𝑘-Veto
We begin with the hardness of 𝑘-approval for 𝑘 > 1 (where 𝑘 = 1 is

the plurality rule discussed in Section 3.1).

Main Track AAMAS 2021, May 3-7, 2021, Online

649

Theorem 3.2. For every fixed 𝑘 > 1, computing Pr[Win(𝑐 ; T′)]
is #P-hard under 𝑘-approval.

Proof. We show a reduction from counting the (not necessarily

perfect) matchings in a graph to #CCAUV under 𝑘-approval. Given

a graph 𝐺 = (𝑈 , 𝐸), we wish to compute the number of subsets

𝐸 ′ ⊆ 𝐸 such that every vertex 𝑢 ∈ 𝑈 is incident to at most one edge

of 𝐸 ′. This problem is known to be #P-complete [26]. Given a graph

𝐺 = (𝑈 , 𝐸) where 𝐸 = {𝑒1, . . . , 𝑒𝑚}, define a set 𝐶 of candidates

by 𝐶 = 𝑈 ∪ {𝑐, 𝑑} ∪ 𝐹 where 𝐹 = 𝐹0 ∪ 𝐹1 ∪ · · · ∪ 𝐹𝑚 and 𝐹𝑖 ={
𝑓𝑖,1, . . . , 𝑓𝑖,𝑘−2

}
. The voting profile is T = M ◦ Q that we define

next.

The first part, M, consists of a single voter 𝑂 ({𝑐, 𝑑} ∪ 𝐹0,𝐶 \
({𝑐, 𝑑} ∪ 𝐹0)). Observe that the candidates of {𝑐, 𝑑} ∪ 𝐹0 receive a

score of 1 from M, and the other candidates receive 0. The second

part is Q = (𝑄1, . . . , 𝑄𝑚). For 𝑖 ∈ [𝑚], define 𝑄𝑖 = 𝑂 (𝑒𝑖 ∪ 𝐹𝑖 ,𝐶 \
(𝑒𝑖 ∪ 𝐹𝑖)). Observe that the candidates of 𝑒𝑖 ∪ 𝐹𝑖 receive a score of

1 from 𝑄𝑖 , and the other candidates receive 0. Also observe that

here we are using the assumption that 𝑘 > 1, as both endpoints of

𝑒𝑖 need to gain 1 from 𝑄𝑖 .

Let Q′ ⊆ Q and denote T′ = M ◦ Q′
. Since only the voter ofM

contributes to the score of 𝑐 and 𝑑 , we have 𝑠 (T′, 𝑐) = 𝑠 (T′, 𝑑) = 1.

Every 𝑓 ∈ 𝐹 can get a positive score only from a single voter,

hence 𝑠 (T′, 𝑓) ≤ 1. If 𝑐 is a winner, then 𝑠 (T′, 𝑢) ≤ 1 for all 𝑢 ∈ 𝑈 ,

and then {𝑒𝑖 : 𝑄𝑖 ∈ Q′} is a matching in 𝐺 because each voter 𝑄𝑖

contributes a score of 1 to the vertices of 𝑒𝑖 . Conversely, if 𝐸
′ ⊆ 𝐸

is a matching in 𝐺 , then 𝑐 is a winner of M ◦ {𝑄𝑒 }𝑒∈𝐸′ .

Overall, the number of subsets Q′ ⊆ Q such that 𝑐 is a winner

of M ◦ Q′
is the number of matchings in 𝐺 , as required. □

Next, by a similar reduction to the proof of Theorem 3.2, we

obtain hardness of 𝑘-veto for 𝑘 > 1 (where 𝑘 = 1 is the veto rule

discussed in Section 3.1).

Theorem 3.3. For every fixed 𝑘 > 1, computing Pr[Win(𝑐 ; T′)]
is #P-hard under 𝑘-veto.

3.4 Additional Positional Scoring Rules
Next, we consider additional positional scoring rules: the Borda

rule (𝑚 − 1,𝑚 − 2, . . . , 0) and the ones of the form 𝑅(𝑓 , ℓ). We use

a technique of Dey and Misra [11].

Lemma 3.4 ([11]). Let 𝐶 = {𝑐1, . . . , 𝑐𝑚} ∪ 𝐷 be a set of candi-
dates, where 𝐷 is nonempty, and ®𝑠 |𝐶 | a normalized scoring vector
(i.e., the greatest common divisor of the scores is one). For every
®𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ Z𝑚 , there exists 𝜆 ∈ N and a voting profile M
such that 𝑠 (M, 𝑐𝑖) = 𝜆 + 𝑥𝑖 for 𝑖 ∈ [𝑚] and 𝑠 (M, 𝑑) < 𝜆 for all 𝑑 ∈ 𝐷 .
Moreover, the number of votes in M is polynomial in |𝐶 | ·∑𝑚

𝑖=1 |𝑥𝑖 |.

We first show hardness for the Borda rule, using Lemma 3.4.

Theorem 3.5. Computing Pr[Win(𝑐 ;T′)] is #P-hard under Borda.

Proof. We show a reduction from counting the matchings in a

graph, as defined in the proof of Theorem 3.2, to #CCAUV under

Borda. Given a graph 𝐺 = (𝑈 , 𝐸) where𝑈 = {𝑢1, . . . , 𝑢𝑛}, define a
set𝐶 of candidates by𝐶 = 𝑈 ∪ {𝑐} ∪ 𝐹 where 𝐹 =

{
𝑓1, . . . , 𝑓𝑛3−𝑛+1

}
.

Note that |𝐶 | = 𝑛3 + 2, hence the scoring vector is (𝑛3 + 1, 𝑛3, . . . , 0).
The voting profile is T = M ◦ Q, as explained next.

The first part, M, is the profile that exists by Lemma 3.4 such

that (for some constant 𝜆 > 0 from the lemma):

• For every 𝑓 ∈ 𝐹 we have 𝑠 (M, 𝑓) < 𝜆.

• For every 𝑢 ∈ 𝑈 we have 𝑠 (M, 𝑢) = 𝜆 + 𝑛5.
• 𝑠 (M, 𝑐) = 𝜆 + 𝑛5 + 2𝑛3 − 1.

The second part is Q = {𝑄𝑒 }𝑒∈𝐸 . For every edge 𝑒 = {𝑢,𝑤} ∈
𝐸, define 𝑄𝑒 := 𝑂 (𝑒, 𝐹,𝑈 \ 𝑒, {𝑐}). From the construction we can

see the following. First, the scores of the candidates of 𝑒 satisfy

𝑠 (𝑄𝑒 , 𝑢) ≥ 𝑛3. Second, for every other vertex 𝑢 ′ ∈ 𝑈 \ 𝑒 we have
𝑠 (𝑄𝑒 , 𝑢

′) ≤ 𝑛 − 2. Third, for every 𝑓 ∈ 𝐹 we have 𝑠 (𝑄𝑒 , 𝑓) < 𝑛3.

Finally, 𝑠 (𝑄𝑒 , 𝑐) = 0.

Let 𝐸 ′ ⊆ 𝐸 be a set of edges. For every𝑢 ∈ 𝑈 , denote by deg𝐸′ (𝑢)
the number of edges of 𝐸 ′ incident to 𝑢. Define Q′ = {𝑄𝑒 }𝑒∈𝐸′ and

T′ = M ◦ Q′
. Since every voter of Q′

contributes a score of 0 to 𝑐 ,

we have 𝑠 (T′, 𝑐) = 𝑠 (M, 𝑐) = 𝜆 + 𝑛5 + 2𝑛3 − 1. For every 𝑓 ∈ 𝐹 , we

have the following since |𝐸 | ≤ 𝑛2:

𝑠 (T′, 𝑓) < 𝜆 + |𝐸 | · 𝑛3 ≤ 𝜆 + 𝑛5 < 𝑠 (T′, 𝑐)

For 𝑢 ∈ 𝑈 , if deg𝐸′ (𝑢) ≤ 1 then 𝑢 gains at most 𝑛3 + 1 from edges

that cover it, and at most |𝐸 | (𝑛 − 2) from the other edges of 𝐸 ′.
Overall,

𝑠 (T′, 𝑢) ≤ 𝑛3 + 1 + |𝐸 | (𝑛 − 2) + 𝑠 (M, 𝑢)
≤ 𝑛3 + 1 + 𝑛2 (𝑛 − 2) + 𝜆 + 𝑛5 < 𝑠 (T′, 𝑐) .

Otherwise, if deg𝐸′ (𝑢) ≥ 2, then we have

𝑠 (T′, 𝑢) ≥ 2𝑛3 + 𝑠 (M, 𝑢) = 𝜆 + 𝑛5 + 2𝑛3 > 𝑠 (T′, 𝑐) .
We can deduce that 𝑐 is a winner of T′ if and only if deg𝐸′ (𝑢) ≤ 1

for every 𝑢 ∈ 𝑈 , that is, 𝐸 ′ is a matching. Since there is a bijection

between the subsets 𝐸 ′ ⊆ 𝐸 and the sub-profiles T′ = M ◦ Q′
, we

get the correctness of the reduction. □

The next theorem states hardness for all positional scoring rules

of the form𝑅(𝑓 , ℓ), except for the rule𝑅(1, 1)with the scoring vector
(2, 1, . . . , 1, 0). The 𝑅(1, 1) rule, which got a considerable attention

in the context of the possible-winner problem [3], remains an open

problem. The proof again uses Lemma 3.4.

Theorem 3.6. Computing Pr[Win(𝑐 ;T′)] is #P-hard under𝑅(𝑓 , ℓ)
whenever (𝑓 , ℓ) ≠ (1, 1).

3.5 Condorcet and Maximin
So far, we considered the complexity of computing the probability of

winning only for positional scoring rules. Next, we show hardness

of two rules of a different type: Condorcet and Maximin. We begin

with the former.

Theorem 3.7. Computing Pr[Win(𝑐 ; T′)] is #P-hard under Con-
dorcet.

Proof. We show a reduction from #X3C to #CCAUV under

Condorcet. In #X3C, we are given a vertex set 𝑈 =
{
𝑢1, . . . , 𝑢3𝑞

}
and a collection 𝐸 of 3-element subsets of𝑈 , and the goal is to count

the 𝑞-element subsets of 𝐸 that cover𝑈 using pairwise-disjoint sets.

This problem is known to be #P-complete [16].

Our reduction is an adaptation of the proof of Wojtas and Fal-

iszewski [28] that Condorcet-#CCAV is #P-complete. The reduc-

tion is as follows. Let 𝑈 =
{
𝑢1, . . . , 𝑢3𝑞

}
and 𝐸 be an instance of

Main Track AAMAS 2021, May 3-7, 2021, Online

650

#X3C. The candidate set is 𝐶 = 𝑈 ∪ {𝑐} and the voting profile is

T1 = M1 ◦ Q1. The first part, M1, consists of 𝑞 − 3 voters with

the preferences (𝑢1, . . . , 𝑢3𝑞, 𝑐). The second part, Q1 =
{
𝑄𝑒
1

}
𝑒∈𝐸 ,

contains a voter for every set 𝑒 in 𝐸, where 𝑄𝑒
1
= 𝑂 (𝑒, {𝑐} ,𝑈 \ 𝑒).

They showed a bijection between two collections: The sub-profiles

Q′
1
⊆ Q1 such that |Q′

1
| ≤ 𝑞 and 𝑐 is a Condorcet winner ofM1 ◦Q′

1
,

and the subsets 𝐸 ′ ⊆ 𝐸 that are exact covers.

We change the reduction as follows to show #P-hardness of
#CCAUV. First, we add another candidate 𝑑 , so now𝐶 = 𝑈 ∪ {𝑐, 𝑑}.
Second, the voting profile is T2 = M2 ◦ Q2. The first part, M2,

consists of 𝑞 − 1 voters with the preferences (𝑢1, . . . , 𝑢3𝑞, 𝑐, 𝑑), and
two voters with the preferences (𝑐, 𝑑,𝑢1, . . . , 𝑢3𝑞). We have the

following for all 𝑢 ∈ 𝑈 .

𝑁M2
(𝑢, 𝑐) = 𝑞 − 1 = 𝑁M1

(𝑢, 𝑐) + 2

𝑁M2
(𝑐,𝑢) = 2 = 𝑁M1

(𝑐,𝑢) + 2

For 𝑐, 𝑑 we have 𝑁M2
(𝑐, 𝑑) = 𝑞 + 1 and 𝑁M2

(𝑑, 𝑐) = 0. The second

part, Q2 =
{
𝑄𝑒
2

}
𝑒∈𝐸 , contains the voter 𝑄

𝑒
2
for each 𝑒 ∈ 𝐸, where

𝑄𝑒
2
= 𝑂 (𝑒, {𝑑} , {𝑐} ,𝑈 \ 𝑒).
To prove the correctness of our reduction, we will show a one-

to-one correspondence between our witnesses and those of Wojtas

and Faliszewski [28], that is, between the sub-profiles Q′
2
⊆ Q2

such that 𝑐 is a Condorcet winner of M2 ◦ Q′
2
, and the sub-profiles

Q′
1
⊆ Q1 such that |Q′

1
| ≤ 𝑞 and 𝑐 is a Condorcet winner ofM1 ◦Q′

1
.

Let Q′
2
⊆ Q2, denote T′

2
= M2 ◦ Q′

2
. Also define the sub-profiles

Q′
1
=
{
𝑄𝑒
1
: 𝑄𝑒

2
∈ Q′

2

}
⊆ Q1 and T′

1
= M1 ◦ Q′

1
. Observe that the

following holds for all 𝑢 ∈ 𝑈 :

𝑁T′
2

(𝑢, 𝑐) = 𝑁M2
(𝑢, 𝑐) + 𝑁Q′

2

(𝑢, 𝑐) = 𝑁M1
(𝑢, 𝑐) + 2 + 𝑁Q′

1

(𝑢, 𝑐)
= 𝑁T′

1

(𝑢, 𝑐) + 2

Similarly, we have 𝑁T′
2

(𝑐,𝑢) = 𝑁T′
1

(𝑐,𝑢) + 2, 𝑁T′
2

(𝑐, 𝑑) = 𝑞 + 1

and 𝑁T′
2

(𝑑, 𝑐) = |Q′
2
|. Hence, for all Q′

2
⊆ Q2, if |Q′

2
| > 𝑞 then

𝑁T′
2

(𝑐, 𝑑) ≤ 𝑁T′
2

(𝑑, 𝑐) and 𝑐 is not a Condorcet winner of T′
2
. Other-

wise, |Q′
2
| ≤ 𝑞. In this case we have 𝑁T′

2

(𝑐, 𝑑) > 𝑁T′
2

(𝑑, 𝑐) and for

every𝑢 ∈ 𝑈 , 𝑁T′
2

(𝑢, 𝑐) = 𝑁T′
1

(𝑢, 𝑐) +2 and 𝑁T′
2

(𝑐,𝑢) = 𝑁T′
1

(𝑐,𝑢) +2.
Similarly, given a sub-profile Q′

1
⊆ Q1 such that |Q′

1
| ≤ 𝑞 and

𝑐 is a Condorcet winner of M1 ◦ Q′
1
, we can define a sub-profile

Q′
2
=
{
𝑄𝑒
2
: 𝑄𝑒

1
∈ Q′

1

}
⊆ Q2 and get that 𝑐 is a Condorcet winner

of M2 ◦ Q2.

We conclude the claimed correspondence, and hence, we get a

polynomial-time reduction from #X3C to #CCAUV. □

Next, we show hardness for the Maximin rule.

Theorem 3.8. Computing Pr[Win(𝑐 ; T′)] is #P-hard under Max-
imin.

Proof. We show a reduction from #X3C, as defined in the proof

of Theorem 3.7, to #CCAUV under Maximin. The reduction is an

adaptation of the proof of Faliszewski, Hemaspaandra and Hemas-

paandra [12] that CCAV is NP-complete under Maximin. Let 𝑈 ={
𝑢1, . . . , 𝑢3𝑞

}
and 𝐸 be an instance of #X3C. Define the candidate

set𝐶 = 𝑈 ∪ {𝑐, 𝑑,𝑤} and voting profile T = M ◦Q, as detailed next.
TheM part consists of 4𝑞 voters as follows:𝑞 voters with the pref-

erence𝑂 (𝑐, 𝑑,𝑈 ,𝑤), then 𝑞 − 1 voters with𝑂 (𝑐,𝑈 ,𝑤,𝑑), then a sin-

gle voter with 𝑂 (𝑈 , 𝑐,𝑤,𝑑), and lastly 2𝑞 voters with 𝑂 (𝑑,𝑤,𝑈 , 𝑐).
The second part is Q = {𝑄𝑒 }𝑒∈𝐸 where 𝑄𝑒 = 𝑂 (𝑤,𝑈 \ 𝑒, 𝑐, 𝑒, 𝑑).

Let Q′ ⊆ Q, define T′ = M ◦Q′
and 𝐸 ′ = {𝑒 ∈ 𝐸 : 𝑄𝑒 ∈ Q′}. For

𝑑 we have that 𝑁M (𝑑, 𝑐) = 2𝑞 and, for all 𝑢 ∈ 𝑈 , that 𝑁M (𝑑,𝑢) = 3𝑞

and 𝑁M (𝑑,𝑤) = 3𝑞. Since the voters of Q′
rank 𝑑 at the bottom

position, Q′
does not affect the score of 𝑑 and 𝑠 (T′, 𝑑) = 2𝑞.

For𝑤 it holds that every voter of Q′
ranks𝑤 at the top position

and, hence, we have that 𝑁T′ (𝑤, 𝑐) = 2𝑞 + |Q′ |, that 𝑁T′ (𝑤,𝑑) =
𝑞 + |Q′ |, and that 𝑁T′ (𝑤,𝑢) = 2𝑞 + |Q′ | for all 𝑢 ∈ 𝑈 . Therefore

𝑠 (T′,𝑤) = 𝑞+|Q′ |. For𝑢 ∈ 𝑈 we have𝑁T′ (𝑢,𝑑) = 𝑞+|Q′ |, therefore,
𝑠 (T′, 𝑢) ≤ 𝑞 + |Q′ |.

Finally, for 𝑐 we have 𝑁T′ (𝑐, 𝑑) = 2𝑞 + |Q′ | and 𝑁T′ (𝑐,𝑤) = 2𝑞.

For every 𝑢 ∈ 𝑈 , let deg𝐸′ (𝑢) be the number of sets of 𝐸 ′ incident
to 𝑢, we get that 𝑁T′ (𝑐,𝑢) = 2𝑞 − 1 + deg𝐸′ (𝑢). We complete the

proof by showing that the number of subsets Q′ ⊆ Q wherein 𝑐 is

a winner of M ◦ Q′
is the number of exact covers.

First, suppose that 𝐸 ′ ⊆ 𝐸 is an exact cover, that is, |𝐸 ′ | = 𝑞

and deg𝐸′ (𝑢) = 1 for every 𝑢 ∈ 𝑈 . Define Q′ = {𝑄𝑒 : 𝑒 ∈ 𝐸 ′} and
T′ = M ◦ Q′

. From the above we have:

• 𝑠 (T′, 𝑑) = 𝑠 (T′,𝑤) = 2𝑞;

• 𝑠 (T′, 𝑢) ≤ 2𝑞 for all 𝑢 ∈ 𝑈 ;

• 𝑠 (T′, 𝑐) = 2𝑞 since 𝑁T′ (𝑐,𝑢) = 2𝑞 for all 𝑢 ∈ 𝑈 .

Hence, 𝑐 is a winner of T′.
Conversely, let Q′ ⊆ Q be such that 𝑐 is a winner of T′ = M ◦

Q′
, and let 𝐸 ′ be the corresponding subset of 𝐸. If |Q′ | > 𝑞 then

𝑠 (T′,𝑤) > 2𝑞 and 𝑠 (T′, 𝑐) ≤ 𝑁T′ (𝑐,𝑤) = 2𝑞; hence, we get a

contradiction. If there exists 𝑢 ∈ 𝑈 such that deg𝐸′ (𝑢) = 0, then

𝑠 (T′, 𝑐) ≤ 𝑁T′ (𝑐,𝑢) = 2𝑞 − 1 and 𝑠 (T′, 𝑑) = 2𝑞, so we again get a

contradiction. We conclude that |𝐸 ′ | ≤ 𝑞 and deg𝐸′ (𝑢) ≥ 1 for all

𝑢 ∈ 𝑈 , therefore 𝐸 ′ is an exact cover. □

To summarize the section, we established the row Pr[win] of
Table 1 on the exact evaluation of the probability of winning. In

the next two sections, we discuss approximate evaluation.

4 HARDNESS OF APPROXIMATION
Observe that there is an additive FPRAS for Pr[Win(𝑐 ;T)] whenever
we can test in polynomial time whether 𝑐 is a winner of a sampled

(fully deterministic) profile. Such an FPRAS is obtained by taking

the ratio of successes in trials wherein we sample voters (according

to their distribution) and test whether 𝑐 is a winner; then, an FPRAS

can be shown in standard ways (e.g., the Hoeffding’s Inequality).

In this and the next section, we study the complexity of multi-

plicative approximation. Note that a multiplicative FPRAS implies

an additive FPRAS, but not vice versa: if the probability is expo-

nentially small, then 0 is already an additive FPRAS, but not a

multiplicative one. In probability estimation, it is often important

to get a multiplicative approximation since, unlike the additive ap-

proximation, it allows for approximating ratios of probabilities (that

are needed, e.g., for conditional probabilities) and for comparison

between the likelihood of rare events. In the remainder of the paper,

we restrict the discussion to multiplicative approximations, unless

explicitly stated otherwise.

In this section, we argue that for most of the rules considered

in the previous section, (multiplicative) approximation is also in-

tractable and an FPRAS does not exist under conventional com-

plexity assumptions. We show it by proving that it is NP-hard to

Main Track AAMAS 2021, May 3-7, 2021, Online

651

determine whether Pr[Win(𝑐 ;T′)] = 0 and, therefore, a multiplica-

tive FPRAS for Pr[Win(𝑐 ; T)] under 𝑟 implies that NP ⊆ BPP.
As a general technique, observe that deciding whether Pr[Win(𝑐 ;

T′)] > 0 does not depend on the probabilities of voters (as long

as this probability is nonzero). Hence, there is a polynomial-time

reduction from the decision of Pr[Win(𝑐 ; T′)] > 0 to CCAUV and

vice versa. In the first direction, each random voter with probability

zero is ignored, each voter with probability one is put in M, and

each remaining voter is put in Q. In the second direction, every

voter of M participates with probability 1 and every voter of Q
participates with probability 1/2 (or any other probability in (0, 1)).

4.1 Hardness Results
We begin by showing hardness for the Borda rule.

Theorem 4.1. For the Borda rule, CCAUV is NP-complete; hence,
under Borda it is NP-complete to decide whether Pr[Win(𝑐 ;T′)] > 0.

Proof. We show a reduction to Borda-CCAUV from Borda-

CCAV, which is known to be NP-complete [25]. Let M1,Q1, 𝑐
∗
and

𝑘 be an input for CCAV under Borda over a set 𝐶1 of𝑚 candidates,

where Q1 = (𝑄1

1
, . . . , 𝑄𝑛

1
). By the proof of Russell [25] that CCAV

is NP-complete for Borda, we can assume that all voters of Q1 rank

𝑐∗ at the top position. We construct an instance of CCAUV under

Borda, where the candidate set is 𝐶2 = 𝐶1 ∪ {𝑑1, 𝑑2}.
Let M2 be the profile of Lemma 3.4 such that (for some 𝜆 > 0):

• 𝑠 (M2, 𝑑1) < 𝜆 and 𝑠 (M2, 𝑑2) = 𝜆 + 2𝑚𝑛 + 𝑠 (M1, 𝑐
∗) − 𝑘 .

• For every 𝑐 ∈ 𝐶1 we have 𝑠 (M2, 𝑐) = 𝜆 + 2𝑚𝑛 + 𝑠 (M1, 𝑐).
The second profile Q2 = (𝑄1

2
, . . . , 𝑄𝑛

2
) consists of 𝑛 voters, where

𝑄𝑖
2
= (𝑑1, 𝑑2) ◦𝑄𝑖

1
for every 𝑖 ∈ [𝑛].

Let Q′
2
be a sublist of Q2, define Q′

1
=
{
𝑄𝑖
1
: 𝑄𝑖

2
∈ Q′

2

}
, and let

T′
2
= M2 ◦ Q′

2
, T′

1
= M1 ◦ Q′

1
. For 𝑐 ∈ 𝐶1 we have the following.

𝑠 (T′
2
, 𝑐) = 𝑠 (M2, 𝑐) + 𝑠 (Q′

2
, 𝑐) = 𝜆 + 2𝑚𝑛 + 𝑠 (M1, 𝑐) + 𝑠 (Q′

1
, 𝑐)

= 𝜆 + 2𝑚𝑛 + 𝑠 (T′
1
, 𝑐) (1)

Since we assume that all voters of Q1 rank 𝑐
∗
at the top position,

for all 𝑖 ∈ [𝑛] we have 𝑠 (𝑄𝑖
2
, 𝑐∗) = 𝑠 (𝑄𝑖

1
, 𝑐∗) =𝑚 − 1, and overall

𝑠 (T′
2
, 𝑐∗) = 𝜆 + 2𝑚𝑛 + 𝑠 (M1, 𝑐

∗) + (𝑚 − 1) |Q′
2
|

Finally, every voter of Q′
2
contributes the scores𝑚 + 1 and𝑚 to 𝑑1

and 𝑑2, respectively, therefore

𝑠 (T′
2
, 𝑑1) < 𝜆 + (𝑚 + 1) |Q′

2
| ≤ 𝜆 + (𝑚 + 1)𝑛 (2)

𝑠 (T′
2
, 𝑑2) = 𝜆 + 2𝑚𝑛 + 𝑠 (M1, 𝑐

∗) − 𝑘 +𝑚 |Q′
2
|

= 𝑠 (T′
2
, 𝑐∗) − 𝑘 + |Q′

2
| (3)

From Equation (1) we can deduce that for every 𝑐 ∈ 𝐶1 \ {𝑐∗}, 𝑐∗
defeats 𝑐 in T1 if and only if 𝑐∗ defeats 𝑐 in T2. From Equations (1)

and (2) we can deduce that 𝑑1 is defeated by all candidates of 𝐶1.

From Equation (3) we can deduce that 𝑐∗ defeats 𝑑2 in T′
2
if and

only if |Q′
2
| ≤ 𝑘 .

We show that there exists Q′
2
⊆ Q2 such that 𝑐∗ is a winner

of M2 ◦ Q′
2
if and only if there exists Q′

1
⊆ Q1 of size at most 𝑘

such that 𝑐∗ is a winner of M1 ◦ Q′
1
. Let Q′

2
⊆ Q2 such that 𝑐∗ is

a winner ofM2 ◦ Q′
2
. In particular, 𝑐∗ defeats 𝑑2, hence as we said

|Q′
2
| ≤ 𝑘 . Let Q′

1
=
{
𝑄𝑖
1
: 𝑄𝑖

2
∈ Q′

2

}
, we have |Q1 | ≤ 𝑘 . For every

𝑐 ∈ 𝐶1 \ {𝑐∗}, 𝑐∗ defeats 𝑐 inM2 ◦Q′
2
, hence 𝑐∗ defeats 𝑐 inM1 ◦Q′

1
.

Therefore |Q1 | ≤ 𝑘 and 𝑐∗ is a winner of M1 ◦ Q′
1
.

Conversely, letQ′
1
⊆ Q1 of size at most 𝑘 such that 𝑐∗ is a winner

of M1 ◦ Q′
1
, define Q′

2
=
{
𝑄𝑖
2
: 𝑄𝑖

1
∈ Q′

1

}
. By the same arguments

as before, 𝑐∗ defeats every candidates of 𝐶1 \ {𝑐∗} in M2 ◦ Q′
2
, all

candidates of 𝐶1 defeat 𝑑1, and 𝑐
∗
defeats 𝑑2 since |Q′

2
| ≤ 𝑘 . Hence,

𝑐 is a winner of M2 ◦ Q′
2
. □

The following two theorems show that CCAUV is NP-complete

under 𝑅(𝑓 , ℓ) whenever (𝑓 , ℓ) ≠ (1, 1).

Theorem 4.2. For every fixed 𝑓 ≥ 2 and ℓ ≥ 1, CCAUV is NP-
complete under 𝑅(𝑓 , ℓ).

Proof. We show a reduction from the problem of 3-dimensional
matching (3DM): Given three disjoint sets 𝑋 =

{
𝑥1, . . . , 𝑥𝑞

}
, 𝑌 ={

𝑦1, . . . , 𝑦𝑞
}
and 𝑍 =

{
𝑧1, . . . , 𝑧𝑞

}
of the same size, and a set 𝐸 ⊆

𝑋 ×𝑌 ×𝑍 , is there a subset 𝐸 ′ ⊆ 𝐸 consisting of 𝑞 pairwise-disjoint

triples? This problem is know to be NP-complete [14]. Given 𝑋 , 𝑌 ,

𝑍 and 𝐸 = {𝑒1, . . . , 𝑒𝑚}, we construct an instance of CCAUV under

𝑅(𝑓 , ℓ). Denote𝑈 = 𝑋∪𝑌∪𝑍 . The candidate set is𝐶 = 𝑈∪𝑊1∪𝑊2∪
{𝑐, 𝑑} where𝑊1 =

{
𝑤1,1, . . . ,𝑤1,𝑓 −2

}
and𝑊2 =

{
𝑤2,1, . . . ,𝑤2,ℓ−1

}
.

Let M the profile of Lemma 3.4 such that (for some 𝜆 > 0):

• 𝑠 (M, 𝑐) = 𝜆 + 2𝑚 and 𝑠 (M, 𝑑) < 𝜆;

• 𝑠 (M,𝑤) = 𝜆 for all𝑤 ∈𝑊1 ∪𝑊2;

• 𝑠 (M, 𝑥) = 𝑠 (M, 𝑦) = 𝜆 + 2𝑚 − 1 for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 ;

• 𝑠 (M, 𝑧) = 𝜆 + 2𝑚 + 1 for all 𝑧 ∈ 𝑍 .

The second profile Q = {𝑄𝑒 }𝑒∈𝐸 consists of a voter for every

triplet in 𝐸. For every 𝑒 = (𝑥,𝑦, 𝑧) ∈ 𝐸 define

𝑄𝑒 = 𝑂 ({𝑥,𝑦} ∪𝑊1, (𝑈 \ 𝑒) ∪ {𝑐, 𝑑} , {𝑧} ∪𝑊2) .
Note that the candidates of {𝑥,𝑦} ∪𝑊1 receive a score of 2 from

𝑄𝑒 , the candidates of {𝑧} ∪𝑊2 receive a score of 0 from 𝑄𝑒 , and

the remaining candidates receive 1.

We state some observations regarding the profile. Let Q′ ⊆ Q,
define 𝐸 ′ = {𝑒 ∈ 𝐸 : 𝑄𝑒 ∈ Q′}. Every voter ofQ′

contributes a score

of 1 to 𝑐 and 𝑑 , hence their scores are:

𝑠 (M ◦ Q′, 𝑐) = 𝜆 + 2𝑚 + |Q′ |
𝑠 (M ◦ Q′, 𝑑) < 𝜆 + |Q′ | ≤ 𝜆 +𝑚 < 𝑠 (M ◦ Q′, 𝑐)

Similarly, for every𝑤 ∈𝑊1 ∪𝑊2 the score satisfies 𝑠 (M ◦Q′,𝑤) ≤
𝜆 + 2𝑚, hence 𝑐 always defeats the candidates of𝑊1 ∪𝑊2 ∪ {𝑑}.

For every 𝑢 ∈ 𝑈 , let deg𝐸′ (𝑢) be the number of triplet in 𝐸 ′ that
are incident to 𝑢. For every 𝑢 ∈ 𝑋 ∪ 𝑌 we have

𝑠 (M ◦ Q′, 𝑢) = 𝜆 + 2𝑚 − 1 + |Q′ | + deg𝐸′ (𝑢)
= 𝑠 (M ◦ Q′, 𝑐) − 1 + deg𝐸′ (𝑢) . (4)

and for every 𝑧 ∈ 𝑍 we have

𝑠 (M ◦ Q′, 𝑧) = 𝜆 + 2𝑚 + 1 + |Q′ | − deg𝐸′ (𝑧)
= 𝑠 (M ◦ Q′, 𝑐) + 1 − deg𝐸′ (𝑧) . (5)

We show that there existsQ′ ⊆ Q such that 𝑐 is a winner ofM◦Q′

if and only if there is a 3DM. Let 𝐸 ′ ⊆ 𝐸 be a 3DM, that is, |𝐸 ′ | = 𝑞

and deg𝐸′ (𝑢) = 1 for all𝑢 ∈ 𝑈 . DefineQ′ = {𝑄𝑒 : 𝑒 ∈ 𝐸 ′}. For every
𝑢 ∈ 𝑋 ∪𝑌 , by Equation (4), we have 𝑠 (M◦Q′, 𝑢) = 𝑠 (M◦Q′, 𝑐), and
for every 𝑧 ∈ 𝑍 , by Equation (5) we have 𝑠 (M◦Q′, 𝑧) = 𝑠 (M◦Q′, 𝑐).
Since 𝑐 always defeats the candidates of𝑊1 ∪𝑊2 ∪ {𝑑}, we can
deduce that 𝑐 is a winner of M ◦ Q′

.

Conversely, let Q′ ⊆ Q such that 𝑐 is a winner of M ◦ Q′
, and

let 𝐸 ′ = {𝑒 ∈ 𝐸 : 𝑄𝑒 ∈ Q′}. For every 𝑧 ∈ 𝑍 , since 𝑐 defeats every

Main Track AAMAS 2021, May 3-7, 2021, Online

652

𝑧, by Equation (5) we have deg𝐸′ (𝑧) ≥ 1. Every 𝑧 ∈ 𝑍 is covered

by at least one set of 𝐸 ′, therefore |𝐸 ′ | ≥ 𝑞. For every 𝑢 ∈ 𝑋 ∪ 𝑌 ,

since 𝑐 defeats every 𝑢, by Equation (4) we have deg𝐸′ (𝑢) ≤ 1. If

|𝐸 ′ | > 𝑞 then there exists 𝑢 ∈ 𝑋 ∪𝑌 for which deg𝐸′ (𝑢) > 1, hence

a contradiction.

Overall, |𝐸 ′ | = 𝑞, each 𝑧 ∈ 𝑍 is covered by at least one set of 𝐸 ′,
and each 𝑢 ∈ 𝑋 ∪ 𝑌 is covered by at most one set of 𝐸 ′. Therefore,
𝐸 ′ is a 3DM. □

By a reduction similar to the proof of Theorem 4.2, we obtain

the following.

Theorem 4.3. For every fixed 𝑓 ≥ 1 and ℓ ≥ 2, CCAUV is NP-
complete under 𝑅(𝑓 , ℓ).

From Theorems 4.2 and 4.3 we conclude the following.

Corollary 4.4. For all fixed (𝑓 , ℓ) ≠ (1, 1), it is NP-complete to
determine whether Pr[Win(𝑐 ; T′)] > 0 under 𝑅(𝑓 , ℓ).

For the rules Condorcet and Maximin, the proofs of Theorem 3.7

and Theorem 3.8, respectively, show a reduction from #X3C to

computing the number of subsets Q′ ⊆ Q such that 𝑐 is a winner

ofM ◦ Q′
. Since it is NP-hard to decide whether there is an exact

cover, it is also NP-hard to decide whether there exists Q′ ⊆ Q
such that 𝑐 is a winner of M ◦ Q′

.

Theorem 4.5. Under Condorcet and Maximin, CCAUV (and de-
ciding whether Pr[Win(𝑐 ; T′)] > 0) is NP-complete.

4.2 Tractable Zeroness for Binary Rules
What about the positional scoring rules that are not covered by the

previous section? In particular, is there an FPRAS for𝑘-approval and

𝑘-veto for 𝑘 > 1 where an exact evaluation is #P-hard (Theorem 3.2

and 3.3)? The question remains open. We do know, however, that

the proof technique of this section fails on them since it turns out

that zeroness can be decided in polynomial time for these rules

(and, in fact, every binary positional scoring rule).

Theorem 4.6. For every binary positional scoring rule, CCAUV is
solvable in polynomial time and, hence, whether Pr[Win(𝑐 ; T′)] > 0

can be decided in polynomial time.

Proof. Let (𝐶,M,Q, 𝑐) be an instance of CCAUV. Let Q∗ ⊆ Q
be the set of all voters of who contribute 1 to 𝑐 . We claim that if any

Q′ ⊆ Q is such that 𝑐 is a winner ofM ◦ Q′
, then 𝑐 is a winner of

M ◦ Q∗
. Hence, it suffices to test whether 𝑐 is a winner of M ◦ Q∗

.

Let Q1 ⊆ Q such that 𝑐 is a winner of M ◦ Q1. For every voter

of Q∗ \ Q1, if we add it toM ◦ Q1 then the score of 𝑐 increases by

1, and the score of every other candidate increases by at most 1.

Hence, we can add all voters of Q∗ \ Q1 and 𝑐 remains a winner,

that is, 𝑐 is a winner ofM◦Q2 where Q2 = Q1 ∪Q∗
. Now, for every

voter in Q2 \Q∗
, if we remove it fromM ◦Q2 then the score of 𝑐 is

unchanged (since these voters contribute 0 to the score of 𝑐) and

the score of the other candidates cannot increase. Therefore 𝑐 is a

winner of M ◦ Q∗
. □

5 APPROXIMATE LOSING PROBABILITY
In the previous section, we showed that a multiplicative approx-

imation of Pr[Win(𝑐 ; T′)] is often intractable since it is hard to

Algorithm 1: Sampling from the posterior distribution

conditioned on L(𝑐, 𝑑 ; T′).
1 Define 𝐽0 := ∅
2 for 𝑖 = 1, . . . , 𝑛 do
3 Compute 𝑞𝑖 := Pr[𝑖 ∈ 𝐼 | L(𝑐, 𝑑 ; T′) ∧ 𝐼𝑖−1 = 𝐽𝑖−1]
4 With probability 𝑞𝑖 define 𝐽𝑖 := 𝐽𝑖−1 ∪ {𝑖}, otherwise

𝐽𝑖 := 𝐽𝑖−1

5 return 𝐽 := 𝐽𝑛

determine whether this probability is zero. In cases where it is

tractable to determine whether it is zero, the existence of an ap-

proximation scheme (and even a constant-ratio approximation)

remains an open problem. In this section we show that, in con-

trast, we can often get an FPRAS for the probability of losing:
Pr[Lose(𝑐 ; T′)] = 1 − Pr[Win(𝑐 ; T′)].

Theorem 5.1. There is a multiplicative FPRAS for estimating
Pr[Lose(𝑐 ;T′)] = 1− Pr[Win(𝑐 ;T′)] under every positional scoring
rule with polynomial scores, and under the Condorcet rule.

In the remainder of this section, we prove Theorem 5.1. We

adapt the technique of Karp-Luby-Madras [18] for approximating

the number of satisfying assignments of a DNF formula.

For a positional scoring rule, 𝑐 is not a winner if there exists

another candidate 𝑑 such that 𝑠 (T′, 𝑑) > 𝑠 (T′, 𝑐). For a pair of

candidates 𝑐 ≠ 𝑑 , let L(𝑐, 𝑑 ;T′) be the event that 𝑠 (T′, 𝑐) > 𝑠 (T′, 𝑑).
We can write Lose(𝑐 ; T′) = ∨𝑑≠𝑐L(𝑑, 𝑐 ; T′). Under Condorcet, 𝑐 is
not a winner if there exists 𝑑 ≠ 𝑐 such that 𝑁T′ (𝑑, 𝑐) ≥ 𝑁T′ (𝑐, 𝑑).
Therefore the event L(𝑐, 𝑑 ;T′) is 𝑁T′ (𝑐, 𝑑) ≥ 𝑁T′ (𝑑, 𝑐) and we again
have Lose(𝑐 ; T′) = ∨𝑑≠𝑐L(𝑑, 𝑐 ; T′).

As before, let 𝐼 ⊆ [𝑛] be the random variable that represents the

random set of voters who cast their vote. For the Karp-Luby-Madras

algorithm to estimate Pr[∨𝑑≠𝑐L(𝑑, 𝑐 ; T′)], we need to perform the

following tasks in polynomial time:

(1) Test whether L(𝑐, 𝑑 ; T′) is true in a given sample;

(2) Compute Pr[L(𝑐, 𝑑 ; T′)] for every 𝑐 and 𝑑 ;
(3) Sample a random set 𝐼 of voters from the posterior distribu-

tion conditioned on the event L(𝑐, 𝑑 ; T′).
The first task is straightforward. For the other two tasks, we assume

that we can compute Pr[L(𝑐, 𝑑 ;T′) | 𝐼 ∩𝑆 = 𝑆 ′] in polynomial time,

given a profile T, a pair of candidates 𝑐, 𝑑 and voter sets 𝑆 ⊆ [𝑛] and
𝑆 ′ ⊆ 𝑆 . Later, we will show how this can be done for particular rules.

This solves the second task because Pr[L(𝑐, 𝑑 ;T′)] = Pr[L(𝑐, 𝑑 ;T′) |
𝐼 ∩ ∅ = ∅].

For the task of sampling from the posterior distribution condi-

tioned on L(𝑐, 𝑑 ; T′), for every 𝑖 ≤ 𝑛 we define a random variable

𝐼𝑖 = 𝐼 ∩ {1, . . . , 𝑖}. Algorithm 1 presents the sampling procedure,

which constructs a random set of voters iteratively. It begins with

𝐽0 := ∅. Then, for every 𝑖 ∈ [𝑛], at the 𝑖th iteration, the algorithm

defines 𝐽𝑖 := 𝐽𝑖−1∪{𝑖} with probability Pr[𝑖 ∈ 𝐼 | L(𝑐, 𝑑 ;T′)∧𝐼𝑖−1 =
𝐽𝑖−1], and 𝐽𝑖 := 𝐽𝑖−1 otherwise. The output is 𝐽 := 𝐽𝑛 .

We show that the algorithm is correct: for all 𝑈 ⊆ [𝑛] we have
Pr[𝐽 = 𝑈] = Pr[𝐼 = 𝑈 | L(𝑐, 𝑑 ; T′)] . (6)

For that, we show by induction on 𝑖 that for every𝑈 ⊆ [𝑖] we have
Pr[𝐽𝑖 = 𝑈] = Pr[𝐼𝑖 = 𝑈 | L(𝑐, 𝑑 ; T′)] . (7)

Main Track AAMAS 2021, May 3-7, 2021, Online

653

Then, for 𝑖 = 𝑛 we get Pr[𝐽 = 𝑈] = Pr[𝐼 = 𝑈 | L(𝑐, 𝑑 ; T)].
For the base 𝑖 = 1, the equality (7) holds by the definition of the

algorithm. Let 𝑖 > 1, assume the equality holds for 𝑖 − 1, and let

𝑈 ⊆ [𝑖]. If 𝑖 ∈ 𝑈 then

Pr[𝐽𝑖 = 𝑈] = Pr[𝐽𝑖−1 = 𝑈 \ {𝑖}] · Pr[𝑖 ∈ 𝐽𝑖 | 𝐽𝑖−1 = 𝑈 \ {𝑖}]
= Pr[𝐼𝑖−1 = 𝑈 \ {𝑖} | L(𝑐, 𝑑 ; T′)]
× Pr[𝑖 ∈ 𝐼 | L(𝑐, 𝑑 ; T′) ∧ 𝐼𝑖−1 = 𝑈 \ {𝑖}]

= Pr[𝐼𝑖 = 𝑈 | L(𝑐, 𝑑 ; T′)] .
Otherwise, 𝑖 ∉ 𝑈 , similarly,

Pr[𝐽𝑖 = 𝑈] = Pr[𝐽𝑖−1 = 𝑈 \ {𝑖}] · Pr[𝑖 ∉ 𝐽𝑖 | 𝐽𝑖−1 = 𝑈 \ {𝑖}]
= Pr[𝐼𝑖 = 𝑈 | L(𝑐, 𝑑 ; T′)] .

This concludes the correctness of the algorithm.

We now show that the algorithm can be realized in polynomial

time. In the the 𝑖th iteration, we need to compute 𝑞𝑖 = Pr[𝑖 ∈ 𝐼 |
L(𝑐, 𝑑 ; T′) ∧ 𝐼𝑖−1 = 𝐽𝑖−1], that is:

𝑞𝑖 =
Pr[L(𝑐, 𝑑 ; T′) ∧ 𝐼𝑖 = 𝐽𝑖−1 ∪ {𝑖}]
Pr[L(𝑐, 𝑑 ; T′) ∧ 𝐼𝑖−1 = 𝐽𝑖−1]

.

For the denominator, observe that

Pr[L(𝑐, 𝑑 ; T′) ∧ 𝐼𝑖−1 = 𝐽𝑖−1]
= Pr[𝐼𝑖−1 = 𝐽𝑖−1] × Pr[L(𝑐, 𝑑 ; T′) | 𝐼𝑖−1 = 𝐽𝑖−1] .

We can compute Pr[𝐼𝑖−1 = 𝐽𝑖−1] directly from the definition:

Pr[𝐼𝑖−1 = 𝐽𝑖−1] =
∏

𝑗 ∈[𝑖−1]∩𝐽𝑖−1
𝑝 𝑗

∏
𝑗 ∈[𝑖−1]\𝐽𝑖−1

(1 − 𝑝 𝑗) .

For the second part, we have

Pr[L(𝑐, 𝑑 ; T′) | 𝐼𝑖−1 = 𝐽𝑖−1] = Pr[L(𝑐, 𝑑 ; T′) | 𝐼 ∩ [𝑖 − 1] = 𝐽𝑖−1] ,
which can be computed in polynomial time by our assumption that

Pr[L(𝑐, 𝑑 ; T′) | 𝐼 ∩ 𝑆 = 𝑆 ′] is computable in polynomial time. We

can similarly compute the numerator Pr[L(𝑐, 𝑑 ;T′), 𝐼𝑖 = 𝐽𝑖−1 ∪ {𝑖}].
It remains to show that Pr[L(𝑐, 𝑑 ; T′) | 𝐼 ∩ 𝑆 = 𝑆 ′] can indeed

be calculated in polynomial time for 𝑆 ⊆ [𝑛] and 𝑆 ′ ⊆ 𝑆 . We start

with positional scoring rules with polynomial scores.

Lemma 5.2. For every positional scoring rule with polynomial
scores, we can compute Pr[L(𝑐, 𝑑 ; T′) | 𝐼 ∩ 𝑆 = 𝑆 ′] in polynomial
time given a voting profile T over a set 𝐶 of candidates, a pair 𝑐 ≠ 𝑑

of candidates, probabilities (𝑝1, . . . , 𝑝𝑛), and sets 𝑆 ′ ⊆ 𝑆 .

Proof. For every voter 𝑣𝑖 define 𝑥𝑖 = 𝑠 (𝑇𝑖 , 𝑐)−𝑠 (𝑇𝑖 , 𝑑) and define
𝐷 =

∑
𝑖∈𝑆′ 𝑥𝑖 . Observe that

Pr[L(𝑐, 𝑑 ; T′) | 𝐼 ∩ 𝑆 = 𝑆 ′] = Pr

[∑
𝑖∈𝐼

𝑥𝑖 > 0

�� 𝐼 ∩ 𝑆 = 𝑆 ′
]

= Pr


∑

𝑖∈𝐼∩𝑆
𝑥𝑖 +

∑
𝑖∈𝐼\𝑆

𝑥𝑖 > 0

�� 𝐼 ∩ 𝑆 = 𝑆 ′
 = Pr


∑
𝑖∈𝐼\𝑆

𝑥𝑖 > −𝐷
 .

We show that we can compute Pr[∑𝑖∈𝐼\𝑆 𝑥𝑖 > −𝐷] in polyno-

mial time. Assume, without loss of generality, that the set of voters

outside 𝑆 is [𝑛] \ 𝑆 = {1, . . . , 𝑘}.
Let 𝐴 be the sum of the negative values in 𝑥1, . . . , 𝑥𝑘 and 𝐵 the

sum of the positive values. For every 𝑡 ≤ 𝑘 and 𝑦 ∈ Z, define
𝑁 (𝑡, 𝑦) = Pr[∑𝑖∈𝐼∩[𝑡] 𝑥𝑖 > 𝑦], our goal is to compute 𝑁 (𝑘,−𝐷). If

𝑦 < 𝐴 then𝑁 (𝑡, 𝑦) = 1 and if𝑦 > 𝐵 then𝑁 (𝑡, 𝑦) = 0. Using dynamic

programming, we compute 𝑁 (𝑡, 𝑦) for all 𝑡 ≤ 𝑘 and 𝑦 ∈ {𝐴, . . . , 𝐵}
in polynomial time. Note that 𝐵 −𝐴 = poly(𝑛,𝑚) since the scores
are polynomial.

For 𝑡 = 0 we have 𝑁 (𝑡, 𝑦) = 1 if 𝑦 < 0 and 𝑁 (𝑡, 𝑦) = 0 oth-

erwise. Let 𝑡 ≥ 1, consider two cases. If 𝑡 ∈ 𝐼 then for the event∑
𝑖∈𝐼∩[𝑡] 𝑥𝑖 > 𝑦 we need

∑
𝑖∈𝐼∩[𝑡−1] 𝑥𝑖 > 𝑦−𝑥𝑡 , otherwise we need∑

𝑖∈𝐼∩[𝑡−1] 𝑥𝑖 > 𝑦. Hence,

𝑁 (𝑡, 𝑦) = 𝑝𝑡 · 𝑁 (𝑡 − 1, 𝑦 − 𝑥𝑡) + (1 − 𝑝𝑡) · 𝑁 (𝑡 − 1, 𝑦) .

This concludes the proof. □

Using a similar analysis to the proof of Lemma 5.2, we obtain

the same result for the Condorcet rule.

Lemma 5.3. For the Condorcet rule, we can compute Pr[L(𝑐, 𝑑 ;T′) |
𝐼 ∩ 𝑆 = 𝑆 ′] in polynomial time given a voting profile T over a set𝐶 of
candidates, a pair 𝑐 ≠ 𝑑 of candidates, probabilities (𝑝1, . . . , 𝑝𝑛) and
sets 𝑆 ′ ⊆ 𝑆 .

Note that Theorem 5.1 covers all voting rules that we discuss

in the paper, except for Maximin. The correctness of Algorithm 1

holds for Maximin, and in fact for every voting rule. However, to

obtain an FPRAS for estimating Pr[Lose(𝑐 ; T′)] under Maximin,

we need to be able to compute the probabilities 𝑞𝑖 of Algorithm 1

in polynomial time for Maximin. Whether this is the case remains

an open problem.

6 CONCLUSIONS
We studied the complexity of evaluating the marginal probability

of wining in an election where voters are drawn independently

at random, each with a given probability. The exact probability

is computable in polynomial time for the plurality and veto rules,

and #P-hard for the other rules we considered, including classes

of positional scoring rules, Condorcet and Maximin. In some of

these cases, it is also intractable to compute a multiplicative approx-

imation of the probability of winning, since it is NP-complete to

determine whether this probability is nonzero. For 𝑘-approval and

𝑘-veto, the zeroness problem is solvable in polynomial time, but the

complexity of the multiplicative approximation remains unknown.

In contrast, we devised a multiplicative FPRAS for the probability

of losing in all positional scoring rules with polynomial scores, in

addition to Condorcet.

Several problems are left open for future investigation. First, can

we establish a full classification of the (pure) positional scoring rules

in terms of their complexity for our problem, as in the case of the

possible-winner problem over incomplete preferences [3, 4, 29]? It

might be the case the same classification holds, since our results so

far are consistent with the possible winner (tractability for plurality

and veto, and hardness for the rest). To begin with, a specific rule

of which absence stands out in Table 1 is (2, 1, . . . , 1, 0), namely

𝑅(1, 1), that received much attention in the context of the possible

winners [3]. Moreover, there are other voting rules to consider, such

as Copeland and Bucking. Second, while all of our reductions used

only the probabilities 1/2 and 1, would it suffice to use just 1/2 (i.e.,
counting the voter subsets where the candidate wins)? Finally, the

existence of an FPRAS for Maximin remains unknown.

Main Track AAMAS 2021, May 3-7, 2021, Online

654

REFERENCES
[1] Yoram Bachrach, Nadja Betzler, and Piotr Faliszewski. 2010. Probabilistic Possible

Winner Determination. In AAAI, Maria Fox and David Poole (Eds.). AAAI Press.

[2] John J. Bartholdi, Craig A. Tovey, and Michael A. Trick. 1992. How hard is it to

control an election? Mathematical and Computer Modelling 16, 8 (1992), 27 – 40.

[3] Dorothea Baumeister and Jörg Rothe. 2012. Taking the final step to a full di-

chotomy of the possible winner problem in pure scoring rules. Inf. Process. Lett.
112, 5 (2012), 186–190.

[4] Nadja Betzler and Britta Dorn. 2010. Towards a dichotomy for the Possible

Winner problem in elections based on scoring rules. J. Comput. Syst. Sci. 76, 8
(2010), 812–836.

[5] Craig Boutilier, Jérôme Lang, Joel Oren, and Héctor Palacios. 2014. Robust

Winners and Winner Determination Policies under Candidate Uncertainty. In

AAAI, Carla E. Brodley and Peter Stone (Eds.). AAAI Press, 1391–1397.

[6] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia.

2016. Introduction to Computational Social Choice. InHandbook of Computational
Social Choice. 1–20.

[7] Ioannis Caragiannis, Ariel D. Procaccia, and Nisarg Shah. 2013. When do noisy

votes reveal the truth?. In EC, Michael J. Kearns, R. Preston McAfee, and Éva

Tardos (Eds.). ACM, 143–160.

[8] Lin Chen, Lei Xu, Shouhuai Xu, Zhimin Gao, and Weidong Shi. 2019. Election

with Bribe-Effect Uncertainty: A Dichotomy Result. In IJCAI, Sarit Kraus (Ed.).
ijcai.org, 158–164.

[9] Lin Chen, Lei Xu, Shouhuai Xu, Zhimin Gao, and Weidong Shi. 2019. Election

with Bribed Voter Uncertainty: Hardness and Approximation Algorithm. In IAAI.
AAAI Press, 2572–2579.

[10] Palash Dey and Arnab Bhattacharyya. 2015. Sample Complexity for Winner

Prediction in Elections. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May
4-8, 2015, Gerhard Weiss, Pinar Yolum, Rafael H. Bordini, and Edith Elkind (Eds.).

ACM, 1421–1430. http://dl.acm.org/citation.cfm?id=2773334

[11] Palash Dey and Neeldhara Misra. 2017. On the Exact Amount of Missing In-

formation that Makes Finding Possible Winners Hard. In MFCS (LIPIcs, Vol. 83),
Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin (Eds.). 57:1–57:14.

[12] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. 2011. Multi-

mode Control Attacks on Elections. J. Artif. Intell. Res. 40 (2011), 305–351.
[13] Yuval Filmus and Joel Oren. 2014. Efficient voting via the top-k elicitation scheme:

a probabilistic approach. In EC, Moshe Babaioff, Vincent Conitzer, and David A.

Easley (Eds.). ACM, 295–312.

[14] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman.

[15] Noam Hazon, Yonatan Aumann, Sarit Kraus, and Michael J. Wooldridge. 2012.

On the evaluation of election outcomes under uncertainty. Artif. Intell. 189 (2012),
1–18.

[16] Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, and Richard Ed-

win Stearns. 1998. The Complexity of Planar Counting Problems. SIAM J. Comput.
27, 4 (1998), 1142–1167.

[17] Aviram Imber and Benny Kimelfeld. 2021. Probabilistic Inference of Winners in

Elections by Independent Random Voters. arXiv:2101.12524 [cs.GT]

[18] Richard M. Karp, Michael Luby, and Neal Madras. 1989. Monte-Carlo Approxima-

tion Algorithms for Enumeration Problems. J. Algorithms 10, 3 (1989), 429–448.
[19] Batya Kenig and Benny Kimelfeld. 2019. Approximate Inference of Outcomes in

Probabilistic Elections. In AAAI. AAAI Press, 2061–2068.
[20] Kathrin Konczak and Jérôme Lang. 2005. Voting procedures with incomplete pref-

erences. In Proc. IJCAI-05 Multidisciplinary Workshop on Advances in Preference
Handling, Vol. 20.

[21] Andrew Lin. 2011. The Complexity of Manipulating k-Approval Elections. In

ICAART, Joaquim Filipe and Ana L. N. Fred (Eds.). SciTePress, 212–218.

[22] Tyler Lu and Craig Boutilier. 2011. Vote Elicitation with Probabilistic Preference

Models: Empirical Estimation and Cost Tradeoffs. In ADT, Ronen I. Brafman,

Fred S. Roberts, and Alexis Tsoukiàs (Eds.), Vol. 6992. Springer, 135–149.

[23] Evi Micha and Nisarg Shah. 2020. Can We Predict the Election Outcome from

Sampled Votes?. In AAAI. AAAI Press, 2176–2183.
[24] William H. Riker and Peter C. Ordeshook. 1968. A Theory of the Calculus

of Voting. The American Political Science Review 62, 1 (1968), 25–42. http:

//www.jstor.org/stable/1953324

[25] Nathan Russell. 2007. Complexity of control of Borda count elections. Master’s

thesis. Rochester Institute of Technology.

[26] Leslie G. Valiant. 1979. The Complexity of Enumeration and Reliability Problems.

SIAM J. Comput. 8, 3 (1979), 410–421.
[27] Toby Walsh and Lirong Xia. 2012. Lot-based voting rules. In AAMAS, Wiebe

van der Hoek, Lin Padgham, Vincent Conitzer, and Michael Winikoff (Eds.).

IFAAMAS, 603–610.

[28] KrzysztofWojtas and Piotr Faliszewski. 2012. PossibleWinners in Noisy Elections.

In AAAI, Jörg Hoffmann and Bart Selman (Eds.). AAAI Press.

[29] Lirong Xia and Vincent Conitzer. 2011. Determining Possible and Necessary

Winners Given Partial Orders. J. Artif. Intell. Res. 41 (2011), 25–67.

Main Track AAMAS 2021, May 3-7, 2021, Online

655

http://dl.acm.org/citation.cfm?id=2773334
https://arxiv.org/abs/2101.12524
http://www.jstor.org/stable/1953324
http://www.jstor.org/stable/1953324

	Abstract
	1 Introduction
	2 Preliminaries
	3 Exact Winning Probability
	3.1 Tractability of Plurality and Veto
	3.2 Connection to CCAUV
	3.3 k-Approval and k-Veto
	3.4 Additional Positional Scoring Rules
	3.5 Condorcet and Maximin

	4 Hardness of Approximation
	4.1 Hardness Results
	4.2 Tractable Zeroness for Binary Rules

	5 Approximate Losing Probability
	6 Conclusions
	References

