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ABSTRACT
Taxi fleets and car aggregation systems are an important component

of the urban public transportation system. Taxis and cars in taxi

fleets and car aggregation systems (e.g., Uber) are dependent on

a large number of self-controlled and profit-driven taxi drivers,

which introduces inefficiencies in the system. There are two ways

in which taxi fleet performance can be optimized: (i) Operational

decision making: improve assignment of taxis/cars to customers,

while accounting for future demand; (ii) strategic decision making:

optimize operating hours of (taxi and car) drivers. Existing research

has primarily focused on the operational decisions in (i) and we

focus on the strategic decisions in (ii).

We first model this complex real world decision making problem

(with thousands of taxi drivers) as a multi-stage stochastic con-

gestion game with a non dedicated set of agents (i.e., agents start

operation at a random stage and exit the game after a fixed time),

where there is a dynamic population of agents (constrained by the

maximum number of drivers). We provide planning and learning

methods for computing the ideal operating hours in such a game,

so as to improve efficiency of the overall fleet. In our experimental

results, we demonstrate that our planning based approach provides

up to 16% improvement in revenue over existing method on a real

world taxi dataset. The learning based approach further improves

the performance and achieves up to 10% more revenue than the

planning approach.
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1 INTRODUCTION
In recent years, various advances in mobile and information tech-

nologies have transformed many sectors of economy, allowing

workers to participate in the workforce flexibly using mobile Apps.

This form of worker engagement, commonly called the digital gig
economy, has brought benefits and challenges for both firms and

workers. For workers in the digital gig economy, the critical deci-

sions are when and how to work. These decisions are challenging
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to derive since the performance of a worker depends on not just

his/her own efforts, but also on other worker’s decisions.

In this paper, we propose to study how workers should supply

their labor in the digital gig economy, in anticipation of competi-

tions from other workers. To provide a concrete context, we focus

on taxi drivers in the transport gig economy, since we have col-

lected a rich set of proprietary data logging locations and statuses

of all taxi drivers in a major Asian city over a span of multiple

years. Although our numerical examples focus on taxi drivers, we

believe our models and solution approaches are general enough to

be applied to other similar settings (e.g., ride-hailing, logistics, or

food-delivery services).

To facilitate game-theoretic modeling, we discretize an agent’s

strategy space by dividing the city into zones of reasonable size.

The time horizon is also discretized into periods with uniform

length. The strategic decision of a driver (agent) consists of two

stages: 1) the agent decides when to enter the system and begin

working; and 2) after entering the system, the agent will work for

a pre-determined duration, during which the agent has to decide

how to move around the city in order to maximize his utility. For a

particular agent, his utility depends on not just his own strategy,

but also other agents’ strategies. This motivates the use of game-

theoretic models in our formulation. Structurally speaking, our

game-theoretic model has the congestion game property, as an

agent’s expected reward in staying in a zone is non-increasing in

the number of competing agents in the same zone. However, agents

in our formulation are subject to involuntary movements when they

are hired and have to move to the destinations specified by the

passengers. This class of model was first proposed by [20], and

subsequently used extensively in explaining taxi driver’s strategic

behaviors. Our first contribution lies in the expansion of an agent’s

strategy space to include entry time. This expansion allows us to

model the fluctuation of active agent population in the second stage

as a direct consequence of agents’ respective strategic decisions in

the first stage.

An agent’s strategy is thus composed of the choice of the time

period to begin working and a sequence of zones to visit in time

periods when the agent is active. This game-theoretic model is

intractable in practice, as the size of the game is exponential in the

number of agents, and it is common to have thousands of agents.

To make the model tractable, we follow [20] and assume agents to

be homogeneous and anonymous, implying that we only need to

consider agent counts in each zone and time period. With these

assumptions, we could define the solution to our problem as a

symmetric Nash equilibrium where all agents should follow (since

agents are assumed to be homogeneous and anonymous).
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The symmetric Nash equilibrium should contain strategies for

agents to adopt for both stages of their decision making process. For

the first stage, we should provide agents with a distribution over

their starting time periods. For the second stage, the equilibrium

strategy should contain a policy that instruct them on which zones

to move to for each (zone, time) tuple.

To compute a symmetric Nash equilibrium efficiently, we have

developed two variants of the fictitious play algorithm. The first

variant, Fictitious Play-Based Planning for Dynamic Population

(FP-P-DP), is based on multi-agent Markov decision process (MDP),

which formulates individual agent’s best response computation

problem as a MDP, and the fictitious play process is used as a

mechanism to coordinate responses from all agents. The second

variant, Fictitious Play-Based Learning for Dynamic Population

(FP-L-DP), approximate the best response computation by applying

deep learning technique. In our numerical experiments, the FP-

L-DP approach could achieve performance similar to that of the

FP-P-DP approach, but with much shorter computational time.

To demonstrate the effectiveness of our approaches, we use a

real-world dataset derived from over 20,000 taxis in a major Asian

city. Besides algorithmic comparison of our approaches, we also

compare the identified equilibrium policy against the actual driver’s

policy extracted from the dataset. From the comparison, we can see

clear advantage of adopting the equilibrium-inspired policies for

drivers.

In summary, our paper makes the following methodological and

practical contributions:

(1) We introduce a two-stage game-theoretic formulation to

directly capture the dynamics of agent population changes

over time, which results from agents’ strategic choices on the

work starting time. The model also captures important con-

gestion game features that are commonly seen in transport

gig economy.

(2) We introduce two fictitious play-based algorithms to search

for a symmetric Nash equilibrium in our model. The major

difference of these two variants is on how we compute the

best response strategies. While one relies on MDP-based

planning method, another one relies on deep learning ap-

proach to approximate the best response policy.

(3) We demonstrated the effectiveness of our approach and the

importance of using equilibrium policies by using a large-

scale real-world dataset containing more than 20,000 drivers.

Our real-world comparison baseline is taxi driver’s actual

work schedule choices extracted from the dataset.

The rest of the paper is organized as follows: In the next section

we provide related work. After that we provide a motivation sec-

tion, where we provided details of the problem setting (taxi fleet

optimization problem) that we are solving in this work. In the later

section we introduce a general framework called the Selfish Routing

with Transition uncertainty (SRT) for modeling problems such as

taxi fleet optimization. We provide details of this framework before

we move to next section where we a provide solution approach

section to solve SRT model (fictitious play-based equilibrium com-

putation) where we provide two approaches (a FP based planning

approach and a FP based learning approach) to solve our SRTmodel.

Finally we provide experimental results on a real world taxi data

set from a large Asian city in the experimental section.

2 RELATEDWORK
The optimization of fleet operations in transport gig economy has

been well-studied from the time when taxi is the only service mode.

During early years, the focus has mostly been on taxi dispatch (e.g.,

[18]). With ride-hailing services gaining popularity globally, focus

has gradually shifted to approaches that could increase driver-level

or fleet-level performances.

At the driver-level, there are efforts that focus on finding optimal

driving strategies [7, 15, 16]. This line of work aim to maximize

driver’s profits by providing routing suggestions based on currently

available passengers and drivers.

To account for mutli-period considerations, a number of re-

searchers have recently used various Markov Decision Process

(MDP) approaches to optimize a single agent’s sequential decision-

making process over a time horizon [6, 17, 21, 22, 25]. Compared

to earlier efforts, these MDP-based approaches aim to optimized

long-term expected rewards for drivers, given different assumptions

about the environment and driver states.

As these efforts are mostly single-agent based, when adopted

universally, it might lead to suboptimal results. Some researchers

have thus adopted game-theoretic approaches to optimize fleet-

level performance, considering all taxi drivers as agents explicitly.

An example of such approach is mentioned in the introduction

[20], however, it does not consider dynamic driver population as

we do. The closest effort in the literature is by [5], which explicitly

considers driver’s operating hours as constraints. Compared to [5],

our approach incorporates starting time period as part of agent’s

strategies (not constraints). And our work also integrate service

time decisions with roaming decisions (the second-stage strategies).

Methodologically speaking, our game-theoretic formulation is

most relevant to the modeling of dynamic agent population. In the

game theory literature, dynamic agent population can be achieved

by modeling agent activation as a stochastic process: deciding

whether individual agents would become active following certain

stochastic processes [1, 2, 9]. Alternatively, dynamic agent pop-

ulation can also be achieved by using Poisson games (a form of

population games), where the number of active players at any time

step in the game is supposed to be drawn from a random variable,

whose probability distribution is known [12, 13]. Inter-time-period

dependency in the number of agents could also be established by

assuming the the number of active agents follows a conditional

probability distribution on the number of active agents from the

previous time period [8].

In all these approaches with finite number of players, the dy-

namics of agent population are determined by exogenous param-

eters/distributions, and not controlled by agents. In contrast, our

approach models dynamic agent population explicitly, not as ex-

ogenous parameters, but as part of agent’s strategy space.

3 MOTIVATING DOMAIN: TAXI FLEET
OPTIMIZATION

In urban cities such as Singapore, New York, Hong Kong, taxis are

considered an important mode of public transportation. However,
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Figure 1: Correlation between incoming flow and outgoing
trips over all zones.

Figure 2: Correlation between actual taxi distribution and
outflow.

because of independent and myopic optimization of taxi drivers

(Figure 1 hints to this myopic optimization
1
), the positioning and

movement of taxis are not in synchronization with customer de-

mands arising in various parts of a city (see Figure 2). For instance,

high-demand zones (such as airports, popular attractions) typically

get many more taxis than required because of this independent

optimization. Our research is motivated by the problem of figuring

out how many taxis should start at which time of the day, while

coordinating the movement of a fleet of self-interested taxis
2
. More

specifically, we are interested in generating advice for taxi drivers

so as to improve their revenue distribution and also better correlate

movements of taxis with customer flow.

A fleet of taxis 𝑃 is serving a city divided into𝑀 zones and the

goal is to provide decision support for taxi drivers on their move-

ment decisions at each time step. The flow of customers between

any two zones 𝑖 and 𝑗 starting at time step 𝑡 is given by 𝑓 𝑙𝑡 (𝑖, 𝑗). The
demand for taxis in a zone 𝑖 at time step 𝑡 is given by

∑
𝑗 𝑓 𝑙

𝑡 (𝑖, 𝑗).
If the number of taxis in a particular zone during a time period is

fewer than the number of customers in that zone, all taxis will be

1
We provide a correlation between incoming taxis to zones and the outgoing hired

taxis from those zones over a 3 month period for a major taxi company in Singapore.

In other words, higher correlation implies a preference for zones with higher demand.

As we see from Figure 1, the 𝑅2
value is close to 0.7 suggesting a high correlation.

2
In our definition, we assume that each taxi is driven by an independent driver (thus

we use taxi and taxi driver interchangeably).

hired (the determination of their destinations is described in the

following paragraph). Otherwise, only a fraction of the taxis (equal

to the number of customers) will be hired. We discretize the time

horizon into time intervals and provide decision support at each of

these time points.

The movements of taxis between zones depends on whether

they are hired by a customer or not. If a taxi is hired in a zone,

the movement is involuntary (decided by the customer onboard)

and is governed by the probability distribution computed from

the outgoing flows of customers from that zone to other zones.

Therefore, if a taxi is hired by a customer in zone 𝑖 , during a time

interval starting with 𝑡 , the probability of moving to zone 𝑗 is
𝑓 𝑙𝑡 (𝑖, 𝑗)∑
𝑗 𝑓 𝑙

𝑡 (𝑖, 𝑗) . Furthermore, a hired taxi in such a case will receive

a revenue of 𝑟𝑡 (𝑖, 𝑗) and incur a cost of 𝑐𝑡 (𝑖, 𝑗) (we will defer the
formal definitions to later sections, however, do note that the value

of 𝑟𝑡 (𝑖, 𝑗) is dependent on other agent’s actions, while 𝑐𝑡 (𝑖, 𝑗) is a
constant that is independently determined).

On the other hand, if a taxi is not hired, its movement is voluntary

and it will receive no revenue but incur a cost of 𝑐𝑡 (𝑖, 𝑗). While

previous papers [11, 16, 20, 23, 24] have focussed on providing

decision support for each taxi on which zone to move to at each

time step, so that there is no incentive (with respect to expected

revenue) for individual taxis to deviate from the suggested decisions,

our focus is on identifying the number of taxis that should be active

at different times of the day, given a constraint on the duration each

taxi driver can work.

4 MODEL: SRT
We now introduce a general framework called the Selfish Routing
with Transition uncertainty (SRT) formodeling problems such as taxi

fleet optimization . SRT is an extension of the Distributed Decision

model for Agent Populations (DDAP) introduced by [20]. Infor-

mally, SRT represents decision problems in congestion scenarios

under movement uncertainty and can be viewed as a combination

of stochastic games and selfish routing. More specifically, SRT gen-

eralizes the notion of resources and movement uncertainty to states

and transition functions respectively.

SRT represents a subset of problems represented by the generic

stochastic game model [10, 14, 19]. In SRT, the transition and re-

ward functions for an agent are dependent only on the aggregate

distributions of other agent states, whereas in stochastic games

the transition and reward function for an agent can be dependent

on specific state and action of every other agent. SRT represents

problems with selfish agents and hence is different to cooperative

models such as Decentralized POMDPs (DEC-POMDP) [3].

An SRT instance is the tuple:〈
P,S,A,T , {R𝜏 }𝜏 ∈Γ, 𝒅0, 𝛿, 𝐻

〉
,

S corresponds to the set of states encountered by each agent. A
is the set of actions executed by each agent. The transition and

reward models for specific state action pairs at a decision epoch

are dependent on the distribution of agent states at that decision

epoch.

T models the involuntary movements of every agent and more

specifically, T 𝑡 (𝑠, 𝑎, 𝑠 ′, 𝒅) represents the probability that an agent

of in state 𝑠 ∈ S after taking action 𝑎 ∈ A would transition to state
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𝑠 ′, when the state distribution of all agents is 𝒅 at time 𝑡 . Similarly,

R𝑡 (𝑠, 𝑎, 𝑠 ′, 𝒅) is the reward obtained by an agent of type 𝜏 when

in state 𝑠 , taking action 𝑎 and moving to state 𝑠 ′ when the state

distribution of other agents is 𝒅 at time 𝑡 . 𝛿 is the maximum number

of time steps any agent can be active. Finally 𝐻 represents the time

horizon of the decision making process.

The objective in solving a SRT is to compute (a) a policy 𝜋𝑖
for each agent 𝑖; (b) a starting state and time 𝛼𝑖 for each agent

𝑖; such that there is no incentive to unilaterally deviate from its

policy and/or its starting state and time , in terms of the expected

value (i.e.,V( ®𝜋0
𝑖
, 𝛼𝑖 , ®𝜋0−𝑖 , 𝛼−𝑖 )). Individual agent policy, 𝜋𝑖 , has the

same definition as the one used for MDPs . That is to say, 𝜋𝑡
𝑖
(𝑠, 𝑎)

indicates the probability of agent 𝑖 taking action 𝑎 in state 𝑠 at time

𝑡 and
∑
𝑎 𝜋

𝑡
𝑖
(𝑠, 𝑎) = 1, ∀𝑖, 𝑡, 𝑠 .

Initial distribution (starting state and time) has the same defini-

tion as the one used in MDPs except, in MDPs every agent starts

at time 0 in some fixed states, where this is something SRT model

need to optimize. That is to say, 𝛼𝑖 (𝑡, 𝑠) indicates agent i becomes

active in SRT model in state s at time t. And

∑
𝑡,𝑠 𝛼𝑖 (𝑡, 𝑠) = 1, ∀𝑖

4.1 Taxi Fleet Optimization as a SRT
The taxi fleet optimization problem can be represented as a SRT

with the following mapping: P is the set of taxis in the fleet,S is the

set of zones a taxi couldmove to,A is the set of zones to which a taxi

driver wishes to move. The transition function, T , depends on the

involuntarymovements between zones. The involuntarymovement

between any two zones 𝑖 and 𝑗 at a time step 𝑡 is determined by the

number of customers (customer flow), 𝑓 𝑙𝑡 (𝑖, 𝑗) moving between

those zones. Since the movement of taxis and the revenues received

for serving customers are dependent only on the customer flows,

the type index is not necessary and hence is dropped for purposes

of this section. Equation (1) provides the expression for computing

the transition probabilities between states.

Intuitively, if the number of taxis is less than the number of

customers in a zone, then all taxis will be hired. It should be noted

that this assumption is valid as long as the size of the zone is small

enough for a taxi to quickly and fully cruise a zone for customers.

The exact transition probabilities depend on normalized demands

to other zones from the current zone (C1 represents this case). On

the other hand, if the number of taxis is more than the number of

customers in a zone, the transition probabilities should depend on

whether the action (intended zone) coincides with the destination

zone (C2 and C3 represent these two cases). The condition C2 is

only possible when the taxi agent is hired by a customer heading

towards any 𝑠 ′ that is not 𝑎. For condition C3, the taxi agent can
either be free or hired by a customer heading towards the agent’s

intended zone.

T 𝑡 (𝑠, 𝑎, 𝑠 ′, 𝒅) =
𝑓 𝑙𝑡 (𝑠,𝑠′)∑
𝑠 𝑓 𝑙

𝑡 (𝑠,𝑠) if

∑
𝑠 𝑓 𝑙

𝑡 (𝑠, 𝑠) ≥ 𝑑𝑠 (C1)

𝑓 𝑙𝑡 (𝑠,𝑠′)
𝑑𝑠

if

∑
𝑠 𝑓 𝑙

𝑡 (𝑠, 𝑠) < 𝑑𝑠 and 𝑎 ≠ 𝑠 ′(C2)

1 −
∑

𝑠≠𝑠′ 𝑓 𝑙
𝑡 (𝑠,𝑠)

𝑑𝑠
if

∑
𝑠 𝑓 𝑙

𝑡 (𝑠, 𝑠) < 𝑑𝑠 and 𝑎 = 𝑠 ′(C3)

(1)

Similar to the transition probabilities, the reward function R𝑡 (·)
is defined differently under these three conditions:

R𝑡 (𝑠, 𝑎, 𝒅) =


∑
𝑠′ T 𝑡 (𝑠, 𝑎, 𝑠 ′, 𝒅) ·

(
𝑟𝑡 (𝑠, 𝑠 ′) − 𝑐𝑡 (𝑠, 𝑠 ′)

)
C1∑

𝑠′≠𝑎 T 𝑡 (𝑠, 𝑎, 𝑠 ′, 𝒅) ·
(
𝑟𝑡 (𝑠, 𝑠 ′) − 𝑐𝑡 (𝑠, 𝑠 ′)

)
C2

𝑓 𝑙𝑡 (𝑠,𝑎)
𝑑𝑠

· 𝑟𝑡 (𝑠, 𝑎) − T 𝑡 (𝑠, 𝑎, 𝑎) · 𝑐𝑡 (𝑠, 𝑎) C3
(2)

It should be noted that taxis are hired in conditions C1 and C2;
therefore, the expected rewards in these two cases are the sum of

expected rewards to all feasible destinations. ForC3, cost is incurred
for sure, but revenue can only be earned if the taxi is hired.

Our goal in solving taxi fleet optimization problem as a SRT is

to maximize expected revenue for individual taxi drivers who are

perfectly rational and follow computed policies. As taxi drivers can

only increase their earnings by serving more customers, increasing

the average expected revenues for all taxi drivers implies that the

number of unserved customers will also decrease. Therefore, both

the global and individual objectives are aligned and can be opti-

mized without involving multi-objective reasoning. In the following

numerical example, we illustrate how transition probabilities and

the rewards are computed for a small problem:

Example 1. Consider a map with three zones, S = {𝑠0, 𝑠1, 𝑠2}.
For simplicity we set flow values to 1 across all time periods; i.e.,
one passenger goes from each zone to an adjacent zone in all time
periods. We also set rewards and costs to be fixed at 𝑟𝑡 (𝑠, 𝑠 ′) = 1

and 𝑐𝑡 (𝑠, 𝑠 ′) = 0 for all time periods 𝑡 and all zones 𝑠, 𝑠 ′ ∈ S. If the
distribution of taxis at a given time period 𝑡 is 𝒅𝑡 = (1, 1, 4), then:
• The transition function T 𝑡 (𝑠, 𝑎, 𝑠 ′, 𝒅𝑡 ) is specified by matrix𝑚(𝑠),
in which the row label represents action 𝑎, and the column label
represents destination zone 𝑠 ′. Transition function for 𝑠0 and 𝑠2
are:

𝑚(𝑠0) =
©­«

0.0 0.5 0.5

0.0 0.5 0.5

0.0 0.5 0.5

ª®¬ 𝑚(𝑠2) =
©­«

0.75 0.25 0.0

0.25 0.75 0.0

0.25 0.25 0.5

ª®¬
• Similarly, the reward function R𝑡 (𝑠, 𝑎, 𝒅) is specified as a matrix,

in which the row label represents current zone 𝑠 , and the column
label represents action 𝑎:

©­«
1.0 1.0 1.0

1.0 1.0 1.0

0.5 0.5 0.5

ª®¬
Consider state 𝑠2: 𝑓 𝑙𝑡 (𝑠2, 𝑠 ′) = 1 for 𝑠 ′ ∈ {𝑠0, 𝑠1} and 𝑑𝑡 (𝑠2) = 4. The
transition and reward functions are computed using (1) and (2). For
𝑎 = 𝑠2 and 𝑠 ′ ∈ {𝑠0, 𝑠1}, T 𝑡 (𝑠2, 𝑎, 𝑠 ′, 𝒅𝑡 ) = 1/4 by C2. For 𝑎 = 𝑠2 and
𝑠 ′ = 𝑠2, T 𝑡 (𝑠2, 𝑎, 𝑠 ′, 𝒅𝑡 ) = 1− 2/4 = 1/2 by C3. Rest of the transition
and reward function values can be computed similarly.

Unlike in other game, in this model number of players playing

the game at different time steps are different. At any time step t, it

is bounded by:

∑
𝑠

∑𝑘=𝑡
𝑘=𝑡−𝛿 𝐼

𝑘 (𝑠). Where 𝐼𝑘 (𝑠) = ∑
𝑖 𝐼

𝑘
𝑖
(𝑠) and 𝐼𝑘

𝑖
(𝑠)

is indicator variable for if agent i is starting its operation at time k
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in state s. Thus,

Active players count at time t ≤
∑
𝑠

𝑘=𝑡∑
𝑘=𝑡−𝛿

𝐼𝑘 (𝑠) (3)

In this gameG, there are total N players, but all of them (may) not

be active (playing game) at every time step. Total time horizon of

the game is𝑇 , and any player can only play the game for maximum

of 𝛼 time steps. Each time agent play the game will get some reward

and will transit to a new state according to its transition function.

5 SOLUTION APPROACH FOR SRT
To solve the SRT model where we want to optimize the distribution

of agents at each epoch as well as their policies, we convert SRT to

a k-symmetric game. In this game k represents the type of agents

and each type shares the same initial distribution. We provide

two techniques to solve SRT with dynamic populations (different

number of drivers at different decision epochs).

5.1 Fictitious Play-Based Planning For
Dynamic Population (FP-P-DP)

In order to achieve the above objective we design a single fictitious

play (FP) process (Algorithm 1) that optimizes both (a) policy of

every agent; and (b) initial distribution of every agent; as a sin-

gle equilibrium computation process. Algorithm 1) provides this

fictitious play approach, where each agent starts with a random

policy as well as a random initial distribution. We then find the best

response assuming all but one agent are following their current

policy and initial distribution. It should be noted that best response

for any agent is a set of “policy and its initial distribution”. Using

the best response, we compute average policy and average initial

distribution and this process is repeated until policy and initial

distribution converges.

Best Response Computation: Algorithm 2 provides the best re-

sponse computation method employed within the FP-P-DP process.

To compute the best response for an agent, Algorithm 2 uses the

average policy and average initial distribution and simulates all but

one agent. Using this simulated information it computes the best

response for an agent which contains both a policy and an initial

distribution. Since best response computation is not specific to any

agent, we don’t use agent index in policy and initial distribution.

In the best response computation, to handle dynamic population

setting, we do the following: (a) Introduce a sink node; (b) Treat

initial distribution as a optimization variable. A sink state, 𝑠𝑠𝑖𝑛𝑘 is

an absorbing state that represents the state of taxis when they are

not active.

In a normal MDP, initial distribution (𝛼) of agents is known.

However, in the best response computation we are interested in

finding the best initial distribution and therefore, we treat the initial

distribution (𝛼) as a variable. s.t,
∑
𝑡,𝑠 𝛼

𝑡 (𝑠) = 1 Given maximum

number of time steps (𝛿) any agent can be active in the game,

the flow of agents (x) at some time steps t+𝛿 should not exceed

[𝛼𝑡+1 + 𝛼𝑡+2 + ... + 𝛼𝑡+𝛿 ] i.e,
∑
𝑠,𝑎 𝑥

𝑡+𝛿 (𝑠, 𝑎) ≤ ∑
𝑠

∑𝛿
𝑗=1 𝛼

𝑡+𝑗 (𝑠) By
utilizing the algorithm 2 as its best response dynamics, FP process

aims to find an approximate equilibrium solution for all agents.

Algorithm 1 Finding 𝜖-Equilibrium

1: 𝜋0 = 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑃𝑜𝑙𝑖𝑐𝑦 ()
2: 𝛼0 = 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛()
3: For empirical,

𝛼0 = 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑐𝑙𝑜𝑠𝑒𝑇𝑜ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝐷𝑎𝑡𝑎()

4: 𝑥0 = 𝑔𝑒𝑡𝐴𝑔𝑒𝑛𝑡𝐹𝑙𝑜𝑤 (𝜋0, 𝛼0, 𝑁 )
5: i = 1

6: converged = false

7: while converged = false do
8: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑔𝑒𝑡𝐴𝑔𝑒𝑛𝑡𝐶𝑜𝑢𝑛𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝜋0, 𝛼0, 𝑁 − 1)
9: < 𝑥1, 𝛼1 >= 𝑠𝑜𝑙𝑣𝑒𝑀𝐷𝑃 (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
10: 𝑥𝑡

1
(𝑠, 𝑎) = (𝑥𝑡

0
(𝑠, 𝑎) · 𝑖 + 𝑥𝑡

1
(𝑠, 𝑎))/(𝑖 + 1), ∀𝑡, 𝑠, 𝑎

11: 𝛼𝑡
1
(𝑠) = (𝛼𝑡

0
(𝑠) · 𝑖 + 𝛼𝑡

1
(𝑠))/(𝑖 + 1), ∀𝑡, 𝑠

12: 𝜋1
𝑡 (𝑠, 𝑎) = 𝑥𝑡

1
(𝑠, 𝑎)/∑𝑎 𝑥

𝑡
1
(𝑠, 𝑎), ∀𝑡, 𝑠, 𝑎

13: if | 𝜋0 − 𝜋1 |≤ 𝜖𝜙 & | 𝛼0 − 𝛼1 |≤ 𝜖𝛼 then
14: converged = TRUE

15: else
16: 𝜋0 = 𝜋1
17: 𝛼0 = 𝛼1
18: end if
19: 𝑖 + 1

20: end while

Algorithm 2 solveMDP(p)

max

∑
𝑡,𝑠,𝑎,𝑖

𝑥𝑡 (𝑠, 𝑎) · 𝑝𝑡𝑖 (𝑠) · 𝑅
𝑡 (𝑠, 𝑎, 𝑖 + 1) (4)

s.t (5)∑
𝑎

𝑥𝑡 (𝑠, 𝑎) −
∑

𝑠′,𝑎≠𝑎𝑠𝑖𝑛𝑘

𝑥𝑡−1 (𝑠 ′, 𝑎) · 𝑝𝑡𝑖 (𝑠
′) · 𝜙𝑡𝑖+1 (𝑠

′, 𝑎, 𝑠)

= 𝛼𝑡 (𝑠) ∀𝑠, 𝑡 (6)∑
𝑡,𝑠

𝛼𝑡 (𝑠) = 1 (7)

∑
𝑠,𝑎

𝑥𝑡+𝑛 (𝑠, 𝑎) ≤
∑
𝑠

𝑛∑
𝑗=1

𝛼𝑡+𝑗 (𝑠), ∀𝑠 (8)

5.2 Fictitious Play-Based Learning For
Dynamic Population (FP-L-DP):

Due to the presence of a large number of agents, solving FP-P-DP

is very time consuming, which takes from few hours to few days

on different data sets (on different days of taxi data of a large Asian

city). To provide a high quality solution in a reasonable amount

of time, we provide a deep learning based fictitious play method

(Algorithm 3), which achieves comparable results in significantly

smaller training time (details in the experimental section).

Naively applying deep learning technique on such large scale

can create many problems. To achieve a good solution and at the

same time keep the entire training process simple and efficient, we

do the following: (a) we create a neural network (basically a neural

network to learn an average value) that takes policy as input and

provides average best response as output. (b) we assume greedy
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Figure 3: (a) Comparison of equilibrium, empirical equilibrium and learned equilibrium solution quality (averaged over 2000
simulation instances); (b) Average coverage provided by equilibrium, empirical equilibriumand learned equilibrium solutions.
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Figure 4: Distribution on agents on day 1 and 2
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policy for every agent; (c) we simulate all agents (assuming greedy

policy) and based on average reward obtained in different starting

states, we compute the best response (starting state providing the

highest average reward will be considered as best response); (d)

once we have the best response from simulator we store it in the

best response buffer; (e) and as the final step we train our neural

network to learn a average value over stored experiences (i.e, learn

the average best response); To learn the average best response

we take inspiration from maximum likelihood estimation and we

achieve it in our neural network by optimizing the log loss value

over (sampled) stored experiences.

Even with the greedy policy assumption, this approach faces the

following issues:

• Policy space is too large: Even though we assume greedy

policy, its scale is large due to large state/action space and

longer time horizon.

• Best response computation is time consuming: Entire train-

ing relies on getting the best response so it is very important

to compute the best response in a faster and efficient way.

• Biased samples for training: Efficient training required bal-

ances samples, but due to operating hour constant, biased

samples will be generated, that will lead to inefficient results.

To handle above 3 issues we do the following:

Map policy to a lower dimension: The neural network takes

policy as input, since scale of the problem is large, so does the

policy of agents. In the taxi problem setting, policy have 24𝑥104

entries [24 time steps, 100 states, 100 actions]. Providing such a

large input to neural network makes is very complex in terms of

training, and it requires a very long training cycle before it can

produce meaningful outputs. So we reduce the dimension of policy

before we pass it as input to neural network, In order to do so we

take advantage of “principal component analysis” method.

Themain idea of principal component analysis (PCA) is to reduce

the dimension of a data set consisting of many variables correlated

with each other, while retaining the variation present in the dataset,

in simpler words its a method of summarizing data.

Using PCA we reduce the policy dimension to 2400, which is

same dimension as dimension of initial distribution that we need

to learn (2400 dimension: 24 time steps, 100 states).

Getting best response in an efficient way: In order to train our

average initial distribution network, we need best response experi-

ences. We can train a deep Q network to achieve this, this requires

a separate training for such Q network. Given the large problem

setting this Q network will require longer training time before it

can be used for generating meaningful best response. To keep the

process simple and fast, we directly extract best response from

simulator (instead of using the simulated data to train a Q network

to predict the best response), we directly use best response informa-

tion from simulator to train the average initial distribution network.

Handling bias in best response data: In this problem of interest,

any agent can only operate for certain hours, say 10 hrs in case

of taxi optimization problem. Therefore best starting state for any

taxi will not be towards the end of horizon, where it gets to operate

for less than 10 hrs. Therefore almost all the experiences collected

from simulations, will only have data in the range of first 15 hrs

(assuming 24 hrs of operation). This create bias experience buffer

which would lead to poor solution quality. Therefore (to not fine

tune too much) we create 2 experience buffer, one stores the expe-

riences generated in the first half of operation (i.e, first 12 hrs) and

second experience buffer to store the remaining experiences. In the

training process we sample from both buffers equally and train the

neural network with it.

Algorithm 3 Symmetric fictitious play: for initial distribution

1: Initialize initial distribution network(𝜃𝛼 ),

2: while Not Converged do
3: policy = greedy policy

4: Simulate all agents

5: Compute average reward for each possible starting state

6: Store best response (starting state) experience in buffer:

𝑀𝑓 𝑖𝑟𝑠𝑡 if its in first half of operation, otherwise store in

𝑀𝑠𝑒𝑐𝑜𝑛𝑑

7: Sample from𝑀𝑓 𝑖𝑟𝑠𝑡 , train policy network:L(𝜃𝛼 ) = E(𝑡,𝑠)
[
−

𝑙𝑜𝑔(𝛼 (𝑡, 𝑠 |𝜃𝛼 )
]

8: Sample from 𝑀𝑠𝑒𝑐𝑜𝑛𝑑 , train policy network: L(𝜃𝛼 ) =

E(𝑡,𝑠)
[
− 𝑙𝑜𝑔(𝛼 (𝑡, 𝑠 |𝜃𝛼 )

]
9: end while

6 EXPERIMENTS
In this section we provide experimental results on the real world

taxi data set provided by a taxi company that operates in a large

Asian city. Data set contains approximately 20000 taxis operating

every day. We compared the results for 31 days of data (Jan 2017).

We compared performance of different policies, i.e., “Equilibrium

policy” – obtained by the FP-P-DP approach, “Empirical Equilibrium

policy:” obtained by the FP-P-DP approach but where agents have

to follow the historical distribution and “Learned Equilibrium” –

obtained by the FP-L-DP approach

6.1 Evaluation against historical data based
baseline

We simulated the policy generated by FP-P-DP and compared it

against the historical policy (referred to as the Empirical equilibrium

solution). For fair comparison:

• We computed the distribution of agents “as close as possible”

to historical distribution using Algorithm 4.

• Wefind the equilibrium policy using same fictitious playmethod,

but in best response MDP (Algorithm 5) agent tries to find its

best response where its initial distribution at every time step

is fixed same as historical distribution. It is allowed to change

states though, i.e it can start from different location but must

start at the same time as historical distribution.

• We computed this equilibrium policy under same maximum

operating hour constraint [which is 10 hr in our experiments].

Experimental setup is as follows: state (zone for taxis) size is

100, number of possible actions (to move between zones) is 100,
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maximum operating hour is 10 hrs, we extracted number of taxi

from historical data (we removed taxis operating for 16 hrs or more),

time horizon is 24 i.e we are computing policy for every hour.

Once we compute the equilibrium solutions generated by FP-P-

DP as well as historical distribution based empirical equilibrium

solution, we compared them as follows:

• We simulate both policies every 60 seconds, where taxis can

serves demand generated in last 60 seconds.

• Since policy generated is on an hourly basis, we reuse the policy

in simulation for every decision in that hour.

On all 31 days of data Figure(3(a)), FP-P-DP provided better

results as compared to historical equilibrium solution. These results

are averaged over 2000 simulations. Results are normalized on a

scale of 100, with the best approach getting 100.

Algorithm 4 𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑒𝑡 : Distribution from historical data

)

min

∑
𝑡

|𝑒𝑡 − 𝛽𝑡 | (9)

s.t

𝛽𝑡 =

𝑛−1∑
𝑡 ′=0

𝛼𝑡−𝑡
′

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 .

Algorithm 5 𝑠𝑜𝑙𝑣𝑒𝑀𝐷𝑃_𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 (𝑝)

max

∑
𝑡,𝑠,𝑎,𝑖

𝑥𝑡 (𝑠, 𝑎) · 𝑝𝑡𝑖 (𝑠) · 𝑅
𝑡 (𝑠, 𝑎, 𝑖 + 1), (10)

s.t∑
𝑎

𝑥𝑡 (𝑠, 𝑎) −
∑

𝑠′,𝑎≠𝑎𝑠𝑖𝑛𝑘

𝑥𝑡−1 (𝑠 ′, 𝑎) · 𝑝𝑡𝑖 (𝑠
′) · 𝜙𝑡𝑖+1 (𝑠

′, 𝑎, 𝑠),

= 𝛼𝑡 (𝑠) ∀𝑠, 𝑡, (11)∑
𝑡,𝑠

𝛼𝑡 (𝑠) = 1, (12)

∑
𝑠,𝑎

𝑥𝑡+𝑛 (𝑠, 𝑎) ≤
∑
𝑠

𝑛∑
𝑗=1

𝛼𝑡+𝑗 (𝑠), ∀𝑠,∑
𝑠

𝛼𝑡 (𝑠) = 𝛼𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒 . (13)

To understand the availability and coverage that both solutions

are providing, we also analyzed how taxis are operating through

out the day under both solutions (once policies along with their

distributions are simulated). In Figure 4 we provide the comparison

for day 1 and 2 (other days had similar results). Here we observe

that equilibrium solutions obtained by FP-P-DP and FP-L-DP are

providing better availability and coverage. Similar results are ob-

served on other days as well. Figure(3(b))) provides average cov-

erage provided by all agents under different methods, it suggests

that equilibrium solutions obtained by our methods provide much

better coverage than the empirical equilibrium on all 31 days of

data. Average coverage shown is averaged over all time and states.

6.2 Evaluation of FP-L-DP approach:
Parameter setting: We used the following parameters in the neu-

ral network. Learning Rate = 10
−3
, exploration parameter, 𝜖 = 0.9

and reduced it by a factor of 0.9 after every 50 iterations. We sim-

ulated in a manner similar to the FP-P-DP method. Our average

initial distribution network has 2 hidden layers with 2400 nodes in

each layer. We used layer norm after each layer. We used relu acti-

vation function in hidden layers. Input size is 2400. We used batch

size of 12. We trained it for 1000 iteration which took approximately

1 hr. We compared our deep learning based approach (FP-L-DP)

with equilibrium and empirical equilibrium, solution quality wise

as well as average coverage provided by this method.

We are able to show that FP-L-DP method (within an hour of

training) outperformed FP-P-DP method on 30 out 31 days of data,

and outperformed empirical equilibrium on all 31 days of data. Us-

ing FP-L-DP we can achieve better solution in a significantly lower

amount of time. Overall, FP-P-DP provides up to 16% improvement

in revenue over empirical equilibrium. The learning based approach

FP-L-DP further improves the performance and achieves up to 10%

more revenue than FP-P-DP approach.

7 CONCLUSION AND FUTUREWORK
In many real world problems agent population changes over due

to agents’ strategic choices. We introduce a model (SRT) to directly

capture this dynamics of agent population change. Our model also

captures important congestion game features that are commonly

seen in transport gig economy. We introduced two fictitious play-

based approaches (FP-P-DP and FP-L-DP) to solve this model. We

provided experimental results on a real world taxi data from a large

Asian city and demonstrated the effectiveness of our approach and

the importance of using equilibrium policies. In our experimental

results, we demonstrate that our planning based approach (FP-

P-DP) provides up to 16% improvement in revenue over existing

method. The learning based approach (FP-L-DP) further improves

the performance and achieves up to 10% more revenue than the

planning based approach.

As the final remarks, below we list two streams of future work

under consideration: 1) Improve the efficiency of the planning-based

approach. 2) The implementation mechanism for fleet operators

to encourage drivers to follow the desired entrance distribution. It

could be in the form of incentives or information disclosure.

In practice, we envision the “time of entry” decision to be deliv-

ered in two potential ways: (a) Via a recommendation system. As

demonstrated by past researchers ([4]), recommendation system

could be implemented for a general taxi fleet and significantly im-

prove individual taxi driver’s productivity. Similarly for our case,

we could recommend the “time of entry” based on agent’s stated

preference (e.g., day-shift or night-shift). To encourage drivers to

follow the recommendation, we could even nudge them by display-

ing the potential drop in revenue if they choose not to follow the

recommendation (i.e., the cost associated with the deviation from

the equilibrium). (b) Via incentive. For a fleet operator who aims to

maximize its service level (number of passengers the fleet can serve),

it can offer incentives to achieve the recommended distribution on

the “time of entry”.
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