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ABSTRACT
In this paper, we study the problem of deceptive reinforcement
learning to preserve the privacy of a reward function. Reinforce-
ment learning is the problem of finding a behaviour policy based on
rewards received from exploratory behaviour. A key ingredient in
reinforcement learning is a reward function, which determines how
much reward (negative or positive) is given and when. However, in
some situations, we may want to keep a reward function private;
that is, to make it difficult for an observer to determine the reward
function used. We define the problem of privacy-preserving rein-
forcement learning, and present two models for solving it. These
models are based on dissimulation – a form of deception that ‘hides
the truth’. We evaluate our models both computationally and via
human behavioural experiments. Results show that the resulting
policies are indeed deceptive, and that participants can determine
the true reward function less reliably than that of an honest agent.
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1 INTRODUCTION
In this paper, we study the problem of deceptive reinforcement
learning to preserve the privacy of reward functions. Reinforcement
learning is a framework within which an agent learns a behaviour
policy by interacting with its environment and responding to posi-
tive and negative rewards [34]. Within this framework, the reward
function, which determines when and how much reward (negative
or positive) is given for each possible behaviour in a system, is
critical. It defines the goals of the agent.

Situations frequently arise in which we do not want our goals to
be known. Consider a military commander needing to conceal the
purpose of troop movements; a crime-writer who must avoid giving
away the end of the story. In reinforcement learning, when we want
to make it difficult for an observer to infer the final destination, we
must prevent or delay them from determining the reward function
used to learn a policy.

Deception involves fostering or maintaining false belief in the
minds of others [8]. Bell defines two general types: dissimulation,
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Figure 1: Using dissimulation to deceive an observer about
the final destination. Taking the red path, what is the final
destination?

which ‘hides the truth’ to avoid revealing information; and sim-
ulation, which ‘shows the false’ enticing an observer to believe
something that is not true. Several models of deceptive planning
have been proposed in recent years [14, 15, 20, 23]. However, these
are model-based and require reasoning about the model structure
to inform the dissimulation, so are not applicable to model-free
MDPs.

In this paper, we define a more general model of dissimulation
for preserving goal privacy. We present two methods: one based on
ambiguity, in which the agent selects actions that maximise the en-
tropy from the observer’s point of view; and one based on Masters
and Sardina [21]’s model for intention recognition using irrational-
ity, which takes action selection as a weighted sum of honest and
‘irrational’ behaviour. These methods use pre-trained Q-functions
(or policies). Since Q-functions provide a measure of expected fu-
ture reward for each action, they enable a general representation
of the possibilities for action selection [34].

Figure 1 shows an example of dissimulation. An escort driver
in Paris has three potential destinations (in green), starting from
the blue point. The green routes are the optimal routes to each
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destination. If the driver takes the red route and is where the car is
located, as the observer, what do you think the final destination is,
knowing that the driver may be deceiving you? The path makes
sub-optimal progress to all three destinations. If the driver turns
right and follows the blue route, destination 1 is probably elimi-
nated from the set of potential goals, but the blue path is valid for
both destinations 2 and 3. Our ambiguity model would generate
a path corresponding to the red path, and the red+blue path for
destinations 2 and 3 once destination 1 is pruned as a possible path.

Such problems of deception are common and the use of AI for
deception is gaining recent traction [30] in domains such as path
planning [20], military tactical planning [26, 29], countering cyber-
attacks [27] and conjuring tricks [33].

We evaluate our models by using a naïve intention recognition
system and via a human subject experiment with 69 non-naïve
participants. The intention recognition system and our participants
were required to estimate the likelihood of different destinations in
a path planning simulation. The results show that our agents are
effective at hiding their reward compared to honest agents, but that,
like honest agents, the true reward function becomes clearer as
more actions are executed. The irrationality model deceives more
than the ambiguity model, but receives less discounted expected
reward on its real reward function.

2 BACKGROUND AND RELATEDWORK
2.1 Theory of Deception
Deception, psychologists broadly agree, is a pejorative term for
the fostering or maintenance of false belief in the minds of oth-
ers [8]. Computer science has necessarily widened the definition,
first, to accommodate mindless machines incapable of belief (as
such) and second, to allow for the emerging realisation (particularly
from the field of social robotics) that deception is a fundamental
aspect of intelligent behaviour, frequently beneficial not only to
the deceiver but to the deceived [32, 38]. Whereas deceptive AI
has tended to focus on detection [2], ethical implications [1], and
the qualities that make a deceptive act most likely to succeed [11],
military strategists Bell and Whaley [5, 6, 40] provide a general
theory focused on how to deceive. Their non-judgemental defini-
tion is “the distortion of perceived reality” which they maintain
can only be achieved in one of two ways: by simulation (“showing
the false”) or dissimulation (“hiding the true”). They propose three
variations on each method and suggest that a deceptive strategy
typically involves combinations of those six tactics in pursuit of
some strategic objective.

2.2 Deceptive Planning
In planning, deception is frequently associated with security and
has become almost synonymous with privacy-protection [9]. Dis-
simulation in this context becomes the task of obscuring intent
by maximising a plan’s ambiguity [14, 16]. Obscuring intent as-
sumes an observer engaged in intention recognition; and deceptive
planning is commonly (though not exclusively)1 conceived as an
inversion of intention recognition [10, 14, 20].

1See [15] for an argument against.

In this paper, we invert a type of cost-based goal recognition
[25]. To generate a probability distribution over goals, they com-
pare each goal’s cost difference, that is, the difference between the
optimal cost of a plan via observed actions and the optimal cost of
any alternative plan. The lower the cost difference, the higher the
probability. Vered et al. [36] take a similar approach but instead of
cost difference use the ratio between the optimal cost of reaching
each goal via the observations and the optimal cost per se. They
propose two heuristics to minimise the computational effort in the
context of online recognition, one of which suggests pruning a goal
from consideration if observations deviate too far from the optimal
behaviour. Masters and Sardina [20] apply Bell and Whaley’s the-
ory to path-planning. They assume a naïve observer, modelled as a
probabilistic intention recognition system. The inputs are observa-
tions ®o and the output is a probability distribution across potential
goals P(G |®o). An action is deceptive if, at that step, the probability
of the real goal дr does not dominate the probability of some other
goal: P(дr |®o) ≤ P(д)|®o) for all д ∈ G \ {дr }. They observe that every
path has one last deceptive point (LDP ), even if it is the starting
point, and show that there is a radius around goal within which
trying to deceive is no longer valuable, and the agent should head
directly to its true goal. At the path level, they define deceptive
density as inversely proportional to the number of truthful steps it
contains; and deceptive extent by the distance remaining after the
last deceptive point has been reached, that is, the optimal cost from
LDP to дr . Kulkarni et al. [16] extend a similar approach to classical
task planning, more general than path planning. Both approaches,
however, are applicable only to model-based problems, so do not
generalise to MDPs.

2.3 Deception in Markov Decision Processes
Ornik and Topcu [23] present the comprehensive model of plan-
ning for deception in MDPs. Their model defines the notion of a
belief-induced reward, which is a reward that the agent receives, but
that is also affected by the belief of an observer. This includes cases
when the observer has only partial visibility of the environment.
For example, the reward is received if the observer’s belief is that
the agent is not in the state that receives the reward, otherwise it
receives some negative reward. Ornik and Topcu then show how
to define optimal policies for belief-induced rewards, and present
some examples of deceptive belief-induced reward functions. How-
ever, their work is model-based, and further, they do not specify a
dissimulative policy.

Karabag et al. [13] present a model-based solution to a different
deceptive problem. In their problem, an agent is provided a policy
to follow to achieve a goal, specified in linear temporal logic, but
can instead follow a different deceptive policy, modelled from an
MDP, to achieve the goal. The aim is to try to achieve both policies
while minimising the likelihood of the supervisor knowing.

A closely related area of research is differential privacy for re-
inforcement learning [18, 37, 39]. The general approach to this
is to modify Q-learning and policy-based reinforcement learning
algorithms by e.g. adding Gaussian noise to the update rule [39].
While the general idea is similar, there are a few major differences.
First, our problem definition is motivated by strategic deception
based on theory of deception [6, 40], rather than on the idea of
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privacy per se. This difference manifests itself in the problem def-
inition: we assume that reward functions are fully observable to
the observer, but that the observer does not know which reward
function the current policy is trained on. The work cited here, on
the other hand, assume that there is a single reward function and it
is not observable. A privacy-preserving approach like this is not
strategic as it does not trade off against different goals. Further,
it means that we explicitly measure the simulation of the policy,
rather than the privacy of the reward function. While we could
frame our problem in a similar way toWang and Hegde, in strategic
deception, it is uncommon for an observer not to have a model of
likely goals for an actor. Second, we present a general model for
MDPs, whereas Wang and Hegde [39], Vietri et al. [37], and Ma
et al. [18] are Q-learning and policy-gradient approaches. Finally,
we measure the strategic deception achieve both in computational
and human studies.

Some work in deceptive reinforcement learning investigates
techniques to counter the deceptive strategies of other agents, such
as the agent being fed incorrect reward signals [12], deception in
games and multi-agent systems [4, 17, 28].

2.4 Inverse Reinforcement Learning and
Imitation Learning

Our definition of deceptive reinforcement learning is related to
inverse reinforcement learning [22] and imitation learning [41].
Inverse reinforcement learning is the problem of inferring a reward
function given traces of an agent’s behaviour in a variety of circum-
stances and the sensory input to the agent. Imitation learning [41]
is similar to inverse reinforcement learning, but instead of infer-
ring a reward function, the aim is to infer a policy. These methods
learn a reward function by observing e.g., a human complete the
same task many times. The problem that we define in this paper
could be framed as the problem of producing a policy that makes
it difficult to perform inverse reinforcement or imitation learning.
However, there are two key differences. First, in this paper, we aim
to simply deceive for a single trace of behaviour, whereas these
inverse learning problems require either a known optimal policy
from which to generate traces, or a set of traces of behaviour. De-
spite this, there is clearly a related problem that is of interest in
studying the problem of deception as obfuscating inverse reinforce-
ment learning. Second, we define a set of possible reward functions,
whereas inverse reinforcement learning starts with the set of all
reward functions. The approach from Wang and Hegde [39] above
proposes a Q-learning-based solution for such a problem.

3 MODELS
In this section, we define privacy-preserving reinforcement learning
and present two solutions based on dissimulation.

3.1 Problem Formalism
Definition 1 (Markov Decision Process (MDP) [24]). An MDP is
a tuple Π = (S,A,T , r ,γ ), in which S is a set of states, A is a set of
actions, T (s,a, s ′) is a transition function from S ×A → 2S , which
defines the probability of action a going to state s ′ from state s ,
r (s,a, s ′) is the reward received for the transition from executing
action a in state s and ending up in state s ′, and γ is the discount

factor. The task is to synthesise a policy π : S → A from states to
actions that maximises expected reward over trajectories in π for
problem Π:

E[
T∑
t=0

γ tR(s, π (s), s ′)]

A Q-function Q : S × A → R defines the value of selecting
an action a from state s and then following the policy π , writ-
ten Q(s,a). An optimal policy π can then be defined as π (s) =
argmaxa∈AQ(s,a).

Definition 2 (Belief-induced reward). Ornik and Topcu [23] define
belief-induced rewards to model rewards that are dependent on the
reward function and the beliefs of an observer. Formally, this is a
function L : S ×A × S × B, in which B is a set of beliefs.

Ornik and Topcu leave the actual instantiation of beliefs abstract,
but the concept is that L(s,a, s,B) is a reward that is some function
of the belief of an observer and the real reward.

Using a belief-inducted reward, the task of solving an MDP is to
synthesise a policy π that maximises:

E[
T∑
t=0

γ tL(s, π (s), s ′,B)] (1)

To specify a deceptive reinforcement learning problem, we must
instantiate B and define L. In our setting, B = R, as we aim to
deceive about the particular reward function. For L, we need to
define what is means to deceive about a reward function.

First, we need to define the observer’s task. This is an intention
recognition task [3] in which the observer derives a probability
distribution over R that defines the probability P(ri | ®ot ) that
the reward function ri is the true reward function, given ®ot , the
sequence of observed state-action pairs up until time t . For example,
the probability of the final destination of the each of the three
locations outlined in Figure 1. Our deceptive models later present
some ways to define this for an MDP.

Definition 3 (Deceptive reinforcement learning for Reward-Func-
tion Privacy). A deceptive reinforcement learning problem is a tuple
Π = (S,A,T , r ,R,γ , L), in which S , A, T , r , and γ are as in Defini-
tion 1, R is a set of possible reward functions such that r ∈ R, which
model the set of reward functions that an observer may believe
are true, and L is belief-inducted reward. The task is to synthesise
a policy π that maximises expected reward over trajectories in π
while also making it difficult for an observer to determine which
reward function in R is the real reward function.

Defining L is not a straightforward task, and depends on the
specific domain being used. Typically, it would be defined as some
weighted measure of the reward and the level of deception, such as:

L( ®ot ,R) = (1 − ω) · r (s,a, s ′) + ω · d( ®otR) (2)

in which s , a, and s ′ are the state-action-state values of the last
transition in ®ot ; that is, the latest transition; d( ®ot ,R) is a measure
of deception such as the simulation value defined by Masters and
Sardina [20], and ω ∈ [0, 1] is a weighting factor for deception
that determines how important the deception is. One difficulty in
defining ω is that the rewards and the deception are of different
magnitudes. Even if both are normalised, a policy using dissimula-
tion (hides the truth) may use subtle deception, meaning that any
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definition of d( ®ot ,R) has to capture that subtly between honest and
deceptive behaviour.

The challenge of this problem is that it is difficult to model the
intention recognition of the observer. For example, is the observer
naïve, in that they do not believe that they are being deceived? Or
are they aware that they are being deceived? Or somewhere in the
middle? If they have some awareness, what model of deception
are they using in their own intention recognition model. For this
reason, the straightforward model of just solving for Equation 1 is
only optimal if our model of intention recognition is the same as
the observers, which is unlikely.

In this paper, we present two solutions to this problem that do
not have an explicit model of an observer: an ambiguity model
and an irrationality model. Instead, the two models use only the
information available to them by their given policy. We assume pre-
trained Q-functions for all reward functions in Rn ; or alternatively,
pre-trained stochastic policies, but we only use Q-functions for the
remainder of the paper. We use Qri to represent one trained on
bogus reward function ri .

3.2 Ambiguity Model
In this model, an agent behaves ambiguously by selecting actions
that have high Q-values not only for the real reward function but
also for multiple bogus reward functions. As the trajectory pro-
gresses, fewer reward functions remain sensible, so these are pruned
from consideration. Eventually, the policy selects actions only opti-
mal for the true reward function. The final point before this occurs
conforms to Masters and Sardina’s last deceptive point [20].

The main idea is for our policy to generate sequences of actions
that have positive reward for several reward functions, including
the true reward function. For this, we need a measure of how far a
sequence of observed behaviour diverges from optimal behaviour.
Observations ®o consist of a sequence of tuples (s,a). We measure
how far observations diverge from the optimal solution by summing
the Q-differences:

∆ri (®o) =
∑

(s ,a)∈®o

(
Qri (s,a) − max

a′∈A
Qri (s,a

′)

)
(3)

This formula is based on the definition by Ramirez and Geffner
[25]. If ®o follows a sequence that is optimal for reward function
ri , then ∆ri (®o) = 0, and any sub-optimal behaviour has a negative
divergence. Other definitions are possible, such as using cost ratio
like Vered et al. [36]; what matters is that ∆ allows us to compare
behaviour with respect to optimality.

The probability that reward function ri is the true reward func-
tion r , from the perspective of an observer, is defined using a Boltz-
mann distribution:

P(ri | ®o) =
exp{∆ri (®o)}∑

r j ∈R exp{∆r j (®o)}
· P(ri ), (4)

in which P(ri ) is the prior probability that ri is the true reward
function, which can be uniform over R if this is unknown. If ®o is
far from optimal for ri compared to other reward functions in R,
its probability will be lower relative to the other reward functions.
This gives us a probability distribution over all reward functions in

R. As with ∆ri (®o), other models could be used to define this, but
we use what is common in intention recognition models.

Our model uses this probability distribution to minimise infor-
mation gain by the observer using Shannon entropy2 [31] each
time an action is chosen.

We define the Q-gain of action a for reward function ri as:

Gri (s,a) = Qri (s,a) − Rri (®o)

in which Rri (®o) = Qri (s
′,a′) −Qri (s0,a0) is the residual expected

reward received so far in sequence ®o where (s ′,a′) is the last pair
in ®o and (s0,a0) is the first pair in ®O . Thus, Rri (®o) represents the
value of having arrived at state s minus the reward of executing a,
while Gri (s,a) represents the gain that action a gives compared to
‘remaining’ in state s . Intuitively,Gri (s,a) < 0 implies that action a
is moving ‘away’ from the rewards given by ri , and Gri (s,a) > 0 is
moving ‘towards’ the rewards.

Given a sequence of observations ®o, our model chooses the action
that minimises the information gain for the observer:

πD (®o, s) = argmin
a∈A(s)

−κ
∑
ri ∈R

P(ri | ®o · a) × loд2(P(ri | ®o · a)) (5)

in which A+(s) is the set of actions with non-negative Q-gain for
the real reward function r , and κ is a normalising term. Thus, an
agent following policy πD will move ambiguously between all of
the Q-functions to maximise entropy. Only evaluating actions in
A+(s) ensure that progress is made towards the real goal.

However, sometimes a particular reward can become so irrational
that it would be clear to an observer that this is no longer likely.
We exclude such reward functions from the entropy calculation by
re-evaluating the bogus reward functions at each step of the plan,
and excluding those would be irrational (negative Q-gain). This is
similar to the pruning heuristic from Vered and Kaminka [35].

A reward function is pruned from the entropy calculation (set R
in Equation 5) ifGri (s,a) < δ , in which δ is a pruning parameter. If
δ = 0, a reward function is pruned because it offers no gain over
the current state. If δ < 0, the pruning would be less aggressive,
allowing some actions that offer no gain. If δ = −∞, nothing would
be pruned. At each step, all reward functions are considered for all
actions, so a pruned reward function can be re-considered later. This
may have the negative effect that all but the true one are pruned.
In implementation, a minimum number of policies can be specified.

Figure 2 illustrates a path planning problem in which the agent
must navigate from the green start point to the orange destination.
The bogus destinations are red. In Figure 2a, the agent minimises
information gain for all goals without pruning. It is difficult to see,
but the thicker line in Figure 2a compared to Figure 2b is the agent
zigzagging repeatedly left-to-right. In Figure 2b with pruning, at
the first turn, labelled (a), the destination at the top left is pruned,
while at turn (b), the destination on the right is pruned, and turn
(c) prunes the destination at the bottom left. This delivers a shorter
path than in Figure 2a because it avoids zigzagging behaviour from
trying to maximise the entropy of all destinations.

2Shannon entropy measures information gain. Increasing uncertainty lowers informa-
tion gain and increases entropy.

Main Track AAMAS 2021, May 3-7, 2021, Online

821



(a) Without pruning (b) With pruning

Figure 2: Examples of the ambiguity model. The agent nav-
igates from the green starting point to the real destination
(orange & marked), using bogus destinations (red).

3.3 Irrationality Model
The irrationality model is based on Masters and Sardina [21]. The
deceptive Q-value of an action is a weighted sum of its optimal
Q-value and a irrationality measure. The higher the weight on the
optimal Q-value, the less deceptive the behaviour.

First, we define the irrationality measure for an observation se-
quence, which is dependent on the history of a sequence of actions,
rather than a single action. This is because an action may appear
rational in a one state, but not in the context of a longer sequence.

Definition 4 (Irrationality Measure). For an observed sequence of
state-action pairs ®o, the irrationality measure of ®o with respect to
reward function ri is:

IM(®o) = 1 − max
ri ∈R

∆ri (®o) (6)

in which ∆ri is a divergence function (Equation 3). This definition
is similar to the definition of rationality for path planning outlined
by Masters and Sardina [21].

Under this definition, a sequence ®o that has a low value for
all reward functions has a high IM — it is irrational not to make
progress towards at least one goal. We take the minimum of all
reward functions: if the sequence is rational for any of the possible
reward functions, then it is deemed rational by an observer who
does not know the true reward function.

The goal of the agent is to maximise its expected reward as well
as its irrationality. We use a parameter α (0 ≤ α ≤ 1) as the weight
to define the importance of the Q-value versus the irrationality. The
deceptive policy πD is defined as the weighed sum of the optimal
Q-value and the irrationality measure:

πD (®o, s) = argmax
a∈A

(1−α)Q ′
r (s,a)︸  ︷︷  ︸

Optimal

+α IM(®o · (s,a))︸         ︷︷         ︸
Irrational

(7)

in whichQ ′
r (s,a) isQr (s,a) normalised against other actions a′ ∈ A

to range [0,1]. The higher α , the lower the weight given to the Q-
value and the more irrational the behaviour.

Figure 3 illustrates the irrationality model in a path planning
setting. When α = 0, we get honest behaviour. As α increases,
rationality decreases. For α = 0.15 and 0.3, the agent moves away
from both destinations. For α = 0.3, the blue block in the bottom
corner reflects the agent’s excessive irrationality. As the agent

moves towards its true destination, its behaviour becomes more
rational, capturing a similar idea to the last deception point in
Masters and Sardina [20]: it becomes more difficult to deceive as
one ‘approaches’ a goal.

4 COMPUTATIONAL EVALUATION
In this section, we present a computational evaluation our two
models from Section 3. The goals of the experiment are to quantify
how deceptive our models are compared to an honest baseline, and
to determine the ‘cost’ of deception based on how far the deceptive
behaviour deviates from the honest optimal model.

4.1 Experiment Design
We implemented the ambiguity and irrationality models defined
in Section 3 and applied in two domains: the P4 path planning
framework3 and the Berkeley Pacman framework 4.

Independent variablesWe evaluated four different agents in
our experiments:

(1) an ‘honest’ agent, which uses the optimal policy for the real
reward function;

(2) one deceptive agent that uses the ambiguity models; and
(3-4) two deceptive agents using the irrationality model, with

α = 0.3 and α = 0.5 respectively.
Reward functions gave a reward of 10,000 for reaching the desti-

nation state. Negative rewards model actions costs, with −1 for an
action up, down, left, or right, and −

√
2 for any diagonal move. For

the ambiguity model, we set pruning parameter δ = 0. Q-functions
were implemented as Q-tables for P4 and were learnt using value
iteration [34] until convergence, and implemented using linear func-
tion approximation for Pacman and were learnt using Q-learning.

Measures We measured: (1) the total path cost, which is the
inverse of the discounted reward; (2) the probability assigned to the
true reward function, calculated using a naïve intention recognition
algorithm [19, 36]; and (3) the simulation value of the paths from
Masters and Sardina [20]:

simulation( ®ot ,R) =

∑t
j=1 ·maxri ∈R\{r } P(ri | ®ot ) − P(r | ®ot )

t

This definition calculates, for each state-action pair, the deceptive-
ness of the step by using the observer’s intention recognition model
and taking the difference between the most likely reward function
and the actual reward function. The deceptiveness D( ®ot ,R) is then
the average deceptiveness over the observed trace

This intention recognition algorithm used for measures 2 and 3
assigns the probability of each destination as being the real desti-
nation by comparing how rational the observed behaviour is for
each destination, where rationality is assigned based on how close
the observed behaviour is to the optimal behaviour.

Experiment parameters We used five different layouts for
each domain, varying in size and structure. For example, for P4 we
varied number and density of obstacles as follows:

(1) 49 × 49 with no obstacles, such as in Figure 2;
(2) 49 × 49 with some large obstacles, such as in Figure 3;
(3) 49 × 49 map with random and high density obstacles;

3See https://bitbucket.org/ssardina-research/p4-simulator/
4See http://ai.berkeley.edu/
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(a) α = 0 (b) α = 0.15 (c) α = 0.3

Figure 3: Examples of the irrationality model in path planning. The agent navigates from the green starting point to the real
destination (orange & marked), using bogus destinations (red).

(4) 100 × 100 with ‘archipelago’ (a small number of large island
obstacles);

(5) 100 × 100 with many rooms and corridors.

For each layout type, we defined eight different variations by chang-
ing the number of goals (three or five in P4), distribution of rewards,
and the position of the real reward, leading to a total of 40 layouts.
For the Pacman domain, we used 10 maps from the Berkley frame-
work. Each model was applied to all 50 maps for each domain. For
each path generated, the intention recognition measure was taken
at nine ‘checkpoints’: every 10% along the path.

4.2 Results
Figure 4 plots the average probability of the real ‘goal’ at each point
for both domains. We separate the results into three-goal maps in
P4, five-goal maps in P4, and the Pacman maps. In all cases, it is
easier to identify the real reward function as more plan steps are
revealed, however, there is a clear trend that the deceptive models
make it more difficult. The irrationality models are more deceptive
but this must be considered alongside path costs.

Figure 5 demonstrates the simulation measurements for different
scenarios. The simulation level of the honest model is the lowest
among all models in most of the time, which consists with the
probability results. This is perhaps the most interesting measure in
our experiment, as it measures true ‘deceptiveness’.

On the simulation data, we performed a Kolmogorov-Smirnov
test of normality to confirm that our data matches the character-
istics of a normal distribution. We then performed paired t-tests
for independent samples between the honest model and the three
deceptive models. The honest model showed the lowest level of sim-
ulation (M=-0.24, SD=0.17). In comparison, the ambiguity model
(M=-0.16, SD=0.18) was more deceptive than the honest model
t(98)=2.05, p=.04. Similarly, the IR_0.3 model (M=-0.13,SD=0.24)
was more deceptive than the honest model t(98)=2.64, p=.009, as
was the IR_0.6 model (M=-0.009,SD=0.21), t(98)=6.06, p < .001.

Figure 6 shows the path costs as a proportion of the length of op-
timal (honest) path. The ambiguity model arrives at the destination
with fewer actions than either irrationality model. This is important
because in addition to being deceptive, the objective of deceptive
reinforcement learning is to maximise discounted expected rewards.
In some cases, irrationality model with α=0.5 was more than four
times as long. If we give higher priority to the expected reward for

the real reward function, we may prefer the ambiguity model or to
use the irrationality model with a lower value of α . In some cases, if
deception is weighted low enough, the honest model would still be
preferred because of the short paths, which results in higher actual
reward for discount factor γ < 1.

Analysis looking into individual maps, we see that the IR models
generate longer paths due to the randomness in the paths. For the
ambiguity model, the paths are slightly longer for the five-goal
maps, because there are more bogus goals that ‘pull’ the agent
away from the optimal honest path. This indicates that, in some
domains in which the real reward is strongly weighted, even if there
are many possible bogus reward functions, it may still be more
suitable to select only a subset of the bogus goals for the entropy
calculations. Further results on individual maps are available in the
supplementary material.

Overall, we see that it is easier to deceive in the Pacman game
than in path planning, which we attribute to the fact that there
is just a single reward at the destination in path planning, and
eventually we end up with fewer and fewer goals until finally the
only likely goal from the observer’s view is the real goal.

5 HUMAN BEHAVIOURAL EVALUATION
In this section, we describe a human behavioural experiment to
measure the ability to deceive people, rather than algorithms. Par-
ticipants were aware that they could be deceived, unlike the ‘naïve’
intention recognition model. There is only one intention recogni-
tion model that detects deception for sequential decision-making:
the irrationality model by Masters and Sardina [21]. However, as
our irrationality model uses this concept to generate behaviour,
thos Masters and Sardina model is not valid for us.

5.1 Experiment Design
The experiment design was similar to that used for the computa-
tional evaluation, with three exceptions: (1) instead of the intention
recognition algorithm, we ask human participants to estimate the
goal distribution; (2) the human participants were provided with
only a random selection of the maps and methods; and (3) we as-
sessed based only on the path-planning problem.

Our experiment used 40 maps × four possible models producing
behaviour = 160 map-path pairs. We generated checkpoints at 25%,
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Figure 4: Intention recognition for P4 with three goals (left), P4 with 5 goals (middle) and Pacman (right)

Figure 5: Intention recognition for P4 with three goals (left), P4 with 5 goals (middle) and Pacman (right)

Figure 6: Path costs, proportional to honest path for P4 with three goals (left), P4 with 5 goals (middle) and Pacman (right)

50%, and 75%, leading to 480 stimuli in total. Each participant re-
ceived 38 randomly-selected stimuli. Participants were ‘aware’; that
is, they were explicitly told that the agent may try to hide its true
destination, and that they should try to guess the true destination.
We recruited 69 participants via Amazon Mechanical Turk, a crowd-
sourcing platform often used for human-subject experiments [7].
Participants were paid US$4 for completing all tasks, which took
on average 11.5 minutes. Participants were aged 20-55 (µ = 32). 15
participants were female, 54 were male, and none chose to specify
their gender manually.

5.2 Results
Figures 7 and 8 summarise the results for the human subject eval-
uation. We see similar outcomes to that of the naïve intention
recognition algorithm, except that human subjects were overall less
accurate than the naïve model, even for honest behaviour. This is
understandable as the optimal behaviour is straightforward for an

algorithm to calculate, but less so for a human. At the first check-
point, by which point participants have seen 25% of the path, the
accuracy is close to random.

For the ambiguity model with three goals, participants were
more accurate than for the honest model at 75% density, but this
is mostly accounted for by noisy data – the difference is less than
3%. The deceptive models were more effective at deceiving in the
five-goal model than the three-goal model, which is unsurprising
as there are more bogus goals to use.

An interesting point is the effect of the participants being aware
that they are being deceived, which is not the case for the earlier
computational experiments in which the observer model is naïve.
In the computational experiments, the honest model is never con-
sidered deceptive. The simulation value is at most 0, meaning that
the real destination is judged to be as likely as others. However, in
the human subject experiments, the honest model is, on average,
considered to be deceptive early in the experiment, presumably
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(a) Three goals (b) Five goals

Figure 7: Average of experiment participant’s prediction of the true destination for the two scenarios

(a) Three goals (b) Five goals

Figure 8: Average simulation based on the experiment participants’ prediction for the two scenarios

because the participants were assuming that the model was using
deception as simulation (showing the false). Also interesting is that
the deceptive models were considered deceptive right up until the
75% mark and presumably beyond. In the computational experi-
ments, the simulation value was, on average, below 0 at the 75%
mark for all deceptive models. This is perhaps due to the fact that
the human participants are unable to make accurate judgements
as quickly as the intention recognition algorithm. As such, results
may differ if we had a non-naïve intention recognition model.

Overall, we see that our models deceived participants for the
path planning task, but the effectiveness may not be sufficient if
the length of the plan is considered too high. This largely depends
on the weight ω in Equation 2.

5.3 Limitations
There are several limitations with our study. First, while path plan-
ning is a good application for human behavioural experiments
(people are good at spatial reasoning), it is only one domain, so
further experimentation on different types of domains is necessary.
Second, the naïve intention recognition model we used to evaluate
deception in the computational evaluation is not as sophisticated as
our model of deception – it does not mitigate for the fact that it is
being deceived. This is difficult to mitigate because we need a level
of separation between the methods and the evaluation metrics, and
the only suitable model of which we are aware is the irrationality

model [21], on which our model is based. Third, there was only
minimal incentive for our experimental participants, which is not
reflective of some applications where failing to identify deception
can have devastating outcomes.

6 DISCUSSION AND FUTUREWORK
In this paper, we presented two models for preserving the privacy
of reward functions in reinforcement learning. Through compu-
tational and human evaluation in a path planning task, we have
shown that the models can deceive both naïve intention recogni-
tion algorithms and human subjects. However, often the length of
plans is significantly higher, meaning that for domains in which
deception is weighted only lightly, an honest agent may be more
suitable. Clearly, this judgement depends on the domain and the
measure of deception used.

In future work, we will apply this model to more tasks, and we
will investigate this model in policy-based reinforcement learning,
in which we do not have Q-functions, but learn a policy directly.
Further, we aim to extend these models to models similar to that
in Ornik and Topcu [23], in which the observer has only partial
observability of the agent and the environment.
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