
Fictitious Cross-Play: Learning Global Nash Equilibrium in
Mixed Cooperative-Competitive Games

Zelai Xu

Tsinghua University

Beijing, China

zelai.eecs@gmail.com

Yancheng Liang

Tsinghua University

Beijing, China

liangyc19@mails.tsinghua.edu.cn

Chao Yu

Tsinghua University

Beijing, China

zoeyuchao@gmail.com

Yu Wang

Tsinghua University

Beijing, China

yu-wang@tsinghua.edu.cn

Yi Wu

Tsinghua University

Shanghai Qi Zhi Institute

jxwuyi@gmail.com

ABSTRACT
Self-play (SP) is a popularmulti-agent reinforcement learning (MARL)

framework for solving competitive games, where each agent opti-

mizes policy by treating others as part of the environment. Despite

the empirical successes, the theoretical properties of SP-based meth-

ods are limited to two-player zero-sum games. However, for mixed

cooperative-competitive games where agents on the same team

need to cooperate with each other, we can show a simple counter-

example where SP-based methods cannot converge to a global Nash

equilibrium (NE) with high probability. Alternatively, Policy-Space

Response Oracles (PSRO) is an iterative framework for learning

NE, where the best responses w.r.t. previous policies are learned in

each iteration. PSRO can be directly extended to mixed cooperative-

competitive settings by jointly learning team best responses with

all convergence properties unchanged. However, PSRO requires

repeatedly training joint policies from scratch till convergence,

which makes it hard to scale to complex games. In this work, we

develop a novel algorithm, Fictitious Cross-Play (FXP), which inher-

its the benefits from both frameworks. FXP simultaneously trains

an SP-based main policy and a counter population of best response

policies. The main policy is trained by fictitious self-play and cross-

play against the counter population, while the counter policies are

trained as the best responses to the main policy’s past versions. We

validate our method in matrix games and show that FXP converges

to global NEs while SP methods fail. We also conduct experiments

in a gridworld domain, where FXP achieves higher Elo ratings and

lower exploitabilities than baselines, and a more challenging foot-

ball game, where FXP defeats SOTA models with over 94% win rate.

KEYWORDS
Mixed Cooperative-Competitive Games; Nash Equilibrium; Multi-

Agent Reinforcement Learning.

ACM Reference Format:
Zelai Xu, Yancheng Liang, Chao Yu, Yu Wang, and Yi Wu. 2023. Ficti-

tious Cross-Play: Learning Global Nash Equilibrium in Mixed Cooperative-

Competitive Games. In Proc. of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION
Self-play (SP) has been the most popular paradigm for multi-agent

reinforcement learning (MARL), where agents collect training ex-

periences by playing against themselves and adopt single-agent

RL algorithms for policy improvement by treating other agents

as part of the environment. This framework has led to great ad-

vances in a wide range of scenarios, including fully cooperative

games [4], two-player competitive games [31, 34], and even mixed

cooperative-competitive games [5, 16].

Despite these empirical successes, the theoretical convergence

properties of SP are limited to two-player zero-sum games, where

the average policies of no-regret algorithms in SP are guaranteed to

converge to a Nash equilibrium (NE) [6]. However, other settings,

particularly the mixed cooperative-competitive games, are largely

unstudied. Existing works often directly apply the MARL methods

originally designed for two-player zero-sum games to more general

settings and assume strong results can be still achieved.

Unfortunately, we show a simple counter-example where SP

methods converge to a suboptimal joint policy that is exploitable

by an adversary team. This is because agents in popular MARL

algorithms treat both their teammates and opponents as part of the

environment and optimize their own policies in a fully decentralized

fashion. As a result, the team’s joint policy is likely to converge to a

local NE where no single agent can improve the return by changing

its policy unilaterally, but the team can jointly change their policies

to get a higher return towards a global NE.
To inherit the convergence properties in two-player zero-sum

games and to find global NE that is unexploitable by any adversary

team, agents from the same team are supposed to cooperatively

optimize their joint policy in mixed cooperative-competitive games.

Policy-Space Response Oracles (PSRO) [18] is an alternative frame-

work that generalizes the double oracle (DO) [24] algorithm and

is guaranteed to converged to a NE in two-player games. PSRO

maintains a population of policies and a distribution (i.e., meta-

policy) over the policy pool. In each PSRO iteration, it trains the

best response (BR) to the maintained mixed strategy according to

the meta-policy and adds this BR policy as a new one to the policy

pool. When applied to mixed cooperative-competitive games, each

PSRO iteration solves a fully cooperative game by playing against a

fixed opponent policy. Therefore, we can view each team of agents

as a joint one and accordingly inherit all the convergence proper-

ties of PSRO from the two-player zero-sum setting. However, since

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1053

PSRO requires finding a joint best response in each iteration, in

order to promote exploration and avoid being trapped in a local

sub-optimum, the BR policy needs to be trained from scratch in

every iteration. This can be particularly expensive and sample inef-

ficient in complex multi-agent games. In addition, PSRO may have

to fully explore the entire policy space before converging to an

NE, resulting in a substantial large number of iterations in practice.

Thus, despite its theoretical properties, PSRO has been much less

utilized than SP in real-world applications.

In this work, we propose a new algorithm, Fictitious Cross-Play

(FXP), for learning global NE in mixed cooperative-competitive

games. FXP aims to bridge the gap of SP and PSRO by training an

SP-based main policy and a BR-based counter population of poli-

cies. The main policy aims to produce the final global NE and is

trained by a mixed strategy over self-play, fictitious play against its

past versions, and cross-play against the counter population. The

counter population aims to exploit the main policies and help them

get out of local NEs by cross-play against past versions of main

population. We remark that a majority of games played by FXP has

a team of policies being fixed, leading to a cooperative learning

nature, which helps shape the main policy towards the global NE.

Meanwhile, since the main policy is still trained by self-play, FXP

is able to empirically achieve much faster policy improvement than

iterative BR-based methods.

We first show in matrix games that FXP quickly converges to the

global NE while SP and PSRO fail within the same amount of train-

ing steps. Then we evaluate our algorithm on the gridworldMAgent

Battle environment and achieves a much lower exploitability and a

Elo rating over 200 points higher than six baselines. Finally, we scale

up FXP to tackle the challenging 11-vs-11 multi-agent full game in

the Google Research Football (GRF) [17] environment. We compare

the FXP agent with the hardest built-in AI, an imitation-learning

agent [15], and a PSRO-based agent [20] and achieve higher goal

differences than all baselines against reference policies of differ-

ent levels. We also let FXP play against available models including

built-in hard AI and Tikick, and achieve over 94% win rates with

goal differences over 2.7.

2 RELATEDWORK
MARL methods have been applied to tackle a wide range of multi-

agent applications [1, 3, 21, 28, 31, 35]. In competitive settings,

self-play MARL has been proven effective in a wide range of games,

from Backgammon [33] to Go [31] and video games [34]. Fictitious

self-play (FSP) [12] combines fictitious play (FP) [7] with self-play

in extensive-form games and is proved to converge to a NE in

the time average. Neural Replicator Dynamics (NeuRD) [14] is

another method with time-average convergence via self-play which

approximates replicator dynamics using a policy gradients variant.

Some recent works [27, 32] also achieve last-iteration Nash in two-

player zero-sum games by adding regularization to Follow the

Regularized Leader (FoReL) and mirror descent.

Another line of work is based on the game-theoretic algorithm

double oracle (DO) [24]. Policy-Space Response Oracles (PSRO)

[18] is the most popular generalization of DO, which trains a pop-

ulation of policies by iteratively adding a best response to the

opponent’s Nash mixed strategy. PSRO is guaranteed to converge

to a NE in two-player games. Extensive-Form Double Oracle (XDO)

[22] generalizes PSRO to extensive-form games by mixing best re-

sponses at every infostate instead of only at the root of the game.

𝛼-Rank PSRO [25] replaces NE with a new solution concept 𝛼-Rank

and extends PSRO to 𝑛-player general-sum games. Anytime PSRO

[23] and Online Double Oracle (ODO) [9] combine PSRO with no-

regret algorithms and online learning, respectively, and show faster

convergence rates in some games like poker. Some other variants

[2, 20, 26] incorporate different diversity metrics with PSRO, and

achieve lower exploitability in games with high non-transitivity.

In mixed cooperative-competitive settings, many complex real-

world games are solved by combining existing SP or PSRO ap-

proaches with large-scale training. In the hide-and-seek game [1],

agents show emergent behaviours like tool use by multi-agent

self-play. For-The-Win [16] adopts a population-based training

framework and demonstrates human-level play in the Capture-the-

Flag game. OpenAI Five [5] adopts a past-sampling augmented

self-play framework and defeated world the champion in Dota 2.

Google Research Football (GRF) [17] is another mixed cooperative-

competitive game where very few works have shown strong per-

formances in the 11-vs-11 full game. Tikick [15] trains the first

learning-based agent that can take over the full game by imitation

learning. [20] uses a diversity-aware and online variant of PSRO

and defeats the hardest built-in bot. We take them as our baselines.

3 PRELIMINARY
In this section, we first establish the prerequisite definitions and

notations in normal-form games, and then describe the extension

to MARL settings using empirical game-theoretic analysis. We also

formally describe the SP and PSRO algorithms.

3.1 Normal-Formal Games
A 𝐾-player normal-form game (NFG) is often described by a tu-

ple (𝐾,Π,𝑈). Each player 𝑘 ∈ [𝐾] has a finite set of pure strate-
gies Π𝑘 = {𝜋1

𝑘
, · · · , 𝜋 ∥Π𝑘 ∥

𝑘
} and Π = ×𝐾

𝑘=1
Π𝑘 is the set of all pure

strategy profiles (or joint strategy). For each pure strategy pro-

files 𝜋 ∈ Π, the utility function 𝑈 : Π → R𝐾 gives a vector

𝑈 (𝜋) = (𝑈1 (𝜋), · · · ,𝑈𝐾 (𝜋)) where 𝑈𝑘 (𝜋) is the payoff value of

player 𝑘 under strategy profile 𝜋 . The goal of each player is to

maximize its own expected utility by choosing a pure strategy 𝜋𝑘
or sampling from a mixed strategy 𝜎𝑘 ∈ Δ(Π𝑘).

We consider the setting of mixed cooperative-competitive games,
where the 𝐾 players are divided into two competing teams of size

𝑁 = 𝐾/2. Players within the same team are fully cooperative and

share the same utility. Let 𝑈𝑖,𝑛, 𝑖 ∈ {1, 2}, 𝑛 ∈ [𝑁] denotes the
utility function of player 𝑛 in team 𝑖 , we have

𝑈𝑖,1 (𝜋) = · · · = 𝑈𝑖,𝑁 (𝜋) = 𝑈𝑡𝑖 (𝜋), ∀𝜋 ∈ Π, 𝑖 ∈ {1, 2}. (1)

On the other hand, the two teams are fully competitive and their

utilities sum to zero, i.e.,

𝑈𝑡1 (𝜋) +𝑈𝑡2 (𝜋) = 0, ∀𝜋 ∈ Π. (2)

Given a mixed strategy profile 𝜎−𝑘 of all players other than

player 𝑘 , the best response (BR) of player 𝑘 is defined as BR(𝜎−𝑘) =
argmax𝜋𝑘 ∈Π𝑘

E𝜋−𝑘∼𝜎−𝑘 [𝑈𝑘 (𝜋𝑘 , 𝜋−𝑘)]. A mixed strategy profile 𝜎

is a Nash equilibrium (NE) if

𝜎𝑘 = BR(𝜎−𝑘), ∀𝑘 ∈ [𝐾] . (3)

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1054

Past Main
{𝜋!" , ⋯ , 𝜋!# }

Counter
Population
{𝜋$" , ⋯ , 𝜋$# }

self-play
fictitious play

cross-play

Main
𝜋!#%"

Counter
𝜋$#%"

self-play

Policy
𝜋&'

Population
{𝜋", ⋯ , 𝜋#}

best
response Policy

𝜋#%"

FXPSP

PSRO

Figure 1: Frameworks of SP, PSRO, and FXP. SP learns a single policy against itself. PSRO learns a policy population by
iteratively adding a best response to the current population. FXP learns a main policy and a counter population. The main
policy is trained by fictitious self-play and cross-play. The counter policies are learned against past versions of main policy.

Similarly, for mixed cooperative-competitive games, we can define

BRteam (𝜎𝑡−𝑖) = argmax𝜋𝑡𝑖 ∈Π𝑡𝑖
E𝜋𝑡−𝑖 ∼𝜎𝑡−𝑖 [𝑈𝑡𝑖 (𝜋𝑡𝑖 , 𝜋𝑡−𝑖)] to be the

team best response (team BR), where 𝜎𝑡−𝑖 = (𝜎−𝑖,1, · · · , 𝜎−𝑖,𝑁) is
the opponent team’s joint mixed strategy and Π𝑡𝑖 = ×𝑁

𝑛=1
Π𝑖,𝑛

is the set of all joint pure strategies of team 𝑖 ∈ {1, 2}. We use

local Nash equilibrium (local NE) to refer to a mixed strategy that

satisfies Equation (3) in mixed cooperative-competitive games, and

use global Nash equilibrium (global NE or team NE) to refer to a

mixed strategy 𝜎 = (𝜎𝑡1 , 𝜎𝑡2) such that

𝜎𝑡𝑖 = BRteam (𝜎𝑡−𝑖), ∀𝑖 ∈ {1, 2}. (4)

It is worth noting that a global NE is always a local NE, but a local

NE is not necessarily a global NE. The goal of mixed cooperative-

competitive games is to learn a global NE, and the metric to eval-

uate a mixed strategy profile 𝜎 is team exploitability 𝑒team (𝜎) =∑
𝑖∈{1,2} 𝑈𝑡−𝑖 (BRteam (𝜎𝑡𝑖), 𝜎𝑡𝑖), which can be roughly interpreted

as the "distance" from 𝜎 to a global NE. Note that the local NE

defined here is different from the term that refers to the locality in

the action space of continuous games in other works like [29].

3.2 Extension to MARL
A Markov game (MG) [19] defined as a tuple (𝐾,S,A,O,𝑂, 𝑟, 𝑃,𝛾).
Here, 𝐾 ∈ R is the number of agents, S is the state space, A,O
are the action space and observation space shared across all agents,

and 𝛾 ∈ [0, 1] is the discount factor. Given states 𝑠, 𝑠′ ∈ S and

joint action 𝒂 ∈ A𝐾 , 𝑜𝑘 = 𝑂𝑘 (𝑠) and 𝑟𝑘 (𝑠, 𝒂) are the local ob-

servation and reward of agent 𝑘 , and 𝑃 (𝑠, 𝒂, 𝑠′) is the transition

probability from state 𝑠 to 𝑠′ under joint action 𝒂. Each agent uses

a policy 𝜋𝑘 (𝑎𝑘 |𝑜𝑘) to produce its action 𝑎𝑘 from the local obser-

vation 𝑜𝑘 , and the expected return of agent 𝑘 under joint policy

(𝜋𝑘 , 𝜋−𝑘) is 𝐽𝑘 (𝜋𝑘 , 𝜋−𝑘) = E𝑠𝑡 ,𝒂𝑡 [
∑
𝑡 𝛾
𝑡𝑟𝑘 (𝑠𝑡 , 𝒂𝑡)]. Many popular

MARL algorithms like MAPPO [35] follow the decentralized learn-
ing framework, i.e., each agent optimizes the its return by treating

other agents as part of the environment. Given other agents’ joint

policy 𝜋−𝑘 , these methods aim to find the optimal policy 𝜋∗
𝑘
w.r.t.

𝜋∗
𝑘
= argmax

𝜋𝑘

𝐽𝑘 (𝜋𝑘 , 𝜋−𝑘) . (5)

For complex games with prohibitively large policy space, MARL

is often combined with empirical game-theoretic analysis (EGTA)
to construct a higher-level normal-form game, and apply game-

theoretic analysis in this meta-game to guide the learning of new

Algorithm 1: Self-Play (SP)

Input: Randomly initialized policy 𝜋𝑆𝑃

for many episodes do
Update 𝜋𝑆𝑃 toward BR(𝜋𝑆𝑃)

Output: Policy 𝜋𝑆𝑃

policies. In the normal-form meta-game, the pure strategies become

policies learned by MARL algorithms, the set of current policies

Π is also called a population, and the mixed strategy 𝜎 is called a

meta-policy. An empirical payoff matrix 𝑈 can be constructed by

simulating in the original game for all joint policy combinations.

Since the population can get larger with more policies learned and

is no longer fixed, we use BR(𝜎Π) to denote the BR of population Π
with meta-policy 𝜎 and BR(𝜋) to denote the BR of policy 𝜋 . Given

a joint policy 𝜋 = (𝜋𝑘 , 𝜋−𝑘), the utility function of agent 𝑘 is its

expected return in the original game 𝑈𝑘 (𝜋) = 𝐽𝑘 (𝜋𝑘 , 𝜋−𝑘), and the

BR of Π−𝑘 with 𝜎−𝑘 becomes

BR(𝜎−𝑘Π−𝑘) = argmax

𝜋𝑘

E𝜋−𝑘∼𝜎−𝑘 [𝐽𝑘 (𝜋𝑘 , 𝜋−𝑘)], (6)

which is equivalent to Equation (5) by sampling joint policy 𝜋−𝑘
according to the meta-policy 𝜎−𝑘 at the beginning of each episode.

Therefore, we can use MARL algorithms as approximate BR and

team BR oracles in the meta-game.

3.3 Self-play
Self-play learns a single policy by training against itself. Using RL

as the approximate BR oracle, SP starts with a randomly initialized

policy and repeatedly updates the policy toward the BR of itself.

SP is simple and efficient in learning. Fictitious Play (FP) extends

SP by training a policy against its time-averaged policy 𝜋𝐹𝑃 rather

than 𝜋𝐹𝑃 itself, and the time-averaged policy of FP is guaranteed

to converge to a NE. The pseudocode of SP is listed in Algorithm 1.

For mixed cooperative-competitive games, one can use MARL

to find the approximate team BRs. However, with decentralized

learning, each agent optimizes its own policy rather than the team

one, easily yielding a suboptimal joint policy. Therefore, it is very

likely that the SP policy converges to a local NE where no single

agent can improve unilaterally, but the team policy can still get a

higher return by jointly optimizing the policies towards a global

NE. We present a concrete example with detailed analysis in Sec. 4.

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1055

Algorithm 2: Policy-Space Response Oracles (PSRO)

Input: Initial population with random policy Π1 = {𝜋1}
for 𝑡 = 1, 2, · · · ,𝑇 do

Update payoff matrix 𝑈 by game simulations

𝜎 ← meta-solver(𝑈)

for many episodes do
Update 𝜋𝑡+1 toward BR(𝜎Π𝑡)

Π𝑡+1 ← Π𝑡 ∪ {𝜋𝑡+1}
Output: Population Π𝑇+1 and meta-policy 𝜎

3.4 Policy-Space Response Oracles
Instead of training a single policy, PSRO iteratively trains a popu-

lation of policies to find the NE of large games. PSRO starts with

an initial population Π1 = {𝜋1} with a single random policy. In

iteration 𝑡 , an empirical payoff matrix 𝑈 is computed by simula-

tions using policies in the current population Π𝑡 . The payoff matrix

𝑈 is then used by a meta-solver to calculate the meta-policy 𝜎 of

population Π𝑡 , and a new policy 𝜋𝑡+1 is trained to be the BR of

population Π𝑡 with meta-policy 𝜎 . The new policy is added to the

population and PSRO continues to the next iteration. PSRO gen-

eralizes many algorithms by using different meta-solvers. FP can

be regarded as an instance of PSRO with uniform solver which

assigns equal probability to each policy. DO is also an instance of

PSRO with Nash solver which uses the NE of the restricted game

as the meta-policy. Other meta-solvers include projected replicator

dynamics (PRD) solver [18], rectified Nash solver [2], 𝛼-Rank solver

[25], etc. The pseudocode of PSRO is listed in Algorithm 2.

PSRO is guaranteed to converge to a NE in two-player games

with proper meta-solvers, and can be directly extended to mixed

cooperative-competitive games by using a team BR oracle. This is

because in each iteration, the BR policy is trained against a mix-

ture of fixed policies yielding a fully cooperative learning problem

with stationary opponents. However, to avoid struggling in poor

local sub-optimum, PSRO has to train the policy from scratch in

each iteration in order to find the global best response. In addition,

PSRO may have to fully explore the policy space to cover all the

strategy modes before converging to a global NE. Taking Rock-

Paper-Scissors (RPS) as an example, PSRO has to cover all three

modes to find the NE (1/3, 1/3, 1/3). These issues make PSRO very

inefficient in complex games with a huge policy space.

4 A MOTIVATING EXAMPLE
Here we introduce an illustrative mixed cooperative-competitive

game, i.e., a normal-form game with two competitive teams of 𝑁

homogeneous agents. Each agent can choose from two actions 0 or

1. The utility function 𝑈 has𝑈 (𝑥,𝑦) = −𝑈 (𝑦, 𝑥) and satisfies

𝑈 (0𝑁 , 1𝑁) = 𝐶,

𝑈 (0𝑁 , 𝑦) = 𝜖
𝑁∑︁
𝑖=1

𝑦𝑖 , ∀𝑦 ≠ 1𝑁 ,

𝑈 (𝑥,𝑦) =
𝑁∑︁
𝑖=1

𝑥𝑖 − 𝑦𝑖 , ∀𝑥,𝑦 ≠ 0𝑁 .

Here the parameters 𝐶, 𝜖 satisfy 0 < 𝜖 ≪ 𝐶 ≪ 𝑁 . When there is

no ambiguity, we use 0, 1 to represent the joint policy that corre-

sponding agents all act 0 or all act 1, respectively. Clearly, the game

has a unique global NE (0, 0), and a local suboptimal NE (1, 1).
Let the learning policy and the opponent policy be 𝜋, `, respec-

tively. Thus for self-play, `𝑡 = 𝜋𝑡 , and for PSRO and our counter

policy, ` is a fixed policy against which the best response is learned.

Definition 1 (Q-function). At each time 𝑡 , the Q-function
𝑄𝑡
𝑖
(𝑎𝑖) = E𝒙−𝑖∼𝜋𝑡

−𝑖 ,𝒚∼`𝑡𝑈 ([𝑎𝑖 , 𝒙−𝑖],𝒚) is computed for each agent
1 ≤ 𝑖 ≤ 𝑁 and action 𝑘 ∈ {0, 1}.

4.1 Self-play and Its Variants
We show that under decentralized learning, typical SP-based meth-

ods no longer converge to a global NE with a mild assumption.

Definition 2 (Preference Preservation). We say a learning
process is preference preservation if the relative ratio of choosing
action 𝑥 and 𝑦 keeps increasing when all the past observed Q-function
of 𝑥 is larger than 𝑦, and the ratio updating rules are monotone with
𝑄 . To be more specific,

∀𝑡 ′ ≤ 𝑡,𝑄𝑡
′
𝑖 (𝑥) ≥ 𝑄

𝑡 ′
𝑖 (𝑦) ⇒

𝜋𝑡+1
𝑖
(𝑥)

𝜋𝑡+1
𝑖
(𝑦)
≥
𝜋𝑡
𝑖
(𝑥)

𝜋𝑡
𝑖
(𝑦)

(7)

and ∀𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑁, 𝑥,𝑦 ∈ Π𝑖 , ∃ monotone non-decreasing 𝑓 𝑡
𝑖,𝑥,𝑦

such that

∀𝑡 ′ ≤ 𝑡, 𝑧 ∉ {𝑥,𝑦}, 𝜋𝑡
′
𝑖 (𝑧) = 0 (8)

⇒
𝜋𝑡+1
𝑖
(𝑥)

𝜋𝑡+1
𝑖
(𝑦)

= 𝑓 𝑡𝑖,𝑥,𝑦

(
𝜋𝑡
𝑖
(𝑥)

𝜋𝑡
𝑖
(𝑦)

, {𝑄𝑠𝑥 −𝑄𝑠𝑦}𝑡𝑠=0

)
This property holds for many SP-based algorithms, including

FSP [12, 13], Follow the Regularised Leader [30], Replicator Dy-

namics [14], Multiplicative Weights Update [11], Counter Factual

Regret Minimization [8], or any softmax variants of them. Although

some of them are proved to converge to NE under two-player zero-

sum games, we show in the following theorem that in the mixed

cooperative-competitive game we proposed, none of them converge

to the global NE (0, 0).

Theorem 4.1. Any algorithm with preference preservation will
not produce a policy 𝜋 converging to the global NE if the initialized
policy 𝜋0 does satisfy

∀𝑖, 𝜋0−𝑖 (0) ≤
1

𝑁 + 1 + 2𝐶 + 𝜖 .

When the policy is randomly initialized, there is at least a probability
of 1−exp (−Ω(𝑁)) that the above condition is satisfied and the policy
does not converge to the global NE.

We list the proof in Appendix ??. The obstacle of learning to-

wards the global NE largely comes from the partial observation, as

each agent only consider its local Q-function. Despite the challenge

of cooperative learning, we will show that learning against a fixed

opponent rather than the varying 𝜋𝑡 does mitigate the problem.

4.2 Playing Against a Fixed Opponent
In the learning of PSRO’s best response, the opponent policy `

is fixed. Although the opponent policy can be dependent on the

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1056

algorithm, our analysis is based on the opponent policy ` ∈ {0, 1},
since the game has only two local NEs (0, 0), (1, 1)

Definition 3 (Good Initialization). A good initialization 𝜋0

regarding a certain learning configuration enable the learned policy
to converge to the global NE.

Remark.We omit the discussion of the existence of convergence

or the convergence to other polices here, as at most cases the policy

will converge to either 0 or 1.
Therefore, a better learning algorithm should have a larger set

of good initialization. We now compare 𝑆SP (self-play) with 𝑆` (the

fixed opponent ` ∈ {0, 1}).

Theorem 4.2. For ` ∈ {0, 1}, when the same preference preserved
algorithm is applied, we must have 𝑆SP ⊆ 𝑆` . And, learning against
fixed ` strictly enlarges the good initialization set as 𝑆`\𝑆SP ≠ ∅.

The proof is in Appendix ??. Theorem 4.2 intuitively shows that

cooperative learning with a fixed opponent can be much easier.

Hence, PSRO will have a much higher chance to find a better joint

policy than SP.

5 METHOD
By the motivating example, SP-based algorithms can fails to finding

the global NE in mixed cooperative-competitive games because

of decentralized learning. PSRO mitigates this issue by training

against fixed opponents iteratively. However, PSRO can be very

inefficient in complex games with a large policy space. Therefore,

we aim to bridge the gap of SP and PSRO in this section.

5.1 Fictitious Cross-Play
Fictitious Cross-Play (FXP) trains an SP-based main policy and a

BR-based counter population. The main policy aims to find the

global NE of the game and is trained by fictitious self-play and

cross-play against the counter population. To prevent the main

policy from local NEs, an auxiliary counter population is iteratively

trained for the best responses to past versions of main policy. The

counter population is able to find better joint policies to exploit

the past main policies because it is trained against fixed opponents,

leading to a fully cooperative learning problem. The learned counter

policies are then used as opponents for main policy in cross-play,

which helps it get out of local NEs towards the global NE. For ease

of notations, we use main population to refer to the set of all past

checkpoints of the main policy.

FXP starts with randomly initialized policies 𝜋1
𝑀
, 𝜋1
𝐶
, and the ini-

tial main population and counter population are Π1

𝑀
= {𝜋1

𝑀
},Π1

𝐶
=

{𝜋1
𝐶
}. Consider the restricted game where the row player’s policies

are Π𝑀 and the column player’s policies are Π𝐶 , we denote the pay-
off matrix of this restricted game as 𝑈𝑀×𝐶 . Since the game is sym-

metric, we also have a joint population Π𝑀+𝐶 = Π𝑀 ∪ Π𝐶 , and the

corresponding payoff matrix is denoted as𝑈𝑀+𝐶 = 𝑈 (𝑀+𝐶)×(𝑀+𝐶) .
In each iteration, a new main policy 𝜋𝑡+1

𝑀
and counter policy 𝜋𝑡+1

𝐶
are trained simultaneously against different opponents. The main

policy is trained by self-play, fictitious play against the main popu-

lation Π𝑡
𝑀
, and cross-play against the counter population Π𝑡

𝐶
. The

probability of self-play is determined by a hyperparameter [, and

the meta-policy 𝜎𝑀+𝐶 used to sample opponents from main and

Algorithm 3: Fictitious Cross-Play (FXP)

Input: Initial main population and counter population with

random policy Π1

𝑀
= {𝜋1

𝑀
},Π1

𝐶
= {𝜋1

𝐶
}

for 𝑡 = 1, 2, · · · ,𝑇 do
Update𝑈𝑀+𝐶 ,𝑈𝑀×𝐶 by game simulations

𝜎𝑀+𝐶 ← meta-solver𝑀 (𝑈𝑀+𝐶)
𝜎𝑀 , 𝜎𝐶 ← meta-solver𝐶 (𝑈𝑀×𝐶)
for many episodes do

Update 𝜋𝑡+1
𝑀

toward BR([𝜋𝑡+1
𝑀
+ (1−[)𝜎𝑀+𝐶Π𝑡𝑀+𝐶)

Update 𝜋𝑡+1
𝐶

toward BR(𝜎𝑀Π𝑡
𝑀
)

Π𝑡+1
𝑀
← Π𝑡

𝑀
∪ {𝜋𝑡+1

𝑀
}

Π𝑡+1
𝐶
← Π𝑡

𝐶
∪ {𝜋𝑡+1

𝐶
}

Output: Population Π𝑇+1
𝑀

,Π𝑇+1
𝐶

and meta-policy 𝜎𝑀+𝐶

counter populations is computed by a meta-solver on payoff𝑈𝑀+𝐶 .
Similarly, a meta-policy𝜎𝑀 for the row player in the restricted game

with payoff𝑈𝑀×𝐶 is computed, and the counter policy is train to

be the best response of the main population Π𝑡
𝑀

with meta-strategy

𝜎𝑀 . The new main and counter policies are added to their popu-

lations after convergence or a fixed number of training steps, and

the payoff matrices𝑈𝑀+𝐶 ,𝑈𝑀×𝐶 are updated by game simulations.

The pseudocode of FXP is listed in Algorithm 3.

5.2 Practical Implementation
For large real-world games, we combine FXP with neural networks

and use a popular MARL method, such as MAPPO [35] as the

approximate BR oracle. In iteration 𝑡 , we run the currentmain policy

and counter policy against different opponents to collect training

samples. When an episode starts, the opponent for main policy is

set to itself with probability [, otherwise is sampled from the joint

population Π𝑡
𝑀+𝐶 according to meta-policy 𝜎𝑀+𝐶 . Similarly, the

opponent for counter policy is sampled from the main population

Π𝑡
𝑀

according to meta-policy 𝜎𝑀 . The main and counter policies

are then updated using MARL algorithms based on these samples.

This procedure is repeated for many episodes until convergence

or a maximum number of steps. Then the policies are added to the

main and counter population to continue to the next FXP iteration.

To accelerate training in complex games, we initialize the main

policy 𝜋𝑡+1
𝑀

in iteration 𝑡 + 1 using policy 𝜋𝑡
𝑀

from the previous

iteration. This is much more efficient than training from scratch,

since the current main policy is already a best response to most of

the new target opponents. On the other hand, the counter policy

in each iteration remains to be trained from scratch or from an

unconverged early checkpoint. This is to avoid the situation where

both main and counter policies are trapped in the same local sub-

optimum and fail to find an approximate best response.

In practice, when the population size is large, solving meta-

policies can be computationally expensive for commonly used meta-

solvers. For efficient training, we use prioritized sampling which

assigns a score to each opponents and samples them with proba-

bilities proportional to their scores. For main policy, we use the

opponents’ win rates as their scores

𝑠𝜋𝑀 (𝜋) = 𝑃 (𝜋 wins 𝜋𝑀) , (9)

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1057

0.2

0.4

0.6

0.8

0.8 0.6 0.4 0.2

0.8

0.6

0.4

0.2

SP

Paper

Scissors Rock

0.2

0.4

0.6

0.8

0.8 0.6 0.4 0.2

0.8

0.6

0.4

0.2

FSP

Paper

Scissors Rock

0.2

0.4

0.6

0.8

0.8 0.6 0.4 0.2

0.8

0.6

0.4

0.2

PSRO w.o. reset

Paper

Scissors Rock

0.2

0.4

0.6

0.8

0.8 0.6 0.4 0.2

0.8

0.6

0.4

0.2

PSRO w. reset

Paper

Scissors Rock

0.2

0.4

0.6

0.8

0.8 0.6 0.4 0.2

0.8

0.6

0.4

0.2

FXP

Paper

Scissors Rock

Figure 2: Learning dynamics of SP, FSP, PSRO without and with reset (i.e., train from scratch), and FXP in the team RPS game.
FXP quickly converges to the global NE (red star). Each algorithm is trained for the same number of steps. We counts the steps
for both main and counter policies in FXP for a fair comparison.

which makes the main policy focus on the hardest opponents and

try to overcome them. For counter policy, since it is learned from

scratch or from an early checkpoint, we set the opponents’ scores

to be the product of their win rate and lose rate

𝑠𝜋𝐶 (𝜋) = 𝑃 (𝜋 wins 𝜋𝐶) · 𝑃 (𝜋𝐶 wins 𝜋) , (10)

which favors policies of about the same level as the counter policy

and forms a curriculum to learn from easy to hard.

5.3 Connections to SP and PSRO
FXP can be regarded as an extension of both SP and PSRO with

the hyperparameter [used as a trade-off between efficiency and

convergence. If we set [= 1, the main policy becomes a pure

self-play policy and has no interaction with its past versions or

the counter population. The counter policy will become the BR of

the time average of the SP policy with a uniform meta-solver. If

we set [= 0, both main and counter policies are trained against

fixed opponents, which is conceptually similar to PSRO. However,

even when [= 0, FXP is different from PSRO in two ways. First,

FXP’s meta-policies in each iteration are adaptive by prioritized

sampling, while the meta-policy of PSRO is fixed. Second, the main

policy of FXP is trained continuously and never reset, i.e., restart

training from scratch, while the new policy in each PSRO iteration

is reset to a random policy and trained from scratch. Note that it

is possible to turn off reset in PSRO by warmstarting a new policy

from previous ones. However, PSRO requires a global best response
policy. Learning best responses with warmstart may easily get

trapped in a local sub-optimum or a local NE and fail to sufficiently

explore the policy space. We empirically find setting [= 0.2 works

well in many environments and use its as the default value in FXP.

6 EXPERIMENT
In this section, we demonstrate the effectiveness of FXP in vari-

ous mixed cooperative-competitive games. We first study matrix

games, where the payoff and team exploitability can be calculated

exactly. FXP converges to the global NE while other methods fail

or use much more training steps. Then we use MAPPO [35] as

an approximate BR oracle and consider a gridworld environment

MAgent Battle [36]. FXP achieves a lower team exploitability and a

higher Elo rating than other MARL baselines for NE. Finally, with

large-scale training, we use FXP to solve the challenging 11-vs-11

multi-agent full game in Google Research Football (GRF) [17]. We

compare our methods with SOTA models including the hardest

built-in AI, PSRO w. BD&RD [20] agent, and Tikick agent [15]. FXP

achieves over 94% win rate against available models with a signifi-

cant goal difference. Experiments on the motivating example, more

ablation studies, and training details can be found in Appendix ??.

6.1 Matrix Games
We introduce two mixed cooperative-competitive matrix games to

visualize the learning dynamics of FXP, SP, PSRO and their variants

and compare their performance.

Team Rock-Paper-Scissors (team RPS) game. This game extends

the classic 2-player zero-sum game Rock-Paper-Scissors (RPS) to a

4-player team competitive setting. The 4 players are divided into

2 teams and play RPS between the teams. Each player can choose

either action 0 or action 1. If both players in the same team choose

action 0, then the team plays Rock; if both choose 1, the team plays

Paper; otherwise, the team plays Scissors. Clearly, this game has

a global NE where the team chooses Rock, Paper, Scissors with

equal probability. It also has a local NE where both players in the

team choose action 1 and the team always plays Scissors. This is

because when all players other than self choose action 1, choosing

action 0 would make the team play Paper, which is exploited by

the opposing team’s move Scissors. However, the 2 players can

jointly change their actions from 1 to 0 to play Rock and exploit

the Scissors.

We run SP, FSP [12], PSRO
Uniform

[18], and FXP with uniform

meta-solvers on the team RPS game and use policy gradient to

optimize the policy for a same number of steps. The step count of

FXP includes both main and counter policies for a fair comparison.

The learning dynamics of each algorithm is shown in Figure 2. The

red star in each subfigure is the global NE of team RPS game, the

grey lines in SP and FSP subfigures are the traces of the training

policies and the green lines are the traces of their time-averaged

policies, the colored line in PSRO and FXP subfigures are the mixed

policies of current populations. As shown in the figure, SP and FSP

converge to the local NE of Scissors and get stuck there forever,

PSRO cycles around the global NE and slowly converges to it, and

FXP quickly converges to the global NE. We also run PSRO without

reset on the game and it converges to the local NE as SP does. This

shows that PSRO has to train policy from scratch in each iteration

to avoid struggling in local NEs.

Seek-attack-defend (SAD) game. Now we propose a matrix game

with a larger action space so that we can quantitatively compare dif-

ferent methods. A seek-attack-defend (SAD) game consists of two

teams of 𝑁 agents, each with the action space containing𝐴+1 seek-
ing action {0, 1, 2, ..., 𝐴} and two special actions {attack, defend}.

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1058

(a) None of SP-based algorithms converge to
the global NE that has zero exploitability.

(b) Exploitability is computed on themeta pol-
icy. In SAD games FXP uses NE meta-solver. (c) A vertical line means a new iteration.

Figure 3: Results on seek-attack-defend (SAD) games. Evaluation metric is exploitability, which is defined as the sum of
(non-negative) improvement of replacing the current policy with three following strategies (three supports of the global NE):
(1) all seeking 𝐴; (2) 2 attack + (𝑁 − 2) seeking 𝐴; and (3) 1 defend + (𝑁 − 1) seeking A. Each step is either computing a best
response or updating the Q-function, depending on the algorithm to be used.

Each team seeks to obtain as much total reward as possible by coop-

eratively choosing seeking action {0, 1, 2, ..., 𝐴}. A reward-level 𝐿 is

defined as the minimum seeking action if all seeking actions differ

by at most one. Otherwise, the reward-level 𝐿 is equal to zero. After

that, the total reward 𝑅 is aggregated by all 𝑅𝑥 of seeking action 𝑥

s.t. 𝐿 ≤ 𝑥 ≤ 𝐿 + 1. Therefore, teammates must learn to perform the

same seeking action to receive the reward, and seek towards 𝐴 as

reward 𝑅𝑥 gets higher as 𝑥 increases (𝑅0 = 0, 𝑅𝑖 < 𝑅𝑖+1).
Besides reward obtaining, the team must guard their rewards.

If two agents of the other team use attack action and none of the

teammates defend the reward, the team will lose all its reward. The

final utility of SAD game is defined as the difference of the reward

after attack and defense are considered. Therefore, each team must

properly designate some agents to attack and defend while letting

others seek the highest reward 𝑅𝐴 .

Here we show the learning curve of exploitability of five SP-

based algorithms, including self-play (SP), fictitious self-play (FSP),

follow the regularized leader (FoReL) [30], Replicator Dynamics

[14], multiplicative weights update (MWU) [11], counter factual

regret minimization (CFR) [8]. Although some of them are guaran-

teed to converge to NE in two-player zero-sum games, none of them

converge to the global NE in SAD game, as shown in Figure 3a. The

reason behind that is the existence of a local NE that all teammates

seek with the highest action 𝐴, and SP-based algorithms almost

always get trapped in this local NE.

Despite SP’s poor performance, FXP and PSRO provide better

solutions. We compare FXO with PSRO
Uniform

and PSRO
Nash

. The

results in Figure 3b show that both FXP and PSRO
Nash

converge to

global NE, and FXP consumes much smaller steps. (The training

steps of FXP contain the cost of training counter policies for a fair

comparison.) The warm-start versions of PSRO do not re-initialize

the policy at the beginning of each iteration and thus degenerate

to similar performance of SP.

The exploitability curves of (main) policies (NOT meta policies)

in Figure 3c explain the advantage of FXP upon PSRO. FXP can

utilize the knowledge of former policies and continue to get up-

dated from the last iteration, while PSRO must learn skills (e.g., the

cooperation of choosing the same seeking action) from scratch at

each iteration. This advantage can be amplified more in larger-scale

game where computing even one RL best response is non-trivial.

6.2 MAgent Battle
MAgent Battle is a gridworld game where a red team of 𝑁 agents

fight against a blue team. At each step, agents can move to one

of the 12 nearest grids or attack one of the 8 surrounding grids

of themselves. Each agent has a maximum hp of 10, and lose 2

hp if is attacked by an opponent agent, and slowly recover 0.1

hp at the end of each step. An agent is killed if its hp goes to

zero and will not respawn. The game terminates if all agents in

the same team are killed or reaches a maximum number of steps.

Agents in the same team get a reward of 0.1 or 10 if an opponent

agent is attacked or killed, respectively. To make the game zero-

sum between teams, agents are also penalized by 0.1 and 10 if an

teammate or themselves are attacked or killed. A good strategy

in this game is to cooperatively attack the same opponent with

teammates and kill opponents one by one to build an advantage in

the number of agents alive.

We run SP, FSP, Neural Replicator Dynamics (NeuRD) [14],

PSRO
Nash

, PSRO
Uniform

, Online Double Oracle (ODO) [9], and

FXP with MAPPO in the 3-vs-3 MAgent Battle game. Since the ex-

ploitability can not be exactly calculated in this game, we estimates

the approximate exploitability of the final policies or population

of different algorithms by training approximate BRs against them.

We also use Elo ratings [10] to evaluate the relative strength of

different agents. The averaged results over 3 seeds are shown in

Table 1. Notably, FXP agents achieve the lowest exploitability and

the highest Elo rating.

We also visualize the behaviours of agents trained by different

algorithms in Figure 4. SP converge to a defensive policy which

agent stays at the edge of the map and keeps attacking in the

direction of opponents, but never move toward the opponents. This

is a local NE because if only one agent tries to move and attack

the opponents, it will face a dangerous 1-vs-3 situation and easily

get killed. However, it is still possible to defeat the opponents by

cooperatively attacking them with all teammates. On the other

hand, PSRO agents are more aggressive because they always try to

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1059

SP: defensive PSRO: aggressive FXP: jointly attack

Figure 4: Visualization of learned behaviours by different
methods inMAgent Battle. FXP learns an approximate global
NE, i.e., wait for the chance to jointly attack.

Exploitability Elo rating

SP 28.66 (0.80) 782

FSP 21.21 (1.87) 1627

NeuRD 26.72 (1.43) 1143

PSRO
Uniform

24.63 (3.35) 1495

PSRO
Nash

22.54 (1.65) 1544

ODO 21.76 (2.19) 1589

FXP 10.62 (2.73) 1832

Table 1: Exploitability and Elo rating of FXP agents and other
MARL methods for NE in MAgent Battle game.

exploit a fixed population and usually overfit to a specific attacking

way. An global NE can be find if all possible attacking strategies

are enumerated. However, even in this simple gridworld game, the

policy space is enormous, making PSRO methods very inefficient.

FXP agents learn an approximate global NE that is to wait and

jointly attack. This policy exploits aggressive opponents by waiting

and attacking first when the opponents are trying to get close

enough to them. When facing defensive opponents, FXP agents

sometimes wait forever till a tie, sometimes wait and then take the

initiative to jointly attack the opponents.

6.3 Google Research Football
Google Research Football (GRF) is a physics-based simulation envi-

ronment adapted from popular football video games. Each agent

controls a player in the game and has to learn how to dribble the

ball, cooperate with teammates to pass the ball and overcome the

opponents’ defense to score goals. We consider the GRF 11-vs-11

full game, which simulates a 3000-step complete football game with

standard rules. The long-time horizon, enormous policy spaces,

and mixed cooperative-competitive nature make it a challenging

problem for MARL algorithms. We use FXP with MAPPO to solve

this problem and compare with existing SOTA models.

Because the game is too complex, it is impossible to exactly

calculate or approximately estimate the exploitability of a policy

or a population. As an alternative approach, we evaluate FXP and

other models by playing against a set of unseen reference policies

and compare their performance. We use GRF’s built-in models

with different levels as the reference policies and compare FXP

with SOTA models including the hardest built-in AI, a PSRO-based

agent, PSRO w. BD&RD [20], an imitation learning agent Tikick [15].
Note that since the PSRO w. BD&RD [20] never release their code

Built-in Hard PSRO w. BD&RD Tikick FXP
0

2

4

6

8

Go
al

 D
iff

er
en

ce

2.09
2.87

5.93

7.66

0.75
1.60

4.05
5.03

0.00
0.75

3.02
3.72

v.s. easy
v.s. medium
v.s. hard

Figure 5: Goal differences of FXP and other models against
built-in AI of different levels.

FXP Tikick Hard

FXP

Tikick

Hard

0.948 0.987

0.052 0.970

0.013 0.030

Win Rate

FXP Tikick Hard

FXP

Tikick

Hard

2.71 3.72

-2.71 3.02

-3.72 -3.02

Goal Diff

Figure 6: Head-to-head win rate evaluation between FXP,
Tikick and built-in hard AI in 11-vs-11 full game.

or model. We directly report the original numbers in their paper.

The model of Tikick is released and our evaluation result of Tikick
is consistent with the paper [15]. The results are shown in Figure 5,

where FXP achieves the largest goal difference against all reference

policies. As a reference, GRF [17] also reports the performances of

the BR policies by directly training against different level build-in AI.

The BR policies achieve the average goal differences of 12.83, 5.54,

3.15 for easy, medium, hard respectively. We remark that, although

our method has never seen the built-in models during training,

FXP achieves a comparable results to BR policies, especially against

medium and hard opponents.

Moreover, football is a non-transitive game like RPS, so good

performance against certain opponents does not necessarily means

a strong policy. We also carry out a tournament-style head-to-head

evaluation between FXP and available models, including Tikick

and built-in hard AI. The results are shown in Figure 6, where FXP

achieves a dominating performance, with over 94% win rate and at

least 2.7 more goals scored per game on average.We remark that the

SOTA model Tikick performs both imitation learning on additional

offline data and RL fine-tuning while FXP only adopts pure full RL

training, which suggests the effectiveness of our algorithm.

7 CONCLUSION
In this work, we present a novel algorithm, Fictitious Cross-Play

(FXP), to learn global NEs in mixed cooperative-competitive games.

FXP trains an SP-based main policy for the global NE and mitigates

the issue of getting stuck at local NEs by training a BR-based counter

population to continuously exploit the main policy. Experiments in

matrix games and gridworld games demonstrate that FXP converges

to the global NE quickly and outperforms a series popular methods

for NE. FXP also defeats the SOTA models in the Google Research

Football environment with a dominant win rates. We hope FXP

could bring useful insights to the community towardsmore effective

MARL algorithms.

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1060

ACKNOWLEDGMENTS
This research was supported by National Natural Science Foun-

dation of China (No.U19B2019, 62203257, M-0248), Tsinghua Uni-

versity Initiative Scientific Research Program, Tsinghua-Meituan

Joint Institute for Digital Life, Beijing National Research Center

for Information Science, Technology (BNRist), Beijing Innovation

Center for Future Chips and 2030 InnovationMegaprojects of China

(Programme on New Generation Artificial Intelligence) Grant No.

2021AAA0150000.

REFERENCES
[1] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob

McGrew, and Igor Mordatch. 2019. Emergent tool use from multi-agent autocur-

ricula. arXiv preprint arXiv:1909.07528 (2019).
[2] David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien

Perolat, Max Jaderberg, and Thore Graepel. 2019. Open-ended learning in sym-

metric zero-sum games. In International Conference on Machine Learning. PMLR,

434–443.

[3] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mor-

datch. 2017. Emergent complexity via multi-agent competition. arXiv preprint
arXiv:1710.03748 (2017).

[4] Nolan Bard, JakobN Foerster, Sarath Chandar, Neil Burch,Marc Lanctot, H Francis

Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes,

et al. 2020. The hanabi challenge: A new frontier for ai research. Artificial
Intelligence 280 (2020), 103216.

[5] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław

Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris

Hesse, et al. 2019. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 (2019).

[6] Avrim Blum and Yishay Monsour. 2007. Learning, regret minimization, and

equilibria. (2007).

[7] George W Brown. 1951. Iterative solution of games by fictitious play. Act. Anal.
Prod Allocation 13, 1 (1951), 374.

[8] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. 2019. Deep coun-

terfactual regret minimization. In International conference on machine learning.
PMLR, 793–802.

[9] Le Cong Dinh, Yaodong Yang, Zheng Tian, Nicolas Perez Nieves, Oliver Slumbers,

David Henry Mguni, Haitham Bou Ammar, and Jun Wang. 2021. Online Double

Oracle. arXiv preprint arXiv:2103.07780 (2021).
[10] Arpad E Elo. 1978. The rating of chessplayers, past and present. Arco Pub.

[11] Yoav Freund and Robert E Schapire. 1999. Adaptive game playing using multi-

plicative weights. Games and Economic Behavior 29, 1-2 (1999), 79–103.
[12] Johannes Heinrich, Marc Lanctot, and David Silver. 2015. Fictitious self-play in

extensive-form games. In International conference on machine learning. PMLR,

805–813.

[13] Johannes Heinrich and David Silver. 2016. Deep reinforcement learning from

self-play in imperfect-information games. arXiv preprint arXiv:1603.01121 (2016).
[14] Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Rémi Munos, Julien Pero-

lat, Marc Lanctot, Audrunas Gruslys, Jean-Baptiste Lespiau, Paavo Parmas, Edgar

Duéñez-Guzmán, et al. 2020. Neural replicator dynamics: Multiagent learning

via hedging policy gradients. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems. 492–501.

[15] Shiyu Huang, Wenze Chen, Longfei Zhang, Ziyang Li, Fengming Zhu, Deheng

Ye, Ting Chen, and Jun Zhu. 2021. TiKick: Towards Playing Multi-agent Football

Full Games from Single-agent Demonstrations. arXiv preprint arXiv:2110.04507
(2021).

[16] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever,

Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos,

Avraham Ruderman, et al. 2019. Human-level performance in 3D multiplayer

games with population-based reinforcement learning. Science 364, 6443 (2019),
859–865.

[17] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem,

Lasse Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier

Bousquet, et al. 2020. Google research football: A novel reinforcement learning

environment. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 4501–4510.

[18] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl

Tuyls, Julien Pérolat, David Silver, and Thore Graepel. 2017. A unified game-

theoretic approach to multiagent reinforcement learning. Advances in neural
information processing systems 30 (2017).

[19] Michael L Littman. 1994. Markov games as a framework for multi-agent re-

inforcement learning. In Proceedings of the eleventh international conference on
machine learning, Vol. 157. 157–163.

[20] Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng Chen, Changjie Fan,

ZhipengHu, and Yaodong Yang. 2021. Towards Unifying Behavioral and Response

Diversity for Open-ended Learning in Zero-sum Games. Advances in Neural
Information Processing Systems 34 (2021), 941–952.

[21] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor

Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive

environments. Advances in neural information processing systems 30 (2017).
[22] Stephen McAleer, John B Lanier, Kevin A Wang, Pierre Baldi, and Roy Fox. 2021.

XDO: A double oracle algorithm for extensive-form games. Advances in Neural
Information Processing Systems 34 (2021), 23128–23139.

[23] Stephen McAleer, Kevin Wang, JB Lanier, Marc Lanctot, Pierre Baldi, Tuomas

Sandholm, and Roy Fox. 2022. Anytime PSRO for Two-Player Zero-Sum Games.

arXiv preprint arXiv:2201.07700 (2022).
[24] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. 2003. Planning in

the presence of cost functions controlled by an adversary. In Proceedings of the
20th International Conference on Machine Learning (ICML-03). 536–543.

[25] Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Pero-

lat, Siqi Liu, Daniel Hennes, Luke Marris, Marc Lanctot, Edward Hughes, et al.

2019. A generalized training approach for multiagent learning. arXiv preprint
arXiv:1909.12823 (2019).

[26] Nicolas Perez-Nieves, Yaodong Yang, Oliver Slumbers, David HMguni, YingWen,

and Jun Wang. 2021. Modelling behavioural diversity for learning in open-ended

games. In International Conference on Machine Learning. PMLR, 8514–8524.

[27] Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark

Rowland, Pedro Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart

De Vylder, et al. 2021. From Poincaré recurrence to convergence in imperfect

information games: Finding equilibrium via regularization. In International Con-
ference on Machine Learning. PMLR, 8525–8535.

[28] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-

sation for deep multi-agent reinforcement learning. In International conference
on machine learning. PMLR, 4295–4304.

[29] Lillian J Ratliff, Samuel A Burden, and S Shankar Sastry. 2013. Characterization

and computation of local Nash equilibria in continuous games. In 2013 51st Annual
Allerton Conference on Communication, Control, and Computing (Allerton). IEEE,
917–924.

[30] Shai Shalev-Shwartz et al. 2012. Online learning and online convex optimization.

Foundations and Trends® in Machine Learning 4, 2 (2012), 107–194.

[31] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. nature 529, 7587 (2016), 484–489.
[32] Samuel Sokota, Ryan D’Orazio, J Zico Kolter, Nicolas Loizou, Marc Lanctot,

Ioannis Mitliagkas, Noam Brown, and Christian Kroer. 2022. A unified approach

to reinforcement learning, quantal response equilibria, and two-player zero-sum

games. arXiv preprint arXiv:2206.05825 (2022).
[33] Gerald Tesauro. 1994. TD-Gammon, a self-teaching backgammon program,

achieves master-level play. Neural computation 6, 2 (1994), 215–219.

[34] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-

drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,

Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent

reinforcement learning. Nature 575, 7782 (2019), 350–354.
[35] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.

2021. The surprising effectiveness of ppo in cooperative, multi-agent games.

arXiv preprint arXiv:2103.01955 (2021).
[36] Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou, Weinan Zhang, Jun Wang,

and Yong Yu. 2018. Magent: A many-agent reinforcement learning platform for

artificial collective intelligence. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 32.

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1061

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Normal-Formal Games
	3.2 Extension to MARL
	3.3 Self-play
	3.4 Policy-Space Response Oracles

	4 A Motivating Example
	4.1 Self-play and Its Variants
	4.2 Playing Against a Fixed Opponent

	5 Method
	5.1 Fictitious Cross-Play
	5.2 Practical Implementation
	5.3 Connections to SP and PSRO

	6 Experiment
	6.1 Matrix Games
	6.2 MAgent Battle
	6.3 Google Research Football

	7 Conclusion
	Acknowledgments
	References

