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ABSTRACT

We introduce the idea of a finite sequence of coalition formation
games over a set of agents, and we call it Sequential Characteristic-
Function Game (SCFG). We define the solution of such a game
as a corresponding sequence of coalition structures that must be
related by a given feasibility relation, so no coalition structure can be
evaluated in isolation. A sequence satisfying this condition is called
Feasible Coalition-Structure Sequence (FCSS). Such games can be
a useful abstraction for modelling various scenarios, in particular
those for real-world disaster management that we consider in this
paper. We give an algorithm for computing an FCSS and evaluate
it experimentally. Our results show that an SCFG can represent
various classical variations of characteristic-function games, and
our algorithm solves instances with a reasonable number of agents.
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1 INTRODUCTION

Coalition formation has long been an interesting topic of research,
either for its practical applications or complexity issues. The clas-
sical coalition formation process is formalised by a Characteristic
Function Game (CFG) and one important part of it is the generation
of coalition structures: given a set of agents 𝐴 = {1, . . . , 𝑛} as input,
we aim to partition it in the best possible way and obtain a Coalition
Structure (CS) 𝐶𝑆 : 𝐴 =

⋃
𝐶𝑆 and 𝐶,𝐶 ′ ∈ 𝐶𝑆 implies 𝐶 ∩𝐶 ′ = ∅, 𝐶

is called a coalition of agents. The optimisation problem is then to
maximise 𝑉 (𝐶𝑆) = ∑

𝐶∈𝐶𝑆 𝑣 (𝐶) (where 𝑣 : 2𝐴 → R is the charac-
teristic function of the game) [14]. Previous work in the literature
has shown that the coalition structure generation problem is 𝑭𝚫𝑷

2 -
complete [6]. Exact algorithms (e.g., [11]) were proposed to solve
this problem, but due to its complexity, heuristic quality-bounded
algorithms are needed for larger problem instances (e.g., [2]), and
for real-world scenarios (e.g., [1]).

However, not all problems can be efficiently solved using a single
coalition structure. Consider for instance the Incident Command
System (ICS) [8], a popular system for disaster management. A part
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of this system establishes a modular hierarchy that adjusts itself
according to the demands of a given disaster response operation.
For instance, just one aspect of it requires resources (e.g., experts
and equipment) to be distributed to a group hierarchy (we detail this
process later). A group hierarchy may be modelled by a sequence
of CFGs, one per level. However, picking the optimal solution of
each level may not lead to a feasible overall solution: optimal CSs
may not be compatible with one another.

In this paper, we propose a novel game named Sequential
Characteristic-Function Game (SCFG), and a solution for such a
game is a Feasible Coalition-Structure Sequence (FCSS). It extends
the ideas of our previous work [9] to generalise the relationships
between subsequent coalition structures in a sequence. We are
particularly interested in the coalition structure generation for such
games. An SCFG G takes as input a sequence of CFGs and, based on
a binary relation on coalition structures, has as solution an ordered
(according to the input) FCSS 𝑪𝑺 . We show that our game can be
used to model a variety of extended CFGs, like constrained and
task-based CFGs. Further, we provide a heuristic algorithm, named
MC-Link, to solve SCFG instances. It is inspired by C-Link [2], a
near-optimal algorithm for coalition structure generation problems
in CFGs. We show that our algorithm can be applied to instances
containing a reasonable number of agents (up to 100 in the experi-
ments reported here).

This paper is structured as follows. In Section 2, we introduce a
simple example to illustrate the need for our approach. Moreover,
we formally define and analyse our framework for SCFG. Section 3
introduces a disaster response management problem and we discuss
how to define an SCFG for such a complex domain. In Section 4,
we propose an algorithm for solving SCFG instances. We evaluate
this algorithm in Section 5 under a relation inspired by a real-world
application. In Section 6, we discuss how SCFG compares to other
coalition-formation games and other similar problems. Finally, we
conclude our work and point out future directions in Section 7.

2 SOLUTIONS FOR SEQUENTIAL GAMES

The games we introduce here allow us to consider coalition struc-
tures that are somehow related to each other (see the example
below) and therefore should not be evaluated in isolation.

2.1 Motivation and Main Notions

Here is a scenario to motivate our work. Andy (𝑎), Bobby (𝑏), and
Carol (𝑐) are planning to go shopping. To do so, they need to travel
to a store and then buy their items. The first game models their pref-
erences for travelling, where different coalitions travel to different
stores. 𝑣1 ({𝑎}) = 𝑣1 ({𝑏}) = 𝑣1 ({𝑐}) = 1, 𝑣1 ({𝑎, 𝑏}) = 𝑣1 ({𝑏, 𝑐}) = 2,
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and 𝑣1 ({𝑎, 𝑐}) = 𝑣1 ({𝑎, 𝑏, 𝑐}) = 4. So Andy enjoys travelling with
Carol, and even larger coalitions are also preferred because they
will lower the costs. The second game models the shopping it-
self. Andy is hoping for Bobby’s or Carol’s help to decide the best
item to buy, although Bobby knows much more about those items
than Carol. However, if both Bobby and Carol are together, they
only talk about life and are of no help to Andy. Thus, 𝑣2 ({𝑎}) =
𝑣2 ({𝑏, 𝑐}) = 𝑣2 ({𝑎, 𝑏, 𝑐}) = 0, 𝑣2 ({𝑏}) = 𝑣2 ({𝑐}) = 𝑣2 ({𝑎, 𝑐}) = 1,
and 𝑣2 ({𝑎, 𝑏}) = 3.

The optimal CS𝐶𝑆 in game 1 (namely {{𝑎, 𝑐}, {𝑏}}with a value of
5) is not optimal in game 2 (where the optimal is {{𝑎, 𝑏}, {𝑐}}, with
a value of 4). If we take {{𝑎, 𝑐}, {𝑏}} (optimal in game 1) for both
games, we get 5 in game 1 but 2 in game 2, so a total of 7. Similarly, if
we consider the optimal structure in game 2 ({{𝑎, 𝑏}, {𝑐}}) and pick
it for both games we get also a total of 7. We may choose different
structures for the two games and take the optimal in each round:
𝑣1 ({{𝑎, 𝑐}, {𝑏}}) + 𝑣2 ({{𝑎, 𝑏}, {𝑐}}) = 9. Both coalition structures
are optimal as there is no other with a higher value in each game
separately. It means that Andy and Carol travel together to the same
store, and Bobby goes to another one (first round). In the second
round, Andy and Bobby are supposed to buy articles together, but
this is no longer feasible since they are at different stores.

To solve the problem, we model the interdependence between
the games with a binary relation R on the set of all coalition struc-
tures CS𝐴 to state that the agents buying items together must have
travelled to the same place. This is important when there are restric-
tions on the coalition formation so that the sequence of individually
optimal structures is not feasible. In the example, the optimal FCSS
𝑪𝑺∗ has a value of 𝑣1 ({{𝑎, 𝑏, 𝑐}}) + 𝑣2 ({{𝑎, 𝑏}, {𝑐}}) = 8; travelling
together to the same store but buying at different departments.

We now define sequences of games as a formalisation for scenar-
ios of the type described above, where the set of agents is {𝑎, 𝑏, 𝑐},
we have two characteristic function games ordered as Γ1 and then
Γ2, defined by their characteristic functions 𝑣1 and 𝑣2. In that case,
we have a sequence of length two. The outcome of that game should
be a pair of coalition structures ⟨𝐶𝑆1,𝐶𝑆2⟩ that respects the relation
R and results in the highest value of 𝑣1 (𝐶𝑆1) + 𝑣2 (𝐶𝑆2).

Definition 2.1 (SCFG, FCSS). A Sequential Characteristic-
Function Game (SCFG) G is a tuple ⟨𝐴,H ,R⟩ where:

𝐴 is a set of agents 𝐴 = {𝑎1, . . . , 𝑎𝑛};
H is a totally ordered set of CFGs Γ𝑖 = ⟨𝐴, 𝑣𝑖 ⟩, 1 ≤ 𝑖 ≤ ℎ (we

use ℎ to denote the length of the game sequence);
R is a binary relation on CS𝐴 (all coalition structures over 𝐴).

A solution for an SCFGG is a sequence 𝑪𝑺 = ⟨𝐶𝑆1, . . . ,𝐶𝑆ℎ⟩ of coali-
tion structures respecting relationR:𝐶𝑆𝑖R𝐶𝑆𝑖+1, 1 ≤ 𝑖 < ℎ. We call
this condition feasibility. We define the valueV of ⟨𝐶𝑆1, . . . ,𝐶𝑆ℎ⟩
as

∑ℎ
𝑖=1𝑉𝑖 (𝐶𝑆𝑖 ), where 𝑉𝑖 (𝐶𝑆𝑖 ) =

∑
𝐶∈𝐶𝑆𝑖 𝑣𝑖 (𝐶). We call such a

sequence a Feasible Coalition-Structure Sequence (FCSS). The goal
is to find an optimal FCSS 𝑪𝑺∗: 𝑪𝑺∗ = argmax𝑪𝑺 V(𝑪𝑺) .

The main point is that we cannot just take the optimal CS of
each game (see the previous example); we need to make sure that
the sequence of CSs is compatible with R, which is specific to each
particular application. For example, it may be the case that once
a coalition structure is formed in the first round, only subgroups
of those coalitions can be formed for the next coalition structures

(leading to a form of group hierarchy). If a sequence of coalition
structures is not feasible, we omit the F and call it CSS.

2.2 SCFG and Coalition Formation Problems

Our framework is sufficiently general to express various other
coalition formation problems, including discrete overlapping coali-
tions [18], combinatorial auctions [10], constrained coalition for-
mation games, and task-based CFGs. We show the latter two re-
sults more formally below. In [13], a Constrained Coalition For-
mation Game (CCFG) is defined as a tuple ⟨𝐴,CScst , 𝑣⟩ where
𝐴 = {𝑎1, . . . , 𝑎𝑛} is the set of agents; CScst ⊆ CS𝐴 is the set of fea-
sible coalition structures; and 𝑣 assigns a real value to each coalition.
An optimal coalition structure is one with the highest value.

The other example is the Task-Based Characteristic Function
Game [15] (TCFG), formally defined as ⟨𝐴,𝑇 , 𝑣⟩. We are given a set
of tasks 𝑇 , and the characteristic function 𝑣 assigns a value to each
coalition and task (one coalition works on one task): 𝑣 : 2𝐴×𝑇 → R.
An optimal CS𝐶𝑆∗ is one where

∑
𝐶∈𝐶𝑆 𝑣 (𝐶, 𝑡𝐶 ) is maximal, where

𝑡𝐶 ∈ 𝑇 are different tasks in 𝑇 : 𝑡𝐶 ≠ 𝑡𝐶′ for 𝐶 ≠ 𝐶 ′.

Theorem 2.2. Both constrained coalition formation games CCFG
(as defined in [13]) as well as task-based characteristic function games
TCFG (as defined in [15]) are special cases of SCFGs.

All coalition structures 𝐶𝑆 for a CCFG Γ𝐶 (resp. for a TCFG Γ𝑇 )
are in one-to-one correspondence to the feasible sequence of coalition
structures 𝑪𝑺 for a corresponding SCFG (as constructed below) and
the values are identical.

Proof. Let ⟨𝐴,CScst , 𝑣⟩ be a CCFG with ℎ coalition structures
CScst = {𝐶𝑆1, . . . ,𝐶𝑆ℎ}. We construct an SCFG G with ℎ copies of
the ordinary characteristic function game ⟨𝐴, 1

ℎ
𝑣⟩ where all coali-

tion structures not in CScst get a value −∞. So we get Γ𝑖 with
1 ≤ 𝑖 ≤ ℎ where 𝑣𝑖 (𝐶) B 𝑣 (𝐶)

ℎ
. This is our setH . The relation R is

defined by 𝐶𝑆 R 𝐶𝑆 ′ iff 𝐶𝑆,𝐶𝑆 ′ ∈ CScst . So we essentially repeat
the same game ℎ times. The modified 𝑣 ensures the right value.

Consider now a TCFG ⟨𝐴,𝑇 , 𝑣⟩; it suffices to construct an equiv-
alent CCFG Γ𝐶 = ⟨𝐴′,CS′cst , 𝑣 ′⟩. Let𝐴′ B 𝐴∪𝑇 and let the feasible
coalition structure CS′cst consist of all coalition structures𝐶𝑆 for𝐴′
that satisfy: (1) for all 𝐶 ∈ 𝐶𝑆 : |𝐶 ∩𝑇 |= 1, and (2) 𝐶 \𝑇 ≠ ∅. Thus,
the feasible coalition structures for 𝐴′ are exactly the coalition
structures of the original𝐴. This allows us to define 𝑣 ′ : 𝐴′ → R by
𝑣 ′(𝐶 ′) B 𝑣 (𝐶, 𝑡) where𝐶 ′ = 𝐶 ∪{𝑡} (which is well defined because
of our definition of feasible coalition structures in R). Clearly, the
optimal 𝑪𝑺∗ of an SCFG for Γ𝐶 corresponds to the optimal 𝐶𝑆∗ for
TCFG and has the same value. □

Clearly, the opposite direction is not true: SCFGs are more gen-
eral than both CCFG and TCFG.

2.3 The Role of R in a Sequential Game

In the general form of the game, the relation R can be any binary
relation. We introduce below three interesting relations that can
be used to define particular types of SCFGs and will be used in the
remainder of this work.

Definition 2.3 (Relations RH , RS , RO). For any subsequent
𝐶𝑆,𝐶𝑆 ′ ∈ 𝑪𝑺 , we define the following three relations:
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𝐶𝑆 RH 𝐶𝑆 ′: for all 𝑎 ∈ 𝐴,𝐶 ∈ 𝐶𝑆,𝐶 ′ ∈ 𝐶𝑆 ′, s.t. 𝑎 ∈ 𝐶 , it holds
that if 𝑎 ∈ 𝐶 ′, then 𝐶 ∩𝐶 ′ = {𝑎};

𝐶𝑆 RS 𝐶𝑆 ′: for all 𝐶 ′ ∈ 𝐶𝑆 ′ there is 𝐶 ∈ 𝐶𝑆 such that 𝐶 ′ ⊆ 𝐶

and |𝐶𝑆 | < |𝐶𝑆 ′ |;
𝐶𝑆 RO 𝐶𝑆 ′: there is 𝐶 ∈ 𝐶𝑆 s.t. all other coalitions 𝐶 ′ ∈ 𝐶𝑆 ,

𝐶 ′ ≠ 𝐶 , are also contained in 𝐶𝑆 ′, and 𝐶𝑆 ′ contains two
additional coalitions 𝐶1,𝐶2 with 𝐶1 ∪𝐶2 = 𝐶 .

The relation RH states that agents work on different coalitions
in which at most one member can be repeated. In other words,
the agents will always work alone or with different agents in a
subsequent coalition structure. RS establishes the subset relation
between coalitions in different levels and is useful in domains that
require a group hierarchy between agents. Finally, the relation RO
states that in one step all but one coalition 𝐶 remain, and 𝐶 is split
into exactly two coalitions.

2.4 A Training Session Application

Having defined an SCFG, we now demonstrate how it can be used
to address an interesting problem. Assume a company is starting
a new branch for a new product. A set of agents will work on the
development of this product and to make the agents familiar to
one another, the company proposes a training session. The session
is divided into three interconnected projects in which a coalition
structure is formed for each one of them. The first two projects
address participants’ technical skills, hence they use the same char-
acteristic function. The last project addresses general skills and has
a specific valuation.

When participating in a project, an agent eventually develops
an acquaintanceship with all of its coalition partners. This is rep-
resented by a weighted undirected graph G = (𝐴, 𝐸) where 𝐴 is
the set of agents, and 𝐸 ⊆ 𝐴 ×𝐴 is a set of edges. Each agent will
build its own graph, adding new edges after all coalitions have been
disbanded. Each edge is given a weight𝑤 : 𝐸 → N, so that𝑤 (𝑒𝑖 𝑗 )
represents how well agents 𝑖, 𝑗 ∈ 𝐴 worked together.

To maximise the chances of the agents establishing good rela-
tionships (i.e., maximising𝑤 ), the company formulates the training
session as an SCFG G = ⟨𝐴,H ,RH ⟩, where:

𝐴 is the set of agents participating in the training session;
H is the ordered set of games (projects) with length ℎ = 3;
RH is as in Definition 2.3.
The company could choose the characteristic functions from

a range of options. For instance, a function that determines that
better coalitions are those with heterogeneous members, and larger
coalitions are preferable. The relation RH will ensure new edges
are added to the agents’ interaction graphs in the two technical
projects. In the last project, the agents will not be aware of what
others, in the same coalition, have done in the preceding (technical)
project, although they might meet again agents they collaborated
with in the first project. This way, the collaboration between them
will be stimulated in the general skill session. It should be noted that
RH copes with subsequent CSs only. With R defined as a binary
relation on the set of coalition structures we cannot express, for
example, that two agents must not work together more than once
throughout the whole sequence. Formally, given any 𝐶𝑆,𝐶𝑆 ′ ∈ 𝑪𝑺 ,
we require for all 𝑎 ∈ 𝐴, 𝐶 ∈ 𝐶𝑆 , 𝐶 ′ ∈ 𝐶𝑆 ′: if 𝑎 ∈ 𝐶 and 𝑎 ∈ 𝐶 ′,
then 𝐶 ∩𝐶 ′ = {𝑎}. We aim to address this in future work.

Figure 1: An illustration of the organisational structure of

the Operations Section; adapted from [8].

3 A GAME FOR DISASTER RESPONSE

We now demonstrate the modelling of a real-world scenario as
an SCFG. For this, we use a disaster response problem in which
coalitions must respond to a disaster event. First, we introduce
the ICS [8], a management system designed for disaster response
operations. We then define a simplified instance of the problem of
distributing agents in an ICS specification.

3.1 The Incident Command System

The ICS was initially developed to deal with a series of wildfire
events occurring in southern California in 1970. Since then, it has
become so popular that it is now adopted and used by FEMA (in
the US) to respond to disaster events [4]. For our work, two main
ICS characteristics are relevant:

Span of Control: this number is the ratio of command be-
tween supervisors and subordinate units acting upon the
event: 1

𝜆
. For instance, ratio 1

3 indicates 1 supervisor is re-
sponsible for 3 subordinate units.

Modular Organisation: the organisational structure is ad-
justed according to the complexity of the current event fol-
lowing the span-of-control guidance. For instance, if the
event occurs over a large area, then the span of control for a
supervisor may be reduced (e.g., from five to two or three
subordinate units per supervisor). This ratio is closely related
to the characteristics of a disaster event.

For the entire disaster response, five main sections are defined.
However, we focus on the Operations Section. It acts upon the dam-
aged area of the disaster event, and its responsibilities include
achieving command objectives, tactical operations, contingency
planning, among others. We depict in Figure 1 its hierarchical or-
ganisation. Branches are divided into divisions/groups, in which
divisions are allocated to geographical areas of the event (e.g., be-
cause of different jurisdictions) and groups are not fixed to a spe-
cific site. Instead, they focus on specific functionalities (e.g., rescue
group). The number of branches, divisions, and groups depends on
the span-of-control ratio, which can make the units more manage-
able by their supervisors. As the size and complexity of the event
increases, groups/divisions are further partitioned into task forces,
strike teams, or even single resources. A resource can be a person
or an individual piece of equipment [8]. Heterogeneous resources
constitute task forces, whilst strike teams are homogeneous.
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Figure 2: Hierarchies of same length but starting from dif-

ferent coalition structures.

3.2 SCFG Properties under RS

We are interested in the hierarchical structure of an ICS instance.
When applying the relation RS on an SCFG, the outcome will be a
tree structure (see Figure 2). Using this hierarchical representation,
the properties of SCFGs are as follows.

Sub-hierarchies: It is not always the case that the top level
of the hierarchy (i.e., first game) will consist of the grand
coalition (see Figure 2).

Shape of the Hierarchy: A coalition may either split itself or
remain as it is in the next level of the hierarchy. This leads to
well-known hierarchical patterns (e.g., balanced, unbalanced,
or ragged) as discussed in the database literature [12].

Specialisation: As we move on to deeper levels of the hierar-
chy, the coalitions become further specialised.

3.3 The ICS as a Sequential Game

Theorem 3.1. The Operations Section of the ICS above can be
modelled by an SCFG G.

Proof. The proof is by using Theorem 2.2, so it suffices to model
the ICS as a constrained coalition formation game.

As noted in Section 3.1, the set of agents appears through
branches, division/groups, task forces, strike teams, and single re-
sources defined according to the span of control. This structure
forms a group hierarchy in which agents are allocated firstly to
branches, then to divisions/groups, and finally to the entities at the
last level. While these are only 3 levels, to model it as an SCFG we
need more games in the sequence, as explained below.

One of the main characteristics in an ICS is the span of control 1
𝜆

together with the number of branches 𝑏, each divided into divisions
and groups, based on a set 𝐴 of agents (see Figure 1). It must hold
that 𝑏 ≤ 𝜆, and each coalition can have size at most 𝜆. These are
the only restrictions, apart from the three levels, each of which
contains a coalition structure.

It is, therefore, more appropriate to model this situation with an
intermediate CCFG representation (which can then be represented
as an SCFG). Before defining the SCFG, we introduce the intermedi-
ate CCFG representation. Given ⟨𝑆𝐶 , 𝑆𝐶𝑆 ⟩, where 𝑆𝐶 ⊆ {1, . . . , |𝐴|}
and 𝑆CS ⊆ {1, . . . , |𝐴|}, we define ⟨𝐴,CS′cst , 𝑣⟩ the associated con-
strained coalition formation game, where CS′cst consists of all coali-
tion structures of sizes in 𝑆𝐶𝑆 and coalitions 𝐶 in them of sizes in
𝑆𝐶 . No other coalition structures are feasible, the valuation is not
constrained in any way.

For the simple hierarchy on the right-hand side of Figure 2, we
need the following three associated CCFGs on the set of agents

𝐴, |𝐴| = 6: Γ𝐶 1 determined by ⟨{1, 2, 3, 4, 5, 6}, {2}⟩, Γ𝐶 2 determined
by ⟨{1, 2, 3, 4, 5, 6}, {4}⟩, and Γ𝐶 3 determined by ⟨{1}, {6}⟩. In the
general case, given any group hierarchy defined by the ICS, it is
clear that a sequence of CCFGs (as illustrated in the example above)
can model the ICS (the limiting sizes 𝑆𝐶 , 𝑆𝐶𝑆 are determined by 𝜆

and 𝑏). Of course, we also need to define a characteristic function
for each game. This would be done by the experts responsible for
the operation.

While Theorem 2.2 only states that one single CCFG can be
expressed as an SCFG, the same construction applies to several
CCFGs, with the relation R appropriately adapted. □

SCFG is a flexible framework that makes it possible to model
applications in various ways. Above, we have used our framework
to model the ICS as a sequence of CCFGs. One can also model it by
adding in 𝐴 a set of “distinguished agents”: each agent represents a
particular level in the hierarchy. A clever choice of R would limit
the search space to exactly the CSs covered by any sequence of
CCFGs. Then, we distinguish between CSs that belong to particular
levels using the distinguished agents. We aim to show how to model
the ICS in this particular way in future work.

There are many possibilities for representing domain knowledge
within an SCFG to reduce the overall search space in the construc-
tion of an FCSS 𝑪𝑺 . However, during the modelling of the ICS, we
ignored several important aspects for forming coalitions in such a
complex domain. For instance, the leader responsible for a group/-
division could play an important role in the response operation.
Many such aspects can be modelled by choosing the valuation func-
tion 𝑣 appropriately. Alternatively, the games chosen to be in H
can provide the features for describing the best way to place the
agents in the group hierarchy. For instance, the concept of pivotal
agents in valuation structures [6] can be investigated to represent
leaders in this hierarchical problem.

3.4 A Second Disaster Response Example

As a second example in disaster response operations, consider a
wildfire event. A fire brigade is called to act upon four big fires that
are approaching a town. The entire fire brigade has enough experts
and resources to fight off nine fires simultaneously. To be ready
for any new fire event, the brigade supervisor decides to take all
the resources and experts to the field. The brigade will be divided
initially into four coalitions, and as soon as a new fire appears, one
of these coalitions is split up to fight it off. This scenario can also
be modelled as an SCFG.

As we are interested in forming a new CS as new fires are de-
tected, we pick the relation RO for this setting (see Definition 2.3).
The sequence of games has length ℎ = 6 to match the number of
new fire events the brigade will be able to fight off (four initial ones
plus up to five new episodes to reach 9 simultaneous fires). The first
game is a CFG constraining the coalition structure size to exactly
four. The remaining five games are CFGs without constraints. All
six games receive as input the same characteristic function.

The outcome of this game will be a six-length sequence of coali-
tion structures 𝑪𝑺 . As relation RO ensures that from the initial
coalition structure only one coalition is allowed to split. As soon
as a new fire requires effort to be extinguished, the fire brigade ad-
vances to a new coalition structure in 𝑪𝑺 . The supervisor allocates
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all resources to 𝐶𝑆1 ∈ 𝑪𝑺 in advance. This way, the resources to be
assigned to the next fire event to occur (i.e., the ones that will form
a new coalition) are already positioned together.

4 AN ALGORITHM TO COMPUTE AN FCSS

Having explained the general idea of our approach, we now consider
a heuristic algorithm that solves an SCFG instance. We take as
inspiration the clustering-based algorithm named C-Link [2], and
construct a new algorithm calledMC-Link. We briefly explain C-
Link before introducing our own algorithm1.

4.1 The Multiple Coalition Linkage Algorithm

C-Link [2] is a heuristic algorithm (anytime under some condi-
tions) with time complexity O(𝑛3). It starts off from the coalition
structure of singletons, and to produce a new coalition structure
it evaluates all the moves (see Figure 3a) resulting of a merger of
any two coalitions. It selects the move that produces the greatest
gain, and moves cannot be undone. Gain is a clustering concept
that, translated into the coalition formation problem, is described
by Equation 1.

gain(𝐶𝑖 ,𝐶 𝑗 ) = 𝑣 (𝐶𝑖 ∪𝐶 𝑗 ) − 𝑣 (𝐶𝑖 ) − 𝑣 (𝐶 𝑗 ) (1)

It states that the gain of merging two coalitions is the difference
between the coalition values with and without placing the agents in
the same coalition. When all the moves are evaluated, the algorithm
merges the two most suitable coalitions. This is determined through
a linkage function; four such functions are proposed: (i) single-link;
(ii) complete-link; (iii) average-link; and (iv) gain-link. Functions
(i), (ii), and (iii) are based on pairwise relations between the agents
that belong to the coalition, whilst (iv) considers the coalition itself
and not individual members. For the remainder of this work, we
consider only the gain-link (GL) defined in Equation 2, as it obtained
the best results in the experiments reported in [2].

lf GL (𝐶𝑖 ,𝐶 𝑗 ) = gain(𝐶𝑖 ,𝐶 𝑗 ) (2)

The algorithm iteratively updates a partition linkage matrix PL
(initially a 𝑛 × 𝑛 matrix) which is filled out with the value returned
by the linkage function lf (𝐶𝑖 ,𝐶 𝑗 ) for entry (𝑖, 𝑗) (note that the
diagonal of the matrix is not relevant). The algorithm picks the
argmax from a table PL and performs a merger. Once this is done,
the matrix is updated with the new coalitions and their respective
values from the linkage function. The algorithm stops when there
is no advantage in merging any two coalitions—when the linkage
function for all coalitions in the matrix has zero or a negative value.

TheMC-Link algorithm follows the same general idea adopted
for C-Link; it starts off with the coalition structure of singletons
and merges two coalitions based on a function that measures the
suitability of such a merger2. The underlying intuition is that each
game Γ𝑖 has a corresponding table PL𝑖 . We perform themost suitable
movement for a table PL𝑖 (i.e., a merger), then advance to the next
table PL𝑖+1 and repeat the process (see Figure 3b). Doing so, we are
able to construct the tables PL (one at time) whilst enforcing the
relation R, which is also given as input.
1https://github.com/smart-pucrs/SCFG
2A promising technique for SCFG is divisive clustering algorithms [16, Chapter 13].
Depending on the heuristic chosen to partition a cluster, it could lead to more efficient
algorithms than the naive agglomerative approach, which is O(𝑛3) .

(a) (b)

Figure 3: An example run with four agents for C-Link in 3a

and for MC-Link in 3b. The red ovals represent the selected

column and row to be merged, and 𝑡 represents an iteration.

MC-Link received as input RH , and a sequence of two CFGs;

the games use the same characteristic function.

An algorithm for SCFG needs to take into account that:
(1) A CSS 𝑪𝑺 may not be feasible right from the beginning. In

MC-Link, all CSs start off with singleton coalitions which
may not be acceptable by R (e.g., RS). In fact, a CSS may
become feasible only after several iterations of MC-Link.

(2) To calculate a value for an FCSS, we must consider the se-
quence as a whole. For instance, consider RS and RH . RS
generates constraints being applied in only one direction
(left to right). On the other hand, RH leads to constraints
being imposed in both directions.

Condition 1 indicates that we need to look for an FCSS even if that
would mean choosing a non-suitable merger (i.e., choosing zero or
negative values). Condition 2 indicates that the search is conducted
in rounds, and at each round only one merger per table is carried
out.

We show in Algorithm 1 the pseudocode forMC-Link. It starts by
initialising a CSS 𝑪𝑺 with as many coalition structures of singletons
as there are games inH . Then, we start looking for a CSS that is
feasible according to R (lines 3-16).

We check the feasibility condition using the Boolean function
Feasible (e.g., line 3). It checks whether all pairs of subsequent CSs
in a candidate solution are in R. In case an index is provided (e.g.,
line 34), we check if the 𝐶𝑆 at that index is feasible in relation to
both the preceding and succeeding positions in the sequence.

In the beginning, if the sequence is not feasible, then we go
through the tables PL merging two coalitions even if there is no
suitable merger to carry out (e.g., all have a negative value). In
this phase, a merger is considered impossible if it is constrained by
relation R (i.e., the respective entry in table PL receives −∞). In that
case, we go back to the prior position in the sequence, construct
the table, and repeat the procedure. If a merger is possible, then it
receives the following value:

slf (𝑣,𝐶𝑖 ,𝐶 𝑗 ) = 𝑣 (𝐶𝑖 ∪𝐶 𝑗 ) − 𝑣 (𝐶𝑖 ) − 𝑣 (𝐶 𝑗 ) (3)

This is necessary to pick the correct characteristic function accord-
ing to the game we are evaluating at the moment. If the table for
the first game has all of its moves constrained (i.e., equal to −∞),
that means MC-Link could not find an FCSS.
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Algorithm 1 mclink

Input:

𝐴, a set of agents
H , a sequence of CFGs
R, a binary relation on CS𝐴

Output: 𝑪𝑺 , an FCSS
1: 𝑪𝑺 ← ⟨{{𝑎1}, . . . , {𝑎𝑛}}1, . . . , {{𝑎1}, . . . , {𝑎𝑛}}ℎ⟩
2: M̂ ← ⟨∞1, . . . ,∞ℎ⟩
3: if ¬ Feasible(𝑪𝑺 , R) then
4: 𝑖 ← 1
5: while 𝑖 ≤ ℎ − 1 do
6: PL← FillTable(𝑖, 𝑪𝑺, 𝑣𝑖 )
7: M̂ [𝑖] ← max𝑗,𝑘 PL( 𝑗, 𝑘)
8: if M̂ [𝑖] > −∞ then ▶ merger is available
9: 𝑗, 𝑘 ← argmax𝑗,𝑘 PL( 𝑗, 𝑘)
10: 𝑪𝑺 [𝑖] ← (𝑪𝑺 [𝑖] \ {𝐶 𝑗 } \ {𝐶𝑘 }) ∪ {𝐶 𝑗 ∪𝐶𝑘 }
11: 𝑖 ← 𝑖 + 1
12: else

13: if 𝑖 = 1 then
14: return ∅ ▶ No FCSS could be found for R
15: else

16: 𝑖 ← 𝑖 − 1
17: 𝑖 ← 1
18: while maxM̂ > 0 do
19: PL← FillTable(𝑖, 𝑪𝑺, 𝑣𝑖 )
20: M̂ [𝑖] ← max𝑗,𝑘 PL( 𝑗, 𝑘)
21: if M̂ [𝑖] > 0 then ▶ a suitable merger can be carried out
22: 𝑗, 𝑘 ← argmax𝑗,𝑘 PL( 𝑗, 𝑘)
23: 𝑪𝑺 [𝑖] ← (𝑪𝑺 [𝑖] \ {𝐶 𝑗 } \ {𝐶𝑘 }) ∪ {𝐶 𝑗 ∪𝐶𝑘 }
24: 𝑖 ← 𝑖 + 1
25: if 𝑖 > ℎ then

26: 𝑖 ← 1
27: return 𝑪𝑺
28: procedure FillTable(𝑖, 𝑪𝑺, 𝑣)
29: 𝑠 ← |𝑪𝑺 [𝑖] |
30: let PL be a 𝑠 × 𝑠 matrix initialised with −∞
31: for 𝑗 ← 1 to 𝑠 do

32: for 𝑘 ← 𝑗 + 1 to 𝑠 do

33: 𝐶𝑆 ← (𝑪𝑺 [𝑖] \ {𝐶 𝑗 } \ {𝐶𝑘 }) ∪ {𝐶 𝑗 ∪𝐶𝑘 }
34: if Feasible(𝑖,𝐶𝑆, 𝑪𝑺,R) then
35: PL( 𝑗, 𝑘) ← slf (𝑣,𝐶 𝑗 ,𝐶𝑘 ) ▶ Equation 3
36: return PL

Once a first FCSS is found, we go to the next phase, improving it
(lines 18-26). We iterate over the sequence, performing one merger
per table, but now we consider only suitable mergers (i.e., values
greater than zero). If no such value is available in any table, then
the algorithm returns the best FCSS up to that point (line 27).

4.2 MC-Link Analysis

Having described how MC-Link operates, we turn our attention to
properties that it can be shown to have.

Convergence: MC-Link converges to a solution. This is due
to the fact that at most 𝑛 − 1 mergers can be done per table

PL. As we need to evaluate ℎ tables, our algorithm provides
an outcome after at most 𝑛 × ℎ mergers.

Anytime: As soon as MC-Link finds a CSS that satisfies rela-
tion R, it becomes an anytime algorithm, since its solution
from that moment on will only be improved at each iteration
until no more mergers between coalitions are feasible.

By Condition 1, we know a CSS 𝑪𝑺 may not be feasible from
the beginning of an execution, and its feasibility will depend on R.
However, we show that, if such FCSS 𝑪𝑺 exists,MC-Link will be
able to find it for the relations introduced in this paper, namely RH ,
RS , and RO . We assume any R to be given in an algorithmic form
and let 𝛼 and 𝛽 denote its time and space complexity, respectively.

Theorem 4.1. Given G = ⟨𝐴,H ,R⟩, in whichR ∈ {RH ,RS,RO},
MC-Link eventually outputs an FCSS 𝑪𝑺 , if one exists. The time
complexity of MC-Link is O(ℎ2𝑛3𝛼), and the space complexity is
O(𝑛2 + ℎ𝑛 + 𝛽).

Proof. For relation RH this result immediately follows: the CSS
containing only coalition structures of singletons is feasible.

For RS , we start off from a CSS 𝑪𝑺 containing only singleton
coalitions. The 𝐶𝑆1 ∈ 𝑪𝑺 will dictate how 𝐶𝑆2 is to be constructed.
That is, it is not constrained by any other coalition structure in 𝑪𝑺
and hence for its table PL1 the condition max𝑗,𝑘 PL1 ( 𝑗, 𝑘) > −∞
holds; thus, a merger is carried out. In fact, for each table PL𝑖 ,
1 ≤ 𝑖 ≤ ℎ, at most 𝑛 − 𝑖 mergers can be carried out (recall mergers
of negative or zero gain are allowed). As ℎ ≤ 𝑛, under RS an FCSS
𝑪𝑺 is eventually found. For RO , we have RO ⊂ RS .

Regarding the time complexity, MC-Link has two phases that
share the same CSS 𝑪𝑺 . Each 𝐶𝑆 ∈ 𝑪𝑺 has a corresponding table
PL that can be constructed, when required, in 𝑛2 ×𝛼 steps. To make
𝑪𝑺 feasible,MC-Link needs at most time O(ℎ𝑛3𝛼), as we need at
most (ℎ − 1) × (𝑛 − 1) steps to find an FCSS. To improve an FCSS
𝑪𝑺 , in the worst case, assume the CSS of singletons is feasible, so
no merger was carried out. In the worst case, R makes it possible
only one merger per iteration (from 1 to ℎ). That is, we reach the
grand coalition in a single table in ℎ× (𝑛− 1) iterations. As we have
ℎ tables, the time complexity of MC-Link is O(ℎ2𝑛3𝛼). However,
we only need space O(𝑛2 + ℎ𝑛 + 𝛽), as we evaluate one table at
time and can construct it directly from a 𝐶𝑆 ∈ 𝑪𝑺 . Although the
final complexity depends on 𝛼 and 𝛽 , it is expected thatMC-Link
is typically polynomial. □

The reader should bear in mind thatMC-Link will not be able
to output an FCSS or improve on an initial solution depending on
the given R. In fact, MC-Link will not find an FCSS in all cases
where a CS of singletons does not appear as a second element of
any pair in R (i.e., to be a feasible end of a sequence). To address
that, one can change the backtracking mechanism in the first while.
Even if a feasible sequence is found, under some circumstances,
no improvement can be done. For instance, consider a relation
in which a pair is feasible iff the CSs have the same size: |𝐶𝑆 | =
|𝐶𝑆 ′ |. MC-Link gets stuck at the CS of singletons as no pair in R
allows an increase in size. Again,MC-Link needs to be altered for
that particular application. However, MC-Link is useful for various
relations, as the ones in Sections 2.4, 3.2, and 3.4.
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5 EXPERIMENTS

In this section we report on experiments carried out to evaluate the
performance of our algorithm. As it is the first algorithm for solving
SCFGs, we cannot compare it to others. Instead, we developed a
brute-force algorithm, specific for RS , to compare the quality of
a solution provide by MC-Link and to evaluate its running-time
performance.

All the experiments were performed on a virtual machine con-
taining 32 GB of RAM and a CPUwith four single cores of 2095MHz
each; the algorithms were implemented in Python 3.8.5.

5.1 Quality of the Solution

Our first experiment aims to compare the quality of outcomes com-
puted by our algorithm against the optimal result. We evaluate it
with different characteristic functions to understand how they af-
fect the performance. Following the literature in coalition structure
generation, we experiment with the following distributions that are
defined in [11]: uniform, modified uniform, agent-based uniform,
normal, modified normal, agent-based normal, NDCS, exponential,
beta, and gamma. Before each experiment, we draw a value for
each coalition 𝐶 ∈ 2𝐴 from the selected distribution and store it in
a table. For each game Γ𝑖 ∈ H , we always sample new values for
the coalitions; this means all valuations 𝑣𝑖 are different.

We chose RS (see Definition 2.3) for this experiment, and im-
plemented a brute-force algorithm especially designed for it. It
searches exhaustively the search space determining a value for
every FCSS. As the search space is exponential in the number of
games and agents, we can only use a small set of agents, namely
𝑛 = 9. We set the number of games to ℎ = 3 (doing so, the length of
the lines in the chart do not get too short). Based on this setting we
experiment with all distributions mentioned above.

In the results shown in Figure 4 we see that, in general, the
solutions found byMC-Link are close to the optimum. The most
significant difference is regarding the exponential, beta, and gamma
distributions. In those settings, the size of a given coalition plays a
significant role and as MC-Link depends on gains over small-sized
coalitions to decide on a merger, it stays far from the optimal results.
On the other hand, for the normal-based distributions, in which
the values are concentrated around the mean,MC-Link is able to
find solutions that are, or are close to, the optimal one.

5.2 Time Analysis

Our next experiment shows how our algorithm performs when
we vary and scale up the number of agents. As storing the values
of a characteristic function in a table is no longer feasible, we set
every game to be evaluated according to 𝑣 (𝐶) = |𝐶 |2. We pick this
𝑣 based on the properties shown in Section 4.2. We know MC-Link
converges and we want to evaluate it in the worst-case scenario,
which is when all feasible movements of each table are performed.
Hence, we need 𝑣 to be super-additive. We pick relation RS and
compare MC-Link against the brute-force algorithm developed for
that relation. However, we expect the results to hold for brute-force
algorithms for RO and RH as well. We aim to confirm that in future
work.

We first compare the running time of both algorithms. In the
previous section, we introduced the comparison between the quality

of the solution considering at most nine agents. Now, we vary the
number of games 1 ≤ ℎ ≤ 9 for different numbers of agents. For
the brute-force algorithm, we pick sizes 𝑛 ∈ {8, 9} and forMC-Link
we set 𝑛 ∈ {8, 9, 29, 49, 69}.

The results in Figure 5 show, as expected, that MC-Link is
much faster than the brute-force algorithm. The discontinuous line
Brute-Force_|A|=9 means a timeout of one hour was reached,
therefore no solution was recorded. The line Brute-Force_|A|=8
shows an interesting behaviour. This is due to the fact that the num-
ber of solutions to be evaluated—which is a combination of coalition
structures from which we want to select ℎ coalition structures—will
first increase and then decrease as ℎ approaches 𝑛.

We also experiment withMC-Link alone, varying the number
of agents up to 𝑛 = 100. We show the results in Figure 6. Each line
represents a different number of games, and appears in the figure
when the number of agents is sufficient (if ℎ > 𝑛 there exists no
hierarchy for RS). We can see that even with a heuristic approach,
the running time increases significantly. However, even real-world
problems may not require a large number of different games (e.g.,
the problem described in Section 3.4). In addition, the characteristic
function may limit positive gains of mergers to a few coalitions,
therefore less operations would be required. We aim to improve
the algorithm in future work to allow it to deal with hundreds of
agents while keeping a quality bound on the optimal solution.

6 RELATEDWORK

Our SCFG is a new concept in coalitional games and we have shown
that it can be applied to interesting domains and problems. As we
were not able to find in the literature any algorithms that output
a sequence of interrelated coalition structures, we cannot do any
direct comparisons. We therefore discuss in this section how SCFG
relates to various approaches in the literature.

Many variations of coalitional games have been proposed, for
instance, considering tasks [15], constraints [13], etc. An SCFG
extends the idea of coalition structure in the literature [14] to a
total order of such structures in which the interdependence between
them is established by a binary relation. In fact, some coalitional
games are a specialisation of SCFG as shown in Section 2.2.

The idea of interdependence between CFGs are reminiscent of
combinatorial auctions [3, 10] and overlapping coalition forma-
tion [17]. Combinatorial auctions address the problem where, given
a set of items, a set of buyers place bids for a subset of such items
(each buyer may evaluate differently each item) and the aim is to
maximise the overall buyers’ social welfare given a partition of
items [10]. On the other hand, coalition formation with overlaps
drops the constraint of disjoint coalitions in a given coalition struc-
ture [17]. A coalition becomes a vector (of length |𝐴|) and each
agent establishes a desired contribution to it; a contribution of 0
means the agent does not participate in that coalition. It can be
noted that both approaches output a single coalition structure and
therefore address a different problem than ours.

A related field to coalition formation is clustering. It plays an
important role, especially in dealing with databases, when we aim
to group objects based on given criteria. Different approaches for
this problem have been proposed and some of them are related
to ours, for instance, meta-clustering [5]. In that setting, the aim
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Figure 4: Quality of the solution found by MC-Link compared to a brute-force algorithm.
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Figure 6: MC-Link running time for different lengths of H
and varying the number of agents.

is to group different clustering solutions for a given database. A
solution is a partition of objects into clusters; a meta-clustering
algorithm works over solutions of clustering algorithms. Another
interesting problem is top-k clustering [7]. In that problem, given

a three-tuple graph having a set of vertices, edges, and attributes,
the goal is, from a set of candidate solutions, to select 𝑘 partitions
that maintain quality and are dissimilar from each other. It is not
hard to see that this problem could be formulated as an SCFG, by
setting 𝑘 = ℎ and choosing an appropriate R.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we formally defined a sequential coalitional game
SCFG and introduced an algorithm for computing an FCSS as its so-
lution. A sequence of coalition structures (of the same length as the
number of games) is generated in which the coalition structures are
constrained by a binary relation. Our setting is expressive enough
to represent some games previously proposed in the literature (see
Theorem 2.2). We also showed that a real-world application can be
naturally modelled as an SCFG (see Theorem 3.1). Moreover, we
formally analysed our algorithm and showed experimentally that
it can handle instances with a reasonable number of agents.

This new form of games is clearly challenging and opens various
new research directions, for instance on payoff distribution, another
important aspect of the coalition formation process. We would like
to investigate also the expressiveness of relationR and to determine
how typical properties of binary relations affect the game and its
solutions. Both directions require further complexity analysis. In
terms of practical applications, we aim to use the formulation of
an ICS structure for applications in disaster management systems
and experiment with real-world data. Finally, we also would like to
improve the algorithm proposed here to provide a quality bound
on the optimal solution.

ACKNOWLEDGMENTS

The first author acknowledges funding by CAPES—Brasil—Finance
Code 001. The last author gratefully acknowledges the support
from CNPq and CAPES.

Main Track AAMAS 2021, May 3-7, 2021, Online

726



REFERENCES

[1] Filippo Bistaffa, Alessandro Farinelli, Georgios Chalkiadakis, and Sarvapali D.
Ramchurn. 2017. A Cooperative Game-theoretic Approach to the Social Rideshar-
ing Problem. Artificial Intelligence 246 (May 2017), 86–117.

[2] Alessandro Farinelli, Manuele Bicego, Filippo Bistaffa, and Sarvapali D. Ramchurn.
2016. A Hierarchical Clustering Approach to Large-scale Near-optimal Coali-
tion Formation with Quality Guarantees. Engineering Applications of Artificial
Intelligence 59 (Dec. 2016), 170–185.

[3] Michal Feldman, Nick Gravin, and Brendan Lucier. 2015. Combinatorial Auctions
via Posted Prices. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms. Society for Industrial and Applied Mathematics,
USA, 123–135.

[4] FEMA. 2017. National Incident Management System (3 ed.). Independently
Published.

[5] Alessio Ferone and Antonio Maratea. 2020. Decoy Meta–Clustering Through
Rough Graded Possibilistic C-Medoids. In 2020 IEEE Conference on Evolving and
Adaptive Intelligent Systems. IEEE, 1–7.

[6] Gianluigi Greco and Antonella Guzzo. 2017. Constrained Coalition Formation on
Valuation Structures: Formal framework, applications, and islands of tractability.
Artificial Intelligence 249 (Aug. 2017), 19–46.

[7] Gustavo Paiva Guedes, Eduardo Ogasawara, Eduardo Bezerra, and Geraldo Xexeo.
2016. Discovering Top-k Non-Redundant Clusterings in Attributed Graphs.
Neurocomputing 210 (Oct. 2016), 45–54.

[8] Robert L. Irwin. 1989. Disaster response: Principles of preparation and coordination.
C.V. Mosby, St. Louis, MO, Chapter The Incident Command System (ICS), 303.

[9] Tabajara Krausburg. 2021. Hierarchical Coalition Formation in Multi-agent
Systems. In Proceedings of 17th International Conference on Distributed Computing
and Artificial Intelligence, Special Sessions. Springer International Publishing,

Cham, 210–214.
[10] Piotr Krysta and Carmine Ventre. 2015. Combinatorial auctions with verification

are tractable. Theoretical Computer Science 571 (March 2015), 21–35.
[11] Tomasz Michalak, Talal Rahwan, Edith Elkind, Michael Wooldridge, and

Nicholas R. Jennings. 2015. A Hybrid Exact Algorithm for Complete Set Parti-
tioning. Artificial Intelligence 230 (Oct. 2015), 14–50.

[12] Tapio Niemi, Jyrki Nummenmaa, and Peter Thanisch. 2001. Logical Multidimen-
sional Database Design for Ragged and Unbalanced Aggregation. In Proceedings
of the 3rd International Workshop on Design and Management of Data Warehouses
(CEUR Workshop Proceedings, Vol. 39). CEUR-WS, 7.

[13] Talal Rahwan, Tomasz P. Michalak, Edith Elkind, Piotr Faliszewski, Jacek Sroka,
Michael Wooldridge, and Nicholas R. Jennings. 2011. Constrained Coalition For-
mation. In Proceedings of the 25th International Conference on Artificial Intelligence.
AAAI Press, 719–725.

[14] Talal Rahwan, Tomasz P. Michalak, MichaelWooldridge, and Nicholas R. Jennings.
2015. Coalition Structure Generation: a Survey. Artificial Intelligence 229 (Dec.
2015), 139–174.

[15] T. Rahwan, T. Nguyen, T. P. Michalak, M. Polukarov, M. Croitoru, and N. R.
Jennings. 2013. Coalitional Games via Network Flows. In Proceedings of the 23rd
International Joint Conference on Artificial Intelligence. IJCAI/AAAI, 324–331.

[16] Sergios Theodoridis and Konstantinos Koutroumbas. 2008. Pattern Recognition,
Fourth Edition (4th ed.). Academic Press, Inc., USA.

[17] Yair Zick, G. Chalkiadakis, and E. Elkind. 2012. Overlapping coalition forma-
tion games: Charting the tractability frontier. Proceedings of 11th International
Conference on Autonomous Agents and Multiagent Systems 2012, AAMAS 2012:
Innovative Applications Track 1 (2012), 176–183.

[18] Yair Zick, Georgios Chalkiadakis, Edith Elkind, and Evangelos Markakis. 2019.
Cooperative games with overlapping coalitions: Charting the tractability frontier.
Artificial Intelligence 271 (June 2019), 74–97.

Main Track AAMAS 2021, May 3-7, 2021, Online

727


	Abstract
	1 Introduction
	2 Solutions for Sequential Games
	2.1 Motivation and Main Notions
	2.2 SCFG and Coalition Formation Problems
	2.3 The Role of R in a Sequential Game
	2.4 A Training Session Application

	3 A Game for Disaster Response
	3.1 The Incident Command System
	3.2 SCFG Properties under R_S
	3.3 The ICS as a Sequential Game
	3.4 A Second Disaster Response Example

	4 An Algorithm to Compute an FCSS
	4.1 The Multiple Coalition Linkage Algorithm
	4.2 MC-Link Analysis

	5 Experiments
	5.1 Quality of the Solution
	5.2 Time Analysis

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References



