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ABSTRACT

Although reinforcement learning has been successfully applied in
many domains in recent years, we still lack agents that can sys-
tematically generalize. While relational inductive biases that fit
a task can improve generalization of RL agents, these biases are
commonly hard-coded directly in the agent’s neural architecture.
In this work, we show that we can incorporate relational induc-
tive biases, encoded in the form of relational graphs, into agents.
Based on this insight, we propose Grid-to-Graph (GTG), a map-
ping from grid structures to relational graphs that carry useful
spatial relational inductive biases when processed through a Rela-
tional Graph Convolution Network (R-GCN). We show that, with
GTG, R-GCNs generalize better both in terms of in-distribution
and out-of-distribution compared to baselines based on Convolu-
tional Neural Networks and Neural Logic Machines on challenging
procedurally generated environments and MinAtar. Furthermore,
we show that GTG produces agents that can jointly reason over
observations and environment dynamics encoded in knowledge
bases.
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1 INTRODUCTION

Reinforcement Learning (RL) has seen many successful applications
in recent years. However, developing agents that can systematically
generalize to out-of-distribution observations remains an open chal-
lenge [3, 9, 35]. Relational inductive biases are considered important
in promoting both in-distribution and systematic generalization, in
supervised learning and RL settings [28, 34, 35].
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Battaglia et al. [1] define relational inductive biases as constraints
on the relationships and interactions among entities in a learning
process. Traditionally, relational inductive biases have been hard-
coded in an agent’s neural network architecture. By tailoring the
connections between neurons and applying different parameter
sharing schemes, architectures can embody various useful inductive
biases. For example, convolutional layers [15] exhibit locality and
spatial translation equivariance [21], a particularly useful inductive
bias for computer vision, as the features of an object should not
depend on its coordinates in an input image. Similarly, recurrent
layers [13] and Deep Sets respectively exhibit time translation and
permutation equivariance [1, 32].

In this work, we introduce a unified graph-based framework that
allows us to express several useful relational inductive biases using
the same formalism. Specifically, we frame the computation graph
underlying a neural architecture as a directed multigraph with pa-
rameter sharing groups denoted by common edge labels connecting
shared parameters in each group. This formalization allows us to
define specific inductive biases as comprising rules that generate
edges and edge labels. The computation is then implemented by
Relational Graph Convolutional Networks [R-GCNs, 22], a type of
Graph Neural Networks [GNNs, 37] that dynamically construct a
computation graph based on a relational graph.

We make use of this formalism to introduce Grid-to-Graph (GTG),
a mapping from grid structures of discrete 2D observations to re-
lational graphs, based on a set of relation determination rules that
generate effective spatial relational inductive biases. Given a fea-
ture map with entities (nodes) arranged in a lattice where each
entity corresponds to a feature vector, the relations encoded by
GTG constrain the flow of information between these entity feature
vectors when these features are processed by R-GCNs. We refer to
the resulting approach as R-GCN-GTG.

We evaluate R-GCN-GTG in eight tasks: five MinAtar games [30],
a procedurally-generated LavaCrossing environment [2], a box-
world environment [33] requiring complex relational reasoning,
and a symbolic variant of Read to Fight Monsters [RTFM, 36], an
environment that provides knowledge bases (KBs) describing en-
vironment dynamics that change in every episode. On RTFM, we
demonstrate that R-GCN-GTG can not only exploit the spatial
information in a feature map, but in addition also relational infor-
mation without modifying the neural architecture. Our experiments
show that R-GCN-GTG produces better policies than Convolutional
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Figure 1: A high-level overview of GTG-R-GCN. We abstract away the grid structure of the feature map and turn observations
into a spatial relational graph with GTG. The vectors of the feature map are attached to nodes in the relational graph. We then
use an R-GCN to reason over the relational graph and node feature vectors to produce an action distribution.

Neural Networks (CNNs) or Neural Logic Machines [NLMs, 6], a
state-of-the-art neural-symbolic model for relational reinforcement
learning.

In summary, our main contributions are: i) we propose a princi-
pled approach for expressing relational inductive biases for neural
networks in terms of relational graphs, ii) we introduce GTG to
transform grid structures represented by a feature map into rela-
tional graphs that carrying spatial relational inductive biases, iii) we
empirically demonstrate that in comparison to CNNs and NLMs,
R-GCN-GTG generalizes better in both in- and out-of-distribution
tasks in a diverse set of challenging procedurally-generated grid-
world RL tasks, and finally iv) we show that GTG is able to in-
corporate external knowledge, enabling R-GCN-GTG to jointly
reason over spatial information and relational information about
novel environment dynamics without any additional architectural
modifications.

2 RELATED WORK

Graph Neural Networks in RL. To our knowledge, NerveNet [28]
is the first work that used GNNs to represent an RL policy. Their
model follows a similar message-passing scheme as GCNs, maintain-
ing only node feature vectors. NerveNet has been bench-marked on
MuJoCo environments, Snake and Centipede, and achieves better
in-distribution performance and generalization than Multi-Layer
Perceptrons (MLPs). In these environments, NerveNet controls
multi-joint robotic avatars. State information and output actions
are represented as a graph structure where each node corresponds
to a movable part of the agent and local state and actions are at-
tached to each node. Their generalization tests cover size, disability
transfer, and multi-task learning. While achieving good systematic
generalization performance, Wang et al. [28] focus on the con-
tinuous control setting and abstract the graph structure from the
morphological information of the avatar. Kurin et al. [17] propose
Amorpheus, a transformer architecture for continuous control with-
out relying on morphological information, outperforming NerveNet.
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Our work focuses on a different class of tasks for which the input
can be represented as a feature map.

Neuro-Logic Models for RL. A separate branch of relational neuro-
symbolic models builds directly upon first-order logic, for example,
JILP [8] and Neural Logic Machines (NLMs) [6]. Neural Logic Rein-
forcement Learning [NLRL, 14] applies a modified version of JILP
on a varied set of block world tasks and grid-world cliff-walking
tasks, displaying robust generalization properties. While JILP has
useful strong inductive biases that allow it to generalize well once
it has learned a good policy, it suffers from poor scalability and
proves difficult to train for more complex logical mappings. There-
fore, we use Neural Logic Machines [NLMs, 6], a more expressive
and scalable neuro-symbolic architecture, as our baseline. Besides
supervised concept-learning tasks, NLMs also have been applied
to simple reinforcement learning tasks [6]. In Dong et al. [6], an
NLM-based agent is trained to generalize to procedurally generated
block world environments and algorithmic tasks. In these tasks,
the NLM-based agent surpasses a Memory-Augmented Neural Net-
works baseline [24] both in terms of in-distribution generalization
and out-of-distribution generalization to larger problem sizes. NLM
treats relations as inputs and reasons about them in a soft, dif-
ferentiable manner. However, inductive biases for NLMs remain
hard-coded in the architecture. In contrast, R-GCN uses learned re-
lations to express relational inductive biases that constrain message
passing.

Works Focusing on Symmetries. Symmetries, especially equivari-
ances, form an important class of relational inductive biases. Some
previous works [4, 27] focus on how prior knowledge about sym-
metries can be incorporated into a model. Group equivariant con-
volutional networks can represent arbitrary group symmetries, say,
rotation and flipping [4]. In RL, MDP Homomorphic Networks [27]
express symmetries in the joint state-action space. For these meth-
ods, certain relational inductive biases outside of symmetries, like
locality in CNN, still must be hard-coded into the architecture.
R-GCN-GTG cannot express equivariance in the state-action space,
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but it can recover some symmetries like translation equivalence.
However, it is unclear whether it can represent all group symme-
tries.

3 BACKGROUND

Relational Graphs. We define a relational graph as a labeled,
directed multi-graph, denoted as G = (V, &, R), where V is the
set of nodes (representing entities), R is the set of relation labels
(representing relation types), & € V X R x V is the set of relations
(labeled directed edges). Each relation is represented by a tuple
(a,r,b)witha € V,r € R,and b € V, and represents a relationship
of type r between the source entity a and the target entity b of the
edge.

Relational Graph Convolutional Networks. R-GCNs [22] extend
GNNs to model relational graphs. R-GCNs represent a map from
the set of feature vector nodes to a new set of feature vectors, con-
ditioned on the relational graph G and the parameters W, attached
to each relation label. The update rule for a feature vector x, of
node a is given by:

’ o—
X, =0 E
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where o is a non-linearity (such as the ReLu function), N; denotes
the neighboring nodes of a under relation type r, W, is the weight
matrix associated with r, and ¢4, is a normalization constant. In
this work, we use ¢4 = [N} |. R-GCNs were introduced to deal with
graph structured data [22]. Our work presents a new perspective on
R-GCNs: we view relational graphs as representing the connectivity
and parameter sharing scheme for the model, thereby encoding a
prior relational inductive bias.

4 METHODOLOGY

In this section, we describe how relational graphs used by R-GCNs
can be adopted to formalize two constraints commonly used in neu-
ral architecture design: sparse connectivity and parameter sharing.
We introduce GTG, a set of relation determination rules for repre-
senting spatial relational inductive biases. GTG strictly generalizes
the inductive bias underlying convolutional layers.

Finally, we propose two ways of enabling R-GCNs to jointly
reason with visual information restructured according to GTG and
potentially additional, external relational knowledge.

4.1 Expressing Relational Inductive Biases
Using Relational Graphs

In R-GCNs, message passing is explicitly directed by the relational

graph rather than implicitly by the model architecture. Removing

the non-linearity and representing Wyx; as a self-loop edge !, we

obtain the following simplified R-GCN update rule:

1
—W,xp.
reRU{0} benr “&T

Ya = (2

The set of edges determines whether there is message passing

between each pair of entities, thereby encoding the connectivity of

L All the self-loop edges share the same relation label, and term Wyx;, is included the
summation.
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Figure 2: Three subsets of GTG relation determination rules:
the black tile is the target node, and the other colored tiles
are source nodes. Tiles with the same relationship to the tar-

get node share the same color.

the model. The relationship labels indicate the specific pattern of
parameters to be used by the message-passing functions. By making
use of different relational graphs, R-GCNs can represent many
common neural architectures, including MLPs, CNNs, and DeepSets.
We provide a formal description of the neural architectures that
R-GCN can represent in Appendix A.3.

To construct the relational graph, we make use of relation deter-
mination rules, each defined in the following form:

r(a,b) < condition,

where r(a, b) is a relation from entity a to b with label r, and condi-
tion is a logic statement. If the condition holds true, relation label r
will be appended into R, the set of all relation labels of relations
between entities a and b. The relation determination rules then
express the relational inductive bias by controlling the sparsity and
parameter sharing patterns of a feed forward neural network.

4.2 Grid-to-Graph: Spatial Relational Inductive
Biases

We now introduce a set of relation determination rules that can
be used to construct spatial relational inductive biases. We start
by replicating the relational inductive biases of CNNs, and then
introduce new biases to address the limitation of CNNs.

4.2.1 Local Directional Relations. The number of possible defini-
tions of spatial relationships between objects is very large, and it
may not be feasible to enumerate each of them, let alone empirically
evaluate them all. We, therefore, start by mimicking the inductive
biases encoded by CNNs, which have been shown to be effective
in computer vision tasks and Deep Reinforcement Learning tasks
with visual inputs [16, 20, 23]. This provides us with a set of local
directional relations. Each local directional relation specifies the
relative position of two adjacent entities. A graphical illustration is
shown in Fig. 2 (a), where a selected target node is painted black and
source nodes are painted with different colors, each corresponding
to different relation labels. For clarity, we picked a single node as
the target node, though this may not be generally the case. Visu-
alizing all the local directional relations would result in a mesh of
edges connecting all nodes to each other.

Consider two entities a and b, and their coordinates x4, yq4, xp,
yp. The determination rules for local directional relations are as
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follows:
rightAdj(a, b) « (xq =xp +1) A (ya = yp),
leftAdj(a, b) «— (xa =xp —1) A (Ya = yp),
topAdj(a, b) < (ya =yp +1) A (xa = Xp),
bottomAdj(a,b) «— (ya =yp — 1) A (xq = xp),
topRightAdj(a,b) « (xq =xp +1) A (ya = yp + 1),
topLeftAdj(a,b) « (xg =xp — 1) A (ya =yp + 1),
bottomRightAdj(a, b) « (xg =xp+1) A (yg =yp — 1),
bottomLeftAdj(a, b) « (xq =xp — 1) A (Ya =yp — 1).
By only applying these local directional relations, the computation
of the associated R-GCN model would be equivalent to that of

a convolutional layer with a 3 X 3 kernel (up to a normalization
constant).

4.2.2 Remote Directional Relations. One limitation of convolu-
tional layers is the difficulty of message passing among remote
entities. In order to pass information to another node N blocks
away, N layers are needed for a CNN with strides length of 1. This
problem can be alleviated with larger strides, pooling layers, or
dilated convolutions [11, 31], but the model will still require a large
number of layers. For less deep CNNS, such as the baseline model
used in this work, long-distance message passing is accomplished
using dense layers following the convolution layers, as there is
no message passing between distant entities. However, dense lay-
ers exhibit only a weak relational inductive bias, which can hurt
generalization performance. With only local directional relations,
R-GCNs inherit the same long distance message passing problem
as convolution layers. We, therefore, introduce remote directional
relations, which capture the notion of relative positions between ob-
jects. We visualize one such remote directional relation, left, in Fig. 2
(b). We express remote directional relations using the following
rules:
right(a, b) « x4 > xp,
left(a, b) «— xq < xp,

top(a,b) < ya > yp,
bottom(a, b) «— y, < yp-

4.2.3 Alignment and Adjacency Relations. Besides these directional
relations, we also add two auxiliary relations, aligned and adjacent:

aligned(a, b) « (xq = xp) V (ya = yp)
adjacent(a,b) « (|xg —xp| < DA (lya —yp| < 1).

Aligned relations indicate if two entities are on the same horizontal
or vertical line, visualized in Fig. 2 (c). Adjacent relations indicate
whether two objects are adjacent to each other, which, unlike local
directional relations, carry no directional information.

4.3 Jointly Reasoning with External
Knowledge

GTG expresses spatial relational inductive biases in the form of
a relational graph. As R-GCN was originally designed to reason
over knowledge graphs, it may be tempting to let R-GCN jointly
reason over spatial inputs and a task-relevant external relational
knowledge graph by simply merging some graph representation of
each without further architecture changes. We introduce two ways
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Figure 3: Reasoning with an external knowledge base

of incorporating external relational knowledge: one-hop relations
between physical entities and grounding relations with a knowledge
graph. Examples of these two approaches applied to RTFM can be
found in Section 5.4 and Fig. 5.

4.3.1 Relations between Physical Entities. We refer to each cell in
the feature map a physical entity. We can then straightforwardly in-
troduce relational knowledge by adding relations between physical
entities. However, this limits the knowledge that can be expressed,
as this approach cannot represent more abstract knowledge that
describes relations between concepts rather than specific entities,
e.g., a shinning weapon can kill fire monsters.

4.3.2  Working with External Knowledge Bases. For enabling the
inclusion of external knowledge in our model, we maintain two
sets of entities: conceptual entities, which exist in the knowledge
base (e.g. the class of an object) and physical entities, which exist in
the environment (e.g. a specific object in the environment, such as a
monster). We can then link the two graphs corresponding to these
two sets of entities with grounding relations so that information
can flow between them.

A graphical illustration of this approach is presented in Fig. 3. The
grounding relations assign conceptual counterparts to the physical
entities. In this work, these relations are handcrafted.

5 EXPERIMENTAL SETTING
5.1 MinAtar

MinAtar [29] is a collection of miniature Atari games. Each obser-
vation is a 10 X 10 feature map, where each cell represents a single
object in the game. Unlike conventional Atari games, the environ-
ments in MinAtar games are stochastic - for instance in Breakout,
the ball starts in a random position. MinAtar environments also
set a 10% sticky action [12] probability by default. Sticky actions
force the agent to take the action taken in the last step. We enforce
a 5,000 steps limit, as some agents can play indefinitely on some of
the MinAtar games.

5.2 Box-World

Box-world is a grid-world navigation game introduced by Zambaldi
et al. [34]. To solve the game, the agent must collect the gem using
the correct key. However, the key is in a locked box, which needs to
be unlocked with a separate key. There are also distractor branches
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which will consume the current key and produce a key that can-
not unlock the gem box. As the game is combinatorially complex,
the chance of hitting the correct solution by random walk is low.
Zambaldi et al. [34] demonstrated that their RL models required
between 2 x 108 to 14 x 108 steps to converge in this environment.
Due to limited computational resources, we only train models for
107 steps in each environment and further reduce the difficulty of
the Box-World environment: 1) the field size is reduced to 10 X 10,
2) the number of distractor branches is set to 1, 3) the length of
distractor branches is set to 1, 4) the goal length is set to 2. Although
we reduced the difficulty, we still preserve all core elements of the
Box-World environment. We expect this simplified experimental
setup to still allow us to compare the relational reasoning capabili-
ties of different models while reducing the total steps needed for
training to convergence.

5.3 LavaCrossing

LavaCrossing is a standard environment from MiniGrid [Minimal-
istic Gridworld, 2]. The agent must navigate to the goal position
without falling into the lava river. The game is procedurally gen-
erated, and there are 3 difficulty levels available for each map size,
making this is an ideal RL environment to test combinatorial and
out-of-distribution generalization of learned policies. MiniGrid en-
vironments are by default partially-observable, but we configure
our instances to be full-observable. Also, by default, an agent can
turn left, turn right, and move forward, which requires the agent
to know its direction when navigating to a particular position. We
adjust the action space, making the agent able to move in all four
directions without turning left or right. The number of lava rivers
generated equals the level number. To test the out-of-distribution
generalization, we train the agent on difficulty level 2 and test on
difficulty levels 1 and 3.

We also design a Portal-LavaCrossing task, illustrated in Fig. 4 (a),
to test whether R-GCN-GTG can generalize to non-Euclidean spaces
without retraining. After training on difficulty level 2, we transfer
the agent to Portal-LavaCrossing where there are no gaps in the
lava river. For each side of the lava river, a teleportation portal is
placed in a random position: when the agent moves into the portal,
it is then placed on the other side of the lava river, and this is the
only way to cross it. As no such portals exist in training levels,
the agent must be able to generalize to a new environment with
non-Euclidean space, leveraging novel test-time spatial relations,
or resort to moving around randomly until stepping into the portal.
In this task, the CNN baseline is not aware of the portal at all, and
can only reach the goal if it moves into the portal by chance. For
R-GCNs and NLMs, we append new spatial relationships between
portals and other grids: incoming relations to one portal all connect
to the paired portal on the other side of the lava river, and outgoing
relations from one portal are kept the same. These relations are
shown in Fig. 4 (b) and (c).

5.4 Read to Fight Monsters

Read to Fight Monsters [36] is a grid world game, where each
level includes a text document providing information about per-
episode game dynamics. Each map contains two monsters and two
weapons, each randomly generated and positioned. Each weapon
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Figure 4: Portal-LavaCrossing tasks. (a) One possible initial
state, where blue circles are portals, the red triangle is the
agent, and the green block is the goal position. (b) How in-
coming edges to the portal are attached to the paired portal.
Dashed arrows represent the original edges and solid arrows,
new edges. (c) Outgoing edges from the portal remain the
same.

has a modifier and each monster has an element property. The
agent must defeat the monster of a specific element, which can only
be defeated with weapons with a specific modifier. The relations
describing which modifiers defeat which elements are procedu-
rally generated at the start of each episode and described by the
document. Furthermore, each monster belongs to a team. The text
document also describes which team must be defeated. Without
the text document, the agent can only pick a weapon and attack
an arbitrary monster, which leads to an overall win probability of
less than 50%. We construct a knowledge base which contains the
same information as the original RTFM document based on the
grammatical rules that RTFM uses to generate the text document.

We test two approaches of introducing external knowledge to
RTFM, shown in Fig. 5. The easier physical-entities-only approach
uses two relation labels target and beat, ignoring the concept of
modifiers, elements, and teams. target(a) is a unary atom indicat-
ing monster a is the one the agent must defeat and is appended to
feature vectors. The relation beat(a,b) (binary atom) means weapon
a defeats monster b. If the agent carries the weapon, entity a cor-
responds to the agent itself. A more complex approach introduces
conceptual entities and uses multi-hop reasoning to solve the prob-
lem. Along with the physical objects in the environment, this ap-
proach considers the conceptual entities of teams, modifiers and
elements. This approach introduces additional grounding relations:
The relation assign(a,b) assigns modifier a to weapon b or element
a to monster b. The relation belong(a,b) indicates that the monster
a belongs to team b. The relation beat(a,b) states that modifier a
defeats monsters of element b. The relation target(a) means that
the agent must defeat team a. Finally, hold(a) indicates the agent
currently holds a weapon with modifier a.

5.5 Architecture Overview

In this subsection, we describe how GTG and R-GCN can be in-
corporated into an RL policy. First, the state of the environment
is rendered as a feature map. Specifically, each tile in a grid world
is represented as a binary-valued feature vector x. These feature
vectors X are attached to nodes and GTG generates edges between
these nodes, forming a relational graph G that represents particu-
lar relational inductive biases. If required, extra knowledge about
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Figure 5: RTFM tasks with KB encodings of the text docu-
ment. The red triangle represents the agent; the blue block,
the monster; and the green block, the weapon. Figure (a)
shows the one-hop reasoning version of KB encoding, where
arrows indicate beat relations, and the red frame indicates
the target monster. Figure (b) illustrates the multi-hop rea-
soning version. Arrows indicate a relation between two en-
tities. The red frame indicates the opponent team. Relation
labels are not represented explicitly in the graph.

game dynamics expressed as a knowledge base can be merged into
this multigraph. Subsequently, the R-GCN acts on this multi-graph
and associated feature vectors. After processing using R-GCN, we
apply a feature-wise max-pooling to all node feature vectors. The
outputs are then fed to dense layers that output per-action logits.
The graphical illustration of the whole process can be found in
Fig. 1. The probability of actions can thus be written as:

P(alX) = softmax(MLP(maxpool(g(X, G;01));62)), (3)

where ¢ is the stack of R-GCN layers and 0s are neural network
parameters.
A separate head performs value estimation:

9(X) = MLP(maxpool(g(X, G;01));03). (4)

During training, the agent samples actions according to this
resultant action distribution. During testing, we take the action with
maximum probability. In our experiments, we make use of IMPALA
[7], a policy-gradient algorithm to train our RL models. We based
our IMPALA implementation on TorchBeast[18] and our R-GCN
implementation, on Pytorch-Geometric[10]. Our implementation
is available at https://github.com/ZhengyaoJiang/GTG.

6 RESULTS AND DISCUSSION

In this section, we report our empirical results comparing R-GCN
to baseline methods regarding in-distribution performance, out-of-
distribution combinatorial generalization, and the ability to incor-
porate external knowledge. We also report ablations probing the
effectiveness of different relation determination rules and compo-
nents of R-GCN-GTG.

6.1 In-Distribution Generalization

Fig. 6 shows the in-distribution performance (training curve) of
CNN s and relational models on MinAtar and LavaCrossing tasks.
For each model, we run 5 trials, each with different random seeds.
The thin, opaque lines in the plot represent training curves corre-
sponding to each run, and the bolded lines represent mean episodic
return averaged over all five runs. Here, NLM and R-GCN use GTG
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with all three classes relationships, namely, local directional, remote
directional, and auxiliary relations. We can see that R-GCN-GTG
models consistently perform either better or on-par with CNNs and
NLM-GTGs across all eight environments. For Asterix, Seaquest,
Box-World and Breakout, R-GCN-GTG outperforms CNNs by a
significant margin. As the CNN baseline in the RTFM environment
is unable to access information in the knowledge base, it acts as an
informative baseline, for which only visual information is available.
NLM-GTGs also achieve good performance on Seaquest and Break-
out, but they are inferior to CNNs on other MinAtar tasks. We also
mark the best performance of original MinAtar baselines [30] as a
red horizontal dashed line. It is worth noting that we use a deeper
network than these baselines, which include a deep Q-network [19]
and actor-critic with eligibility traces [5, 25], trained on twice as
many steps. Thus, our CNN agent acts as a much stronger baseline
than the original MinAtar models.

There are two potential reasons for the large performance gain
of R-GCN-GTG over CNNs. Firstly, R-GCN-GTG does not make
use of the absolute position of objects, but instead only taking into
account the relative positions between objects. In contrast, CNNs
employ dense layers to reason globally. Further, these dense layers
have a weak relational inductive bias which can negatively impact
sample efficiency and generalization. Secondly, GTG provides more
flexible message passing than conventional CNN layers in terms
of long-range dependencies. We further study the roles of various
relation determination rules and max-pooling after convolutions in
our ablation studies.

Although the NLM-GTG models in our experiments make use of
relational graphs determined by GTG, it uses this information in a
less structured way. Specifically, NLM-GTGs encode such relational
information as dense vector representations, whereas R-GCN-GTG
uses this information to construct a GNN, thus directly determining
the computation graph and flow of messages. The performance
gain of R-GCN-GTG over NLM-GTG suggests that using GTG to
determine the specific relational inductive bias, and therefore guide
message passing in a structured way, results in better in-distribution
performance.

6.2 Out-of-Distribution Systematic
Generalization

In Table 1 and Table 2, we show how policies learned by our rela-
tional models can generalize to environments outside of the training
distribution. For our LavaCrossing experiments, we train the agent
on difficulty level 2 and test the policy on difficulty levels 1 and 3.
Table 1 shows average returns over five training runs. Each model
is evaluated on 200 test episodes. The relative performance change
with respect to the training environment is shown in parenthe-
ses. All the models generalize and perform optimally on difficulty
level 1. However, when generalizing to difficulty level 3, the rela-
tional models perform significantly better than CNNs. R-GCN-GTG
generalizes the best among all the models we tested.

Table 2 demonstrates the win rate for each model in the symbolic
variant of the RTFM tasks. Again, we report mean returns averaged
over five training runs. Each section of the table represents a differ-
ent task variation. We transform the text document into a symbolic
knowledge base of triples for RTFM-KB and RTFM-onehop-KB.
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Figure 6: Training curves of CNN and relational models. The opaque lines represent the returns of individual runs, while the
bolded lines, the average of 5 runs. Red dashed lines mark the final performance of the best model reported by the original

MinAtar baselines.

Model Level 2 Level 1 Level 3 Portal

CNN 0.958 0.960  0.790(-17.5%)  0.040(-95.8%)
NLM-GTG 0.955 0.960  0.918(-3.9%) 0.158(-83.5%)
R-GCN-GTG  0.958 0.960  0.942(-1.7%)  0.096(-90.0%)

Table 1: Out-of-distribution generalization performance on
LavaCrossing. The agent is trained on difficulty level 2.

This makes the task easier compared to the original RTFM-text task
(last row) as models do not have to learn to encode information
presented as textual inputs. Further, the RTFM-onehop-KB is easier
than RTFM-KB as the RTFM-KB require multihop reasoning. We
also put the performance of the model proposed by the RTFM pa-
per [36], txt2zr in RTFM-text environment into the table. We train
on environments with a grid size of 6X6 and test generalization per-
formance on environments with a grid size of 10x10. An optimal
policy in the 10x10 environments should achieve better perfor-
mance compared to that on the smaller environments, as the agent
has more space to evade monsters. We observe that NLM-GTG and
R-GCN-GTG generalize well to the larger environments. However,
R-GCN-GTG performs much better than NLM-GTG in the harder
RTFM-KB environment, both in terms of in-distribution (6x6 grid)
and out-of-distribution generalization (10x10 grid).
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room size 6xX6 10x10
task model

NLM-GTG  21.0% 19.6% (-6.7%)
RTFM-KB R-GCN-GTG  86.3%  96.6% (+12.0%)

NLM-GIG _ 93.0% 99.4% (+6.9%)
RTFM-onehop-KB ¢ GoN-GTG  93.0%  98.2% (+5.6%)
RTFM-text txt2s 55%  55% (+0%)

Table 2: In-distribution and out-of-distribution generaliza-
tion in RTFM variants. Figures report the win rate incre-
ment between 10 X 10 environments and 6 X 6 environments

6.3 Incorporating External knowledge

The Portal-LavaCrossing and RTFM experiments demonstrate the
flexibility of GTG in incorporating different kinds of external knowl-
edge. In Table 1, we can see that with spatial information provided
by the KB, the NLM-GTG and R-GCN-GTG agent managed to gen-
eralize to Portal-LavaCrossing in a zero-shot manner. The RTFM
results in Table 2 show how GTG enables the relational model to
jointly reasoning with both spatial information and environment
dynamics information when represented as a KB. The R-GCN-GTG
agent performs well both in multi-hop reasoning and one-hop rea-
soning variants of RTFM-KB, but NLM-GTG only performs well in
the easier one-hop variant.
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Figure 7: Ablation of R-GCN-GTG on MinAtar tasks.

6.4 Ablation Study

Fig. 7 presents the results of an ablation study of three relational
inductive biases encoded using GTG (local, remote, and auxiliary
relations). Each line shows the smoothed training curve averaged
over five training runs. The red lines represent the training curve of
R-GCN using the full set (local, remote, and auxiliary relations) of
relational inductive biases. The green lines show the performance
of R-GCNs using local directional relations only, whose convolu-
tion computation is equivalent to that of the image convolution in
Section 4.2. A notable difference among these models is the infor-
mation aggregation method between convolution layers and dense
layers: the CNN model concatenates all output feature vectors (i.e.
flattened), while the R-GCN model applies a max-pooling layer.
The flattened vector in the CNN model tends to have high dimen-
sionality, thereby increasing the total number of parameters in the
adjacent dense layer. Therefore, when constraining the number of
parameters of the two architectures to be approximately equal, most
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of the parameters of the R-GCN model reside in convolution layers,
whereas more parameters of the CNN model reside in the dense
layers. This explains the performance difference between CNN and
R-GCN-GTG with local directional relations only. In Seaquest and
Breakout, R-GCNs yield better performance than CNNs, while in
Space Invaders CNNs outperform R-GCN-GTG. The two models
achieve similar performance in Asterix and Freeway.

To further investigate the role of max-pooling, we evaluated
a wider CNN with the same number of parameters as the con-
volution layer in the local-only R-GCN-GTG model. This wider
model flattens features before dense layers rather than applying
max-pooling, resulting in 876k parameters (the full R-GCN-GTG
model has 149k). We use this wider CNN model to isolate the per-
formance improvement that results from max-pooling. Comparing
CNN-wide and R-GCN-GTG local-only, we see mixed results: the
two models achieve comparable performance on Seaquest, Asterix
and Freeway; local-only R-GCN-GTG performs better in Breakout,
while the wider CNN model performs better in Space Invaders. This
shows that max-pooling by itself does not outperform flattening if
we do not care about the number of parameters.

Unsurprisingly, removing local directional relations undermines
the performance of R-GCN-GTG in almost all of the tasks, which
shows the importance of the relational inductive bias of locality.
We also assessed the impact of remote and auxiliary relations, ob-
serving that using both sets of relations improves performance on
Seaquest, Asterix and Space Invaders. The benefits of introducing
these additional relational inductive biases are robust in the sense
that they do not degrade performance any environment. In contrast,
this is not true for max-pooling. These improvements demonstrate
that we can go beyond the relational inductive bias of CNNs by
using the relation determination rules of GTG, which provide a
flexible framework for expressing many useful connectivity and
parameter sharing constraints

7 CONCLUSION

This paper introduced Grid-to-Graph, a principled framework for
representing relational inductive biases. GTG is based on a set of
relation determination rules, which act on inputs in the form of a
feature map corresponding to discrete 2D state observations. Using
these relation determination rules, GTG transforms 2D observations
into a multigraph input for an R-GCN model. The resulting archi-
tecture, R-GCN-GTG outperforms both CNNs and Neural Logic
Machines, the previous state-of-the-art in deep relational RL, on Mi-
nAtar and a series of challenging procedurally-generated grid world
environments, both in terms of in-distribution performance and
out-of-distribution systematic generalization. Our results further
show that GTG provides an effective and straightforward interface
for incorporating various forms of external knowledge without any
architectural modifications.
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