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ABSTRACT
Missed connections at transit airports are a source of both poor
customer experience and reduced airline operational efficiency. Air-
lines typically handle missed connections by rebooking customers.
Recently, airlines have started holding departing flights for some
time in a rule-based manner to avoid missed connections. However,
rule-based heuristics typically use information local to a flight and
do not learn in a globally informed way across the entire network.

We complement existing approaches by learning a policy for
holding a flight to avoid misconnections, using reinforcement learn-
ing (RL). The state presented to the RL agent uses forecasted flight-
specific context; and measured network-wide context. The reward
uses components that trade off the decrease in on-time performance
due to the hold decisions, for a decrease in missed connections. We
attribute the global rewards to individual local hold actions through
a novel delay tree that approximates the network interactions. Mul-
tiple flights are handled through the same instance of the agent
handling them in sequence with varying state information.

We evaluate our approach for two different airlines with train-
ing and testing over a microsimulator that uses real-world data for
calibration. Across different algorithms (DQN, AC, A2C, DDPG),
we find that the best performing RL-based agent is able to reduce
significantly more (up to 50%) missed connections for a minimal
decrease (5̃%) in on-time performance; when compared with a cur-
rent rule-based heuristic. Further, the approach is tunable and able
to transfer learn across different airlines.
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1 INTRODUCTION
Missed connections at transit airports cause both poor customer
experience and poor efficiency. Passengers (PAX) aboard a delayed
incoming flight who miss connections at a transit airport expe-
rience a non-linear jump in the delay to the destination airport.
The PAX disutility is even higher if future connecting flights to
the final destination are infrequent. As per the Bureau of Trans-
portation and Statistics [19], out of 51 million US PAX itineraries
in 2007, there were 44.5 million connections and about a million
connections were missed. Typically, PAX who miss connections
are rebooked on alternate flights at high actual cost (if on other
airlines); or inventory/opportunity costs (if on same airline); re-
sulting in poor airline operating efficiency [6]. Preventing missed
connections proactively is thus a key business ask for airlines due
to improving PAX experience and efficiency.
Existing approaches: A recent industry practice [18] to reduce
missed connections is to hold a departing flight 𝑓2 so that PAX on
delayed incoming flight 𝑓1 can make the connection. The Hold-No-
Hold (HNH) decision for a departing flight is typically rule-based
and made locally. Flight 𝑓2 can be held if its estimated time of
arrival (ETA) doesn’t exceed the scheduled arrival time by more
than the on-time performance (OTP) buffer (typically, 15 minutes).
This approach aims to avoid propagation of delay in the network.
However, it does not take into account the availability or the cost of
future alternate flights for rebooking; the specific flight’s context;
and the general state of operations of the entire network. Indeed,
there is no guarantee of even an on-time arrival due to the inherent
uncertainties in airline operations. A rule-based approach, while
simple to execute, can be sub-optimal in practice as we show in our
evaluation. To the best of our knowledge, this form of the HNH
problem has not received much attention (details in Section 2).
Problem statement:We complement existing approaches to HNH
by learning a globally informed policy as opposed to a fixed locally-
decided rule. The learned policy may still preclude delays from
propagating in the network like in the rule-based approach; but the
decisionwould be a globally informed trade-off. Given the operating
context of the airline, PAX connections, and the plans for the flights,
we learn a policy that decides whether to hold a departing flight
and if yes, by what duration. The objectives of the decisions are
to reduce missed connections without significant increase in the
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network delay. Our key insight is that marginal increase in average
airline network delay can reduce significant fraction of missed
connections. This is made possible by opportunistically exploiting
the slack in the schedules for operations without causing disruption.
Challenges: The problem of learning a globally informed policy
for HNH is non-trivial for several reasons. First, the propagation
of delay through the network because of the physical aircraft (or
tail) movement along the logical route plan is generally non-linear
and stochastic. Second, a delay induced by HNH can also propa-
gate due to PAX itineraries. For instance, holding flight 𝑓3 while
saving delayed incoming PAX, may cause on-time outgoing PAX
𝑝 on 𝑓3 to be delayed; triggering another HNH decision to hold
a flight 𝑓4 to which 𝑝 connects. Third, airline tail plans that map
tails to flights are not stationary for reasons such as rotation of
aircraft across sectors; constraints of scheduling maintenance only
at hub airports; and last-minute maintenance problems in aircrafts.
While constrained optimization is routinely used by airlines [12] for
longer-term (6 months to the day-of-departure typically) planning,
it is likely infeasible for real-time operations, where it would be
better to have a rule-based or learned policy to execute in real-time.
Solution approach: Given the goal of online sequential HNH deci-
sion making in an environment with unknown stochastic dynamics,
Reinforcement Learning (RL) stands as a suitable candidate [4, 25].
Because exploration for learning is not easy in live operations, we
train the agent on a simulated airline environment to make HNH
decisions. The state presented to the RL is a pre-processed context
of both a specific flight; and current global operating conditions.
The agent decides the duration to hold a flight 𝑓 . The next time
the HNH for the same flight is decided, the agent gets a reward for
the previous action and the new context for the flight. The reward
is engineered to capture how PAX of 𝑓 benefitted; the delay of 𝑓 ;
and how globally PAX and other flights were benefitted/affected
due to this decision for flight 𝑓 . Tunable parameters in the reward
function control two trade-offs: First, between the missed connec-
tions reduced on flight 𝑓 and its delay. Second, between flight 𝑓 ’s
benefits and the global network level average delay and missed
connections reduced. Operating constraints such as crew legality;
curfew violations; and incoming delays can be implemented as neg-
ative rewards or filters imposed on the feasible action space. The
agent makes decisions for all flights in the network in sequence
essentially simulating multiple agents learning on the same operat-
ing environment. The effects of the decisions of the agent across
multiple flights are tied together through the global reward and the
global component of the state.
Reward engineering: A key challenge in the reward design is the
attribution of a particular flight’s delay and/or missed connections
across multiple hold decisions made in the past. To do this, we build
a delay tree that approximately backtraces the origin of a reward
event. Specifically, delays and missed connections in a flight are
attributed to hold decisions that are the reward’s descendants in
the propagation tree (shown in Figure 2) using influence indices
defined over edges of the delay tree (details in Section 5.1).
Contributions:We train an RL agent that learns an HNH policy to
reduce missed connections while respecting the network delay. The
state presented to the agent has components that are both flight-
specific and network-wide. Similarly, the reward has both local
and global components reflecting the trade-offs between missed

connections reduced and network delay. To attribute the global
component of the reward correctly to past hold decisions, we use a
delay tree. We build and validate a microsimulator that models the
tail-plan details of an airline network; and PAX connections across
flights in airports. We calibrate this model using tail-plans obtained
for two different airlines from [22] that we refer to as Air-East
(around 460 flights/day) and Air-West (around 1600 flights/day) for
confidentiality reasons. For the PAX data for Air-West (Air-East),
we obtained the aggregate PAX travel data from [19] (the airline
itself) and use this to generate representative PAX itineraries. For
a training period of 5 months and a testing period of 1 month,
we implement the RL agent using the Deep Q-Network (DQN)
[17], Advantage Actor Critic (A2C) [16, 23], Actor Critic (AC) [2],
and Deep Deterministic Policy Gradient (DDPG) [13] algorithms;
and for varying hyper-parameter values that capture the trade-
off between missed connections reduced and network delay. As a
baseline, we use variants of a rule-based heuristic that reflect the
current industry practice.
Key findings: The RL agent learns to avoid missed connections.
For Air-East (Air-West), the best-performing RL algorithm reduces
missed connections by 50% (50%) when compared to the rule-based
heuristic baseline with a decrease in on-time performance of about
5% (8%) respectively. Unlike a fixed rule-based approach, the RL
agent can learn business-tunable policies that allow airlines to save
PAX for the network delay they can tolerate. We find there is a knee-
point corresponding to about a 47% decrease in missed connections
(for Air-East) corresponding to a decrease in OTP of 5%; beyond
which marginal decrease in missed connections diminishes with
marginal increase in network delay. The agent is also able to transfer
learn across different airlines with limited retraining.

Our approach is potentially applicable to few other domains: 1)
Cross docking in road transportation networks consolidates multi-
ple parcels intended to a common destination. This requires syn-
chrony in the driver schedules of the incoming trucks and the outgo-
ing trucks, even while respecting on-time parcel delivery deadlines.
Near-misses of consolidation opportunities can be avoided by hold-
ing outgoing truck; and 2) Multi-modal networks (e.g., metro to
bus) with integrated payment systems can possibly hold departing
buses in response to incoming delays based on user profiles.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 presents an overview of the solution. Section
4 presents the details of the state used for RL; and Section 5, the
reward engineering for RL. Section 6 presents the experimental
setup. Section 7 presents the results of our evaluation and discusses
the limitations of our approach. Section 8 concludes.

2 RELATEDWORK
Existing works for avoiding airline misconnections can be broadly
categorized as follows: 1) planning/schedule optimization; 2) gate
reassignment; and 3) rule-based holding. Of these, rule-based hold-
ing is the closest to us. Most of these focus on solving the problem
locally without taking into account the global context and impact.
Planning/schedule optimization: These works aim to optimize
flight schedules and routes to minimize misconnections at a plan-
ning stage [5, 9, 10, 12]. The idea here is to identify the gaps between
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planned and actual operations and suggest changes to help mini-
mize misconnects. These include modifying flight timings, flight
routes, minimum connection times (MCT) and fleet assignment.
Some of them utilize simulations to validate the findings. Our ap-
proach focuses on the operational stage where the options are fewer.
Gate reassignment: The main idea in these works is to change
either the incoming/outbound flight’s gate so as to help the connect-
ing passengers make the connection without causing any additional
delays [1, 8, 14, 21]. The effectiveness, however, depends on the
airport infrastructure and whether the airline or airport controls
the assignment; while holding flights is under the airline’s control.
Rule-based holding: In this approach, the idea is to identify the
available schedule-based slack in the network based on flight sched-
ules and exploit them when needed to help improve passenger
connections using deterministic rules [11, 18]. These rules may cap
the maximum hold duration; specify minimum activation miscon-
nects; and include other constraints. A rule-based approach is easy
to implement, but typically uses local information; and does not
learn or adapt from the end to end global impact of the decision.

Patent [3] mentions the possibility of choosing the landing or-
der of flights in the air to minimize misconnections. While this
approach is promising, it is unclear if an airline can influence an
airport’s traffic controller. Further, the impact on the entire network
is unclear. [15] tries to proactively reaccommodate passengers on
alternate flights without trying to avoid misconnections.
Our contribution: Holding a flight to minimize misconnects and
maintaining the global OTP are competing objectives. To the best
of our knowledge, the problem of identifying flexible and globally
informed policies to resolve this trade-off has not received much
attention, more so, using a learning-based approach. In this work,
we address this gap using a RL based approach.

3 SOLUTION OVERVIEW
Figure 1 shows an overview of our solution approach. The environ-
ment for the RL agent consists of an airline network simulator, a
context engine and a reward engine. The context engine generates
the abstracted state 𝑠𝑡 (described in Section 4) that captures both
flight-specific and global context from the raw data generated by
the airline network simulator. Given the state 𝑠𝑡 , the agent decides
to hold the flight 𝑓 by the action 𝑎𝑡 . Because it is impractical to
train the agent on a live airline system, we use a microsimulator for
the airline operations. The simulator is described in Section 6 and
validated in Section 7.1. Post training, the agent can be deployed
on a live real-world system. The action 𝑎𝑡 is implemented in the
system and the effects are observed over the next 24 hours. Note
that multiple flights on the same day between two airports will have
different flight identifiers; and so, the RL agent will make decisions
separately. For the case of multiple-hops of the same aircraft with
the same flight identifier, we use the origin airport to disambiguate.
The observed effect of the hold decision over the next 24 hours are
fed back to the RL agent at the next instance of the same flight 𝑓 at
the next epoch 𝑡+1, through the rewards described in Section 5.
Handling multiple flights: Ideally, each flight would have an
HNH agent and all these agents would learn over a common simu-
lation timeline where their actions affect each others’ operations.
However, this approach is simply not scalable for the hundreds of

Figure 1: Solution overview

flights we consider in our evaluation. Further, using multi-agent
RL directly is known to have several limitations [7, 20, 24]. Instead,
we adopt an approach where one RL agent makes the decision of
multiple flights in sequence (with each flight’s specific state). This
reasonably approximates multiple instances training in parallel.

4 STATE REPRESENTATION
The state presented to the RL agent is shown in Table 1. We dis-
tinguish between two components of the state - forecasted and
actual. The effects of the HNH action local to the flight 𝑓 can be
forecasted reasonably well and thus any (offline non-RL) machine
learning can also be exploited in the context engine. However, the
global effect of an HNH decision of flight 𝑓 can only be observed
and learned as part of the RL training. This is because the global
effect jointly depends upon how future flights are held; and the
overall system evolves stochastically. In line with our intuition, the
first two components of the state, vectors PL and AL represent the
forecasted local PAX utility (PU) 𝑃𝐿 (𝜏) and the airline utility (AU)
𝐴𝐿 (𝜏) of that flight 𝑓 for various choices of the hold time 𝜏 . The
next two components are 𝑃𝐺 and 𝐴𝐺 represent the global PAX and
airline utilities measured across all flights. The last component 𝜏∗
is a helper variable derived from vectors PL and AL.
Local PU vector PL: For a given hold time 𝜏 (which could be zero),
the context engine estimates if a PAX 𝑝𝑖 on a delayed incoming
flight misses or makes the connection. A basic approach that we use
is to deterministically decide that 𝑝𝑖 makes the connection if their
connection window after the hold 𝜏 is above an airport-specific
minimum connection time (MCT). In general, the context engine
can also use offline machine learning (ML) models if available from
historical data and make more informed estimates. For example, a
wheel-chair PAX may require more time to make the connection
than the MCT. The offline ML can then generate a probability that a
particular PAX will make the connection for a connection window.

For a given hold 𝜏 , after estimating if PAX 𝑝𝑖 makes the connec-
tion either deterministically or probabilistically, the context engine
estimates the expected delay of 𝑝𝑖 to the final destination 𝛿𝑖 (𝜏)
depending upon availability of alternate flights, etc. The disutility
𝜎𝑖 to PAX 𝑝𝑖 due to the PAX delay 𝛿𝑖 (𝜏) is defined thus:

𝜎𝑖 (𝜏) =
{
0 if 𝛿𝑖 (𝜏) ≤ 15 minutes (an on-time arrival)
min(𝛿𝑖 (𝜏),Δ𝑃 )

Δ𝑃
if 𝛿𝑖 (𝜏) > 15 minutes (delayed arrival)
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Table 1: Notation for state and reward

Symbol Meaning Type Time

𝑠𝑡 State presented to agent at time 𝑡
PL Local PU Forecasted [𝑡, 𝑡+1]
AL Local AU Forecasted [𝑡, 𝑡+1]
𝑃𝐺 Global PU Actual [𝑡-1, 𝑡]
𝐴𝐺 Global AU Actual [𝑡-1, 𝑡]
𝜏∗ Helper variable Derived [𝑡, 𝑡+1]
𝑅
𝑓

𝑇
Total Reward for flight 𝑓 Derived [𝑡, 𝑡+1]

𝑅
𝑓

𝐿
Local Reward for flight 𝑓 Derived [𝑡, 𝑡+1]

𝑅
𝑓

𝐺
Global Reward for flight 𝑓 Derived [𝑡, 𝑡+1]

𝑃
𝑓

𝐿
Local PU for flight 𝑓 Actual [𝑡, 𝑡+1]

𝐴
𝑓

𝐿
Local AU for flight 𝑓 Actual [𝑡, 𝑡+1]

𝑃
𝑓

𝐺
Global PU attributed to 𝑓 Actual [𝑡, 𝑡+1]

𝐴
𝑓

𝐺
Global AU attributed to 𝑓 Actual [𝑡, 𝑡+1]

𝛼 Knob for PU-AU trade-off
𝛽 Knob for local-global trade-off

Here, Δ𝑃 is normalizing constant for PU. The utility for a PAX 𝑝𝑖 for
a hold 𝜏 is thus 1−𝜎𝑖 (𝜏); and the local PU 𝑃𝐿 (𝜏) across all PAX 𝑝𝑖 is
the average of (1−𝜎𝑖 (𝜏)) across all PAX 𝑝𝑖 . We experimented with
various choices for the utility function but have presented only the
final version. Section 7.3 summarizes few of the other approaches
we tried and how they fared. While we use a thresholded linear
function of 𝛿𝑖 for PU, PU can include costs incurred to the airline
due to regulatory compensations for the delay, missed connection,
etc. Such costs would generally increase with increasing 𝛿𝑖 .
Local AU vector AL: For each hold 𝜏 , the context engine estimates
the arrival delay 𝛿𝑓 (𝜏) of 𝑓 at its destination. The AU of a hold is

defined as 1 − 𝛿𝑓 (𝜏)
Δ𝐹

, where Δ𝐹 is a normalizing constant for AU.
Note that this does not include any higher order effects of the delay
of 𝑓 , which are estimated by the global rewards. Any non-linear
change in AU (e.g., a curfew at the arrival airport will be violated)
can also be captured in the vector AL for those values of 𝜏 .
Global PU 𝑃𝐺 and AU 𝐴𝐺 : For the measured global utilities, we
use the average PU and AU across all PAX and all flights of the
airline over a historical window [𝑡-𝑊, 𝑡] as a proxy for the global
system state. We choose𝑊 =24 hours. A low global PU indicates
that many PAX may be missing connections, and so flight 𝑓 could
be more aggressive in holding, while a low AU indicates 𝑓 should be
more conservative in holding as the system already has significant
delays. The effect of this flight 𝑓 ’s action would be fed back into
the next epoch of HNH decision making; and the RL agent thus
learns about the global effects of the local action.
Helper variable 𝜏∗: To help the agent learn faster, we include
𝜏∗ = argmax𝜏 (𝛼𝑃𝐿 (𝜏)+(1-𝛼)𝐴𝐿 (𝜏)) as part of the state to pick the
hold time 𝜏 that maximizes the local weighted PU and AU. Because
𝜏∗ maximizes only the locally forecasted values, it can be computed
along with the local forecasts for PU and AU; and as we show later,
helps convergence. The agent learns to refine 𝜏∗ by either accepting
it or modifying it.

Table 2: Notation used for delay tree (DT)

Symbol Meaning

𝑓𝑖 Flight 𝑖
𝐷𝑖 Departure delay of 𝑓𝑖
𝐴𝑖 Arrival delay of 𝑓𝑖
𝐻𝑖 Hold duration of 𝑓𝑖
𝐺𝐷
𝑖

Departure Ground-time delay of 𝑓𝑖
𝐺𝐴
𝑖

Arrival Ground-time delay of 𝑓𝑖
𝑇𝑖 Air-time delay of 𝑓𝑖

𝜌 (𝑋,𝑌 ) Influence index of a variable X on variable Y

5 REWARD ENGINEERING
The rewards are chosen to encourage hold decisions that 1) reduce
PAX missed connections; and 2) do not increase network delay
significantly. With this view, the total reward of the agent for a
flight 𝑓 is a weighted combination of the measured: 1) local PU
and AU; and 2) global PU and AU across all flights attributable to
𝑓 . The total reward 𝑅 𝑓

𝑇
for a flight 𝑓 is defined as 𝛽𝑅 𝑓

𝐿
+ (1 − 𝛽)𝑅 𝑓

𝐺
.

Using the notation in Table 1, the local component 𝑅 𝑓

𝐿
is given by

𝑅
𝑓

𝐿
= 𝛼𝑃

𝑓

𝐿
+ (1 − 𝛼)𝐴𝑓

𝐿
and the global component 𝑅 𝑓

𝐺
is given by

𝑅
𝑓

𝐺
= 𝛼𝑃

𝑓

𝐺
+ (1−𝛼)𝐴𝑓

𝐺
. For a flight 𝑓 , 𝑃 𝑓

𝐿
and𝐴𝑓

𝐿
are the PU and AU

realized or measured at time 𝑡 + 1 respectively for the hold action
taken at 𝑡 by the RL agent for flight 𝑓 .

5.1 Global reward attribution
Delays and PAX misses globally are a joint effect of multiple hold
decisions in the system. To apportion the current global PU and AU
across past hold decisions, we use a delay tree (DT) that works back
in time from a specific delayed flight to hold decisions in the past
that contributed to this delay. Missed connections avoided can be
similarly handled and we omit discussing it separately for the sake
of brevity. The DT approximates the complex propagation of delays
by capturing major factors and abstracting away minor ones. We
summarize the DT generation and usage using notation in Table 2.
Generation of the DT: Figure 2 traces the DT of arrival delay 𝐴𝑖

of flight 𝑓𝑖 at the destination airport. Rule 1: 𝐴𝑖 mainly depends
upon the departure delay 𝐷𝑖 ; the air-time delay 𝑇𝑖 ; and the ground
time delay at arrival𝐺𝐴

𝑖
. Rule 2: Departure delay 𝐷𝑖 is usually due

to three main factors: 1) the arrival delay of the previous flight 𝐴 𝑗

of the same tail; 2) the hold duration 𝐻𝑖 ; and 3) the ground delay
in departure 𝐺𝐷

𝑖
. The arrival delay 𝐴 𝑗 is in turn either due to the

delayed departure 𝐷 𝑗 of the previous flight 𝑓𝑗 of the same tail; or
the delay in the air-time due to head winds, etc. Similarly, 𝐷 𝑗 can
be recursively expanded into a sub-tree. Rule 3: A hold delay 𝐻𝑖 of
flight 𝑓𝑖 depends upon the arrival delays 𝐴𝑖𝑘 of the flights 𝑓𝑖𝑘 with
incoming connecting PAX for flight 𝑓𝑖 . Note that a flight that starts
from rest at the beginning of its tail plan will not have an arrival
delay; but could have a ground delay or hold delay. By repeatedly
applying rules 1, 2 and 3, the DT for the arrival delay of a flight
can be generated tracing back into some window in the past that
includes hold decisions of other flights. Any hold in the DT of 𝐴𝑖

can be rewarded for its contribution to 𝐴𝑖 .
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𝐴𝑖

𝐷𝑖

𝐴𝑗

𝐷 𝑗

𝐴𝑘 𝐻𝑘 𝐺𝐷
𝑘

𝑇𝑗 𝐺𝐴
𝑗

𝐻𝑖

𝐴𝑖1 𝐴𝑖2 𝐴𝑖3 · · · 𝐴𝑖𝑛

𝐺𝐷
𝑖

𝑇𝑖 𝐺𝐴
𝑖

Figure 2: Delay tree attributing the arrival delay reward 𝐴𝑖

to past hold actions 𝐻𝑖 and 𝐻𝑘

Using the DT to attribute rewards: Consider Figure 2. Our goal
is to split up PU 𝑝𝑢𝑖 and AU 𝑎𝑢𝑖 of the delayed flight 𝐴𝑖 across the
hold decisions (e.g., 𝐻𝑖 and 𝐻𝑘 ) in the delay tree of 𝐴𝑖 that result
in this outcome. To do this, we define an influence index 𝜌 (𝑋,𝑌 )
for each edge 𝑋 − 𝑌 as a measure of the influence of child node
𝑋 on parent node 𝑌 . Once 𝜌 is defined for all edges of the DT, the
influence index of any hold𝐻 in the past on an outcome𝑂 (resultant
delay or reduced missed connections) in the future is the product
of the influence indices of the path leading to outcome 𝑂 .
For arrival/departure delays: If 𝑓𝑖 is on-time, defined as 𝐴𝑖 ≤ 15
minutes, then 𝐷𝑖 , 𝑇𝑖 , and 𝐺𝐴

𝑖
do not influence 𝐴𝑖 and beyond as

delay propagation is arrested at 𝐴𝑖 . If the flight arrival is not on-
time, then the influences of the components are split as a ratio to
the total. Specifically, if 𝑋𝑖 denotes one of (𝐷𝑖 ,𝑇𝑖 ,𝐺𝐴

𝑖
), then we have:

𝜌 (𝑋𝑖 , 𝐴𝑖 ) =

0 if 𝐴𝑖 ≤ 15 minutes
max(𝑋𝑖 , 0)

Σ 𝑗 max(𝑋 𝑗 , 0)
otherwise

The intuition here is that only the positive components among the
𝑋𝑖 effectively increase the non-zero overall delay𝐴𝑖 ; and the extent
to which they contribute is simply their fraction of the sum of all
positive components. By construction, at least one of the 𝑋𝑖 will
be non-zero when 𝐴𝑖 > 15 minutes and so 0 ≤ 𝜌 ≤ 1 always. The
influence of the children of a departure delay 𝐷𝑖 on their parent 𝐷𝑖

is defined in an identical manner.
For hold delays: The hold delay 𝐻𝑖 depends upon the incoming
flight delays of the flights 𝑓𝑖1 , 𝑓𝑖2 , . . . 𝑓𝑖𝑛 which feed PAX into the
flight 𝑓𝑖 . In addition, it also depends upon the incoming aircraft’s
delay𝐴 𝑗 as higher𝐴 𝑗 would reduce the window available to choose
𝐻𝑖 . Let 𝑆𝑖 be defined as {𝐴𝑖𝑘 | 𝐴𝑖𝑘 < 𝐻𝑖 } , i.e., the set of incoming
flights with delays lesser than the eventual hold time. Clearly, flights
not in 𝑆𝑖 do not influence 𝐻𝑖 because their delay does not flow into
the 𝐻𝑖 finally. Within 𝑆𝑖 , we apportion the influence as 1

|𝑆𝑖 | .

𝜌 (𝐴𝑖𝑘 , 𝐻𝑖 ) =
{
0 if 𝐻𝑖 = 0 or 𝐴𝑖𝑘 ∉ 𝑆𝑖
1
|𝑆𝑖 | if 𝐻𝑖 ≠ 0 and 𝐴𝑖𝑘 ∈ 𝑆𝑖

By construction, the influence indices of all children on their parent
node add up to 1. Therefore, the reward of a delayed arrival 𝐴𝑖

(in terms of PAX and airline utilities) of flight 𝑓𝑖 can thus be split
among the hold decisions (e.g., 𝐻𝑖 directly and 𝐻𝑘 indirectly) in

the DT rooted at 𝐴𝑖 . Once this is done for all flights 𝑓𝑖 that arrive
in a window [𝑡, 𝑡 +𝑊 ], we can estimate the global PU 𝑃

𝑓

𝐺
and AU

𝐴
𝑓

𝐺
attributed to the hold decision at flight 𝑓 at time 𝑡 . Multiple

paths from a hold to a delay are unlikely, but can be handled by
calculating the shortest or even the average across the paths.

6 EXPERIMENTAL SETUP
6.1 Simulator
To model the environment of airline network operations, we im-
plemented a discrete event microsimulator in Python. The main
events that the simulator models are: 1) arrivals; departures; holds
from the airline perspective; and 2) PAX delayed at destination or
missing flights. Using these events, the simulator captures PAX
movement across flights (without micro-modeling the intra-airport
movement) and the propagation of the hold delays across flights
through 1) subsequent flights of the same held tail; and 2) PAX
delayed due to holds who may trigger subsequent holds.
Delay propagation: We used real-world tail plan data for 2 years
from two different airlines (Air-East and Air-West) operating with
hubs in different geographies. Air-East has 460+ flights per day us-
ing 130+ aircrafts to 130+ destinations with onemajor hub. Air-West
has 1600+ flights per day, using 800+ aircrafts, to 340+ destinations
with 8 major hubs. We used actual and planned times of arrival and
departure to estimate delay distributions for various flights. When
samples were limited for specific flights, we estimate the coefficient
of variance around the expected flight time using clustering with
other flights of similar characteristics according to short, medium,
and long haul flights. Intrinsic delays are generated using the un-
derlying delay distributions and propagated stochastically along
with hold delays along the tail plan.
PAX profiles: We obtained the aggregate real-world PAX-metrics
for Air-East directly from the airline and for Air-West from [19].
These give the number of missed connections and the total num-
ber of connections made at hubs. In addition, we obtained number
of connections between pairs of flights (or cities) and used that
to synthetically generate PAX itineraries that are statistically rep-
resentative of the original data. Specifically, we obtain a routing
matrix that indicates what fraction 𝜌𝑖 𝑗 of a flight 𝑓𝑖 contributes
to a departing flight 𝑓𝑗 . We estimate the mean and deviation of 𝜌
across flight pairs and sample approximate PAX itineraries while
respecting correlations induced by 1) the total occupancy of flights;
and 2) in-flow and out-flow constraints at airports.
Context engine to generate forecasted state variables: For a
given hold 𝜏 , we estimate whether a PAX misses the connection or
not depending upon whether the connection time exceeds the MCT.
For PAX who do not miss, the delays are just the estimated delay
of the flight. For estimating the final delays for missed PAX, we
assign them to the next scheduled flights to the same destinations,
which can accommodate them depending upon their simulated
occupancy. We do not distinguish across PAX by ticket class and
assign them to next available flights in a first-cum-first-served
manner. Once PAX are assigned to future flights, their delays to the
final destination is estimated by the context engine as the scheduled
ETA of the rebooked flight. This provides the forecasts for the
PU. Note that once the PAX has been rebooked, we have sampled
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Table 3: Hyper-parameters for the RL learning

Parameter Value

DQN architecture (17,17,7)
A2C architecture (17,17,(7,1))
AC architecture ((17,34,17,7),((17,7),24,17,1))

DDPG architecture ((18,18,1),((18,1),19,19,1))
Optimizer Adam

Learning rate 0.001
Discount factor 𝛾 0.8
Mini-batch size 32
Replay buffer 10% of training epochs

an actual availability from the distribution of availability across
multiple flights to the final destination. Similarly, to forecast the
AU of a held flight, we use the mean of the delay distributions used
to sample delays of the flights.

6.2 RL implementation details
The RL agent is implemented outside the simulation environment
using the TensorFlow framework. Derived values of the system
state are directly captured from the simulator using book-keeping
data structures. Rewards are likewise measured and attributed to
various hold decisions as described before. We choose 𝛼 = 0.75 and
𝛽 = 0.75 in our evaluation; their tunability is explained in Section
7.3. We use the following RL algorithms for learning: DQN, AC,
A2C and DDPG. DDPG solves the problem with a continuous hold
time, while the other algorithms act in a discrete action space of
[0..30] minutes in steps of 5 minutes. This window of 30 minutes
is chosen as per business inputs for the maximum hold time per-
missible. Details about the neural network architectures and the
hyperparameters used in the learning and testing are shown in
Table 3. The training consisted of 25 episodes(1 episode = 1 week)
and testing, 5 episodes. Air-East (Air-West) with about 460 (1613)
flights per day takes 20.4 (173) hours to train for a period of 151
days. The testing is faster and takes 4.1 (32) hours for a period of
30 days for Air-East (Air-West). The server utilized is a 16 core
machine with 32GB RAM.
Metrics and baseline: The business metrics are: 1) number of
missed connections reduced; 2) the on-time performance of the
airline; defined as the arrival at destination within 15 minutes of the
scheduled time; and 3) the average arrival and departure delays in
the system. For RL metrics, we use the average reward of the agents;
and the Q-value or the critic’s value function; and the loss of the
neural approximators. We use the following baselines: 1) No-Hold,
which does not allow for any holds. 2) Heuristic-15, the current
industry standard heuristic that allows holds up to 15 minutes if
the ETA after holding is within 15 minutes of the scheduled time;
and 3) Heuristic-30, a 30-minute variant of Heuristic-15, to ensure
a fair comparison with the RL action space of 30 minutes.

7 RESULTS
7.1 Simulator validation
PAX profiles validation: A heat-map of the connectivity matrix
across cities is shown in Figure 3 for both the input connectivity
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Figure 4: Validation of connections.

matrix; and the synthetically generated PAX itineraries. The Y-axis
(X-axis) shows the source (destination) airports. The map itself
shows the intensity of the connections between the source and
destination airports. We find that both the input specification and
the output generated by the model are similar validating the PAX
patterns at an aggregate level. The matrix is shown for the pairs of
cities with the highest number of connections. We observe similar
patterns for other cities and at a flight-level and omit the visualiza-
tion due to the sparsity of the connections. The average relative
error across the top 10 pairs of cities is 0.65% for both airlines.
Missed connections: Figure 4 shows the baseline number of PAX
missing connections over multiple days of the week without holds.
The X-axis shows the day of theweek. The primary Y-axis shows the
total number of PAX connections for that day; and the secondary
Y-axis shows the number of PAX missing connections on that day.
An average 3% (5.5%) of connecting PAX for Air-East (Air-West)
miss their connections during normal operating conditions due to
inherent delays in airline operations. The simulation matches the
input data well. The average relative error between the input and
the simulated number of missed connections is around 4.95% across
the entire dataset for Air-East; and 3.42% for Air-West.
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Figure 6: Business metrics for Air-East and Air-West -
Missed PAX; OTP; and Delay.

Network delays: Figure 5 shows the histogram of the arrival and
departure delays for both Air-East and Air-West. Again, we find
that the distributions of the input actual delay data and the simu-
lated data are close to each other. In particular, the simulated data
matches well even in the tail of the distribution. For Air-East, the
average OTP across aggregate, short, medium, long haul flights is
around 88.5% (88.22%), 87.68% (87.69%), and 81.9% (84.08%) for the
actual (simulated) data. Similarly, for Air-West, the average OTP
across aggregate, short, medium, long haul flights is around 86.06%
(86.52%), 87.83% (87.78%), and 87.55% (86.5%) for the actual (simu-
lated) data. These observations confirm that the OTP metrics in the
input data are well captured by the simulation. Having validated
that the simulator environment is a reasonable representation of
the network operations, we now evaluate the RL models.

7.2 Business metrics
Figures 6a and 6b show the PAX missed and on-time performance
for Air-East and Air-West respectively. For each business metric,

the results for the four RL algorithms, No-Hold, Heuristic-15 and
Heuristic-30 are shown for a testing period of 1 month and a train-
ing period of 5 months. For Air-East, we find that the best RL
algorithm (A2C) reduces 80% missed connections compared to the
no-hold baseline; 50% compared to the currently used Heuristic-15;
and 24% compared to Heuristic-30. The corresponding decrease in
the OTP is about 8%, 5% and 3% compared for no-hold, Heuristic-
15, and Heuristic-30 respectively. For Air-West, it reduces missed
connections by 78%, 51% and 25%; with 13%, 8%, and 6% decrease
in OTP when compared for no-hold, Heuristic-15, and Heuristic-30
respectively for A2C. We note that the learning approach reduces
missed connections significantly for a marginal decrease in OTP.
OTP explained: The extent of decrease in the OTP can be ex-
plained using Figure 6c and 6d. The X-axis shows the various algo-
rithms. The Y-axis shows both the arrival (AD) and the departure
(DD) delays.We find that with no-hold for Air-East (Air-West), there
is an arrival delay of -5.38 (-3.47) minutes; though the departure
delay is 2.81 (2.2) minutes. The total slack in the airtime available
to still arrive on-time is 7.58 (6.28) minutes. As the RL agent starts
holding flights, the departure delay increases, consumes the avail-
able slack, and results in an increased arrival delay; which in turn
decreases the OTP. We observe that even Heuristic-15 causes a fall
in the OTP. This is because the ETA used for arrival prediction is
subject to randomness in the air-time, etc., and does not guarantee
OTP. Among the RL algorithms DDPG shows the worst perfor-
mance. This is likely because DDPG is unable to handle the jumps
in the state-value as a function of the action (hold-time).

7.3 RL metrics
Figures 7 shows the RL metrics for Air-East. Figure 7a shows the
average reward obtained by the algorithm during the training and
testing phases. The X-axis shows the epoch. The Y-axis shows the
smoothened reward over the last 1000 epochs. We find that for
DQN and A2C, the testing performance seems comparable with
the rewards obtained over a sliding window of the last 1000 epochs.
However, for AC, the performance during testing is lower suggest-
ing that the algorithm has not learned to generalize well. Figure
7b shows the Q-value or the critic value function where applicable.
The X-axis shows the epoch in each episode, and the Y-axis shows
the smoothened value. We find that all the algorithms learn. The
value function increases and then saturates as the learning yields
to exploitation. Finally, Figure 7c summarizes the average error in
the neural networks used in the various algorithms. The error falls
rapidly and then saturates indicating that the networks approxi-
mate their learning targets well. Air-West results are similar except
that the testing reward, in general, is lower than training due to
the higher complexity of Air-West’s airline network.
Tunability: In practice, an airline would require a tunable way
of trading off OTP for saving PAX. Figure 8 explores the trade-
off between the OTP and the reduced missed connections. Each
point in the graph shows the output of the RL agent trained for
a specific value of the control knobs 𝛼 (trade-off between PAX
missed connections and OTP) and 𝛽 (trade-off between local and
global rewards). The X-axis shows 𝛼 , while different curves show
varying 𝛽 . The primary (secondary) Y-axis shows the number of
PAX connections saved in solid lines (OTP in broken lines). For each
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Table 4: Air-west metrics for No Hold, variants of baseline
heuristics; and RL state and reward.

Version Misconn. DT OTP DT Converge. DT
(PAX) (%) (%) (%) (epochs) (%)

No Hold 106,698 NA 87.0 NA NA NA
Heuristic-15 43,149 NA 82.3 NA NA NA
Heuristic-15++ 48,201 NA 83.9 NA NA NA
Heuristic-30 32,896 NA 80.0 NA NA NA
Heuristic-30++ 38,854 NA 82.3 NA NA NA
RL-V1 83,323 4.3 81.9 2.9 1,969 -6.6
RL-V2 47,137 0.1 79.9 4.2 2,168 0.3
RL-Final w/o 𝜏∗ 23,149 5.5 74.4 4.7 8,089 37.6
RL-Final 23,402 5.2 76.2 5.0 5,332 38.7
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value of 𝛽 , 𝛼 is varied and the number of saved connections and OTP
are plotted as one solid and broken line respectively. We observe
the following. First, as 𝛼 increases, saved connections increases
till it reaches diminishing returns. OTP on the other hand steadily
decreases with increasing 𝛼 . This suggests that a choice of 𝛼∗ = 0.75

results in a pareto-like maximum benefit for PAX saved for a given
increase in the OTP. Second, the curves are relatively insensitive to
𝛽 , except for the corner cases of 𝛽 = 0.1 and 𝛽 = 1. This suggests
that the global local trade-off starts resolving as long as 𝛽 is non-
zero. We conclude that RL with hyper-parameters is a more tunable
and flexible approach than the rule-based baseline heuristics.
Transfer learning:We evaluate the ability of the model to transfer
learn across airlines by training the RL agent on Air-East and testing
it on the Air-West after retraining. When compared to training from
scratch, we find that the number of misconnections increases by
around 12% while the training time is cut-down by around 50%.
Variations: Table 4 summarizes experiments with No Hold, vari-
ants of the baseline heuristic; and the RL state and reward functions.
Each metric shown is the version that includes the DT; and the
column DT shows the % improvement because of using the DT. The
"++" variants of the heuristics denote allow holds if a minimumnum-
ber of PAX connections are saved. RL still performs better than the
improved baseline heuristics. RL-V1 and RL-V2 denote variants of
RL where PU reward considers all PAX; while RL-Final allows only
misconnecting PAX. Similarly, RL-V1 uses 0-1 binary AU which
jumps from 1 to 0 at 30 minutes; while RL-V2 and RL-Final vary
the AU from 1 to 0 smoothly from 15 minutes to 30 minutes. In
sum, we find that RL-Final works best in saving PAX; and using
the DT heuristic for global reward apportioning helps one or more
of PAX saved; OTP; and RL convergence time in epochs. Using the
helper variable 𝜏∗ improves the convergence time significantly by
247.3% with DT and 243.2% without DT while giving results similar
(≤ 1.1% difference) to extensive training without 𝜏∗.

8 DISCUSSION AND CONCLUSION
We summarize a few limitations of our approach and possible im-
provements. First, our approach learns to exploit the slack in the
network by learning the optimal behavior on an average during nor-
mal operations. During network-wide delays (e.g., as defined by a
change-point algorithm), it is better to fall back to no-holds. Second,
we assumed that PAX on a delayed flight make the connection if we
hold for at least the extent of the incoming delay. A higher-fidelity
simulator could model the stochastics of PAX movement within an
airport; depending upon whether the arrival and departing flights
are in the same terminal; the gate-to-gate delay; etc. Third, an al-
ternate approach to learning could be to observe an expert flight
operations manager and imitate their behaviour. Fourth, a more
comprehensive reward function could use differing rewards for
different flights in terms of both missed connections reduced and
delays. Further, it could use realistic costs from historical data if
available for rebooking costs; and delays. Such data is proprietary
and has been abstracted as the control knobs in our work. RL can
readily use them if available.

We trained and tested an RL agent for HNH on a simulated
testbed using a state-space and reward function designed to trade
off decreasing missed connections for decreasing on-time perfor-
mance. We used a delay tree to approximately attribute global
rewards to individual actions. We observed that RL agents save
significantly more PAX connections, even while the on-time per-
formance decreases marginally. Our approach is tunable and able
to transfer learning across airlines.
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