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ABSTRACT
Mean field games (MFG) are developed to solve equilibria in multi-

agent systems (MAS) with many agents. The majority of literature

on MFGs is focused on finite states and actions. In many engineer-

ing applications such as autonomous driving, however, each agent

(e.g., an autonomous vehicle) makes a continuous-time-space (or

spatiotemporal dynamic) decision to optimize a nonlinear cumula-

tive reward. In this paper, we focus on a class of generic MFGs with

continuous states and actions defined over a spatiotemporal do-

main for a finite horizon, named “spatiotemporal MFG (ST-MFG)."

The mean field equilibria (MFE) for such games are challenging to

solve using numerical methods to meet a satisfactory resolution

in time and space, while it is critical to deploy smooth dynamic

control in autonomous driving. Thus, we propose two methods, one

is a joint reinforcement learning (RL) and machine learning frame-

work, which iteratively solves agents’ optimal policies using RL,

and propagates population density using physics-informed deep

learning (PIDL). The other is a pure PIDL framework that updates

agents’ states and population density altogether using deep neu-

ral networks. Both the proposed methods are mesh-free (i.e., not

restricted by mesh granularity), and have shown to be efficient in

learning equilibria in autonomous driving MFGs. The PIDL method

alone is faster to train than the RL-PIDL integrated method, when

the environment dynamic is known.
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1 INTRODUCTION
With a large number of interacting agents in a multi-agent system

(MAS), agents’ decision-making processes could be computationally

intractable. Mean field games (MFGs) are developed to solve agents’

dynamic decision-making behaviors with conflicting goals, using a

population distribution to represent the state of many individual

agents [9, 10, 26, 29]. At mean field equilibria (MFE), an agent’s

optimal strategy coincides with the population density. MFGs have

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
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been widely studied in engineering, economics, and finance since

its inception. Readers can refer to [2] for more details.

In this paper, we focus on a class of generic MFGs with continu-

ous state and action spaces defined over a spatiotemporal domain

for a finite horizon, named “spatiotemporal MFG (ST-MFG)." It

models the continuous-time decision making of agents and their

interactions across a continuous space over a finite horizon. It be-

longs to non-stationary mean field games where optimal policies of

agents evolve with time. This is motivated by engineering and robot-

ics applications such as autonomous driving [22, 24, 25], in which

agents (e.g., autonomous vehicles) make dynamic decisions in time

and space to optimize a nonlinear and possibly non-separable (i.e.,

a cross term between agents’ control and the mass density in the

cost functional) cumulative reward. The mean field equilibria (MFE)

for such games are challenging to solve using numerical methods

due to its infinite number of states and actions. In order to solve

the spatiotemporal (ST) dynamics of population state and agents’

decision-making, we adopt a hybrid framework, i.e., reinforcement

learning (RL) coupled with physics-informed deep learning (PIDL),

which combines both model-driven and data-driven neural net-

works.

Assuming agents are anonymous, mean field approximation can

be applied to exploit the “smoothing" effect of large numbers of

interacting individuals. At equilibrium, each player interacts and

reacts only to a “mass" which results from the aggregate effect of

all the players nearby. The MFG is thus a micro-macro model that

allows one to define individuals on a microscopic level as rational,

utility-optimizing agents while translating their rich microscopic

behaviors to a macroscopic scale. It consists of two coupled partial

differential equations (PDEs):

(1) Agent dynamic: individuals’ dynamics using optimal control, i.e, a

backward Hamilton-Jacobi-Bellman (HJB) equation;

(2) Mass dynamic: system evolution arising from each individual’s

choices, i.e, a forward Fokker-Planck-Komogorov (FPK) equation.

These two coupling equations characterize the evolution of the

system’s dynamics. At MFE, an agent’s optimal strategy coincides

with the population density.

MFE is challenging to solve due to its forward-backward struc-

ture. The existing literature primarily employs three types of numer-

ical methods, namely, fixed-point iteration [13, 15, 48], variational

method [6, 14, 28], and Newton’s method [1, 3]. The former two

require special structures of MFGs, which do not directly apply

to ST-MFGs [24]. While the Newton’s method does not impose

requirements on the length of planning horizon nor the cost func-

tion, it may fail to converge if one does not have a good initial

guess to the solution. So tricks such as a multigrid preconditioned

algorithm [24] are needed to improve the convergence. All the
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aforementioned numerical methods require the spatial-temporal

discretization of a dynamic system, and accordingly, the mesh size

of the discretized system could influence computational efficiency

and accuracy. Thus, these methods could suffer from the complexity

and dimension of state and action spaces [31].

To tackle the above challenges, we resort to learning based meth-

ods to solveMFE for its mesh-free scheme and efficiency in handling

interactions among agents in complex environments.

The main contributions of this paper include:

• Propose twomethods to solve time-dependent non-stationary

control policies with continuous states and actions in MFGs:

a joint framework of RL and PIDL and a pure PIDL frame-

work; We establish the linkage between two methods with

known dynamics in the MFG system.

• Develop two algorithms [MFG-RL-PIDL] and [MFG-pure-

PIDL] for proposed frameworks to find MFE in ST-MFGs;

[MFG-RL-PIDL] unifies the training of a physics-informed

neural networks (PINN), actor and policy networks in the

RL module; [MFG-pure-PIDL] replaces the RL module with

a PIDL module to speed up the training.

• Validate developed algorithms in autonomous driving games

with different cost functional forms, including Monotone

MFGs and Non-monotone MFGs.

The rest of this paper is organized as follows: Section 2 presents

related work and preliminaries about ST-MFG. Section 3 proposes

a RL-PIDL framework for ST-MFGs. Section 4 proposes a pure

PIDL framework. Section 5 discusses the linkage between proposed

methods. Section 6 demonstrates numerical experiments conducted

on autonomous driving games. Section 7 concludes.

2 BACKGROUND
2.1 Related Work
There is a growing trend of applying RL methods to find equilib-

ria in MFGs [27, 46, 47]. To accommodate continuous population

states and agent actions, deep deterministic policy gradient (DDPG)

[16], normalizing Flow (NF) [36], actor and critic (A2C) [32, 42] are

adopted. To stabilize the agent’s policy learning, fictitious play (FP)

is introduced into the learning framework for MFGs by incorpo-

rating empirical best responses during the learning process into

the decision making [11, 31, 35–37, 44]. Other methods to stabilize

agents’ behavior include regularization [4, 45], policy evaluation

[20, 34], and population-based training [33].

Deep learning (DL) methods have also been applied to MFGs

[12, 18] with neural networks to approximate system dynamics in

a mesh-free scheme [38]. Various neural architectures have been

leveraged to solve high-dimensional PDE problems [40, 43].

The majority of aforementioned studies that used machine learn-

ing methods to solve MFGs, however, relies on stringent assump-

tions such as stationarity [19, 41], discrete actions or states [5, 7, 8,

21], as well as reward monotonicity [17, 37].

2.2 Spatiotemporal MFG (ST-MFG)
Spatiotemporal MFG (ST-MFG) refers to a class of MFGs with both

the population state and agents’ actions defined in a spatiotemporal

domain over a finite horizon. The reward or cost arising from agents’

actions negatively depend on the population density, indicating a

congestion effect. ST-MFG is non-stationary because optimal policies

of agents evolve with time.

Definition 2.1. ST-MFG
Define a finite planning horizon T = [0,𝑇 ] where 𝑇 ∈ [0,∞). A
total of 𝑁 agents, indexed by 𝑛 = {1, 2, · · · , 𝑁 }, are moving in a 1-

or 2-dimension space, denoted by X. Their positions at time 𝑡 are

denoted as x(𝑡) = [𝑥1 (𝑡), 𝑥2 (𝑡), · · · , 𝑥𝑁 (𝑡)]. Agent 𝑛 ∈ 𝑁 controls

𝑢𝑛 (𝑡) ∈ A where A is the feasible action set to minimize its cost

functional: ∀𝑛 = 1, · · · , 𝑁 ,

𝐽𝑁𝑛 (𝑢𝑛, 𝑢−𝑛) =
∫ 𝑇

0

𝑓 𝑁𝑛 (𝑢𝑛 (𝑡), 𝑥𝑛 (𝑡), 𝑥−𝑛 (𝑡))︸                           ︷︷                           ︸
cost function

𝑑𝑡 +𝑉𝑇 (𝑥𝑛 (𝑇 ))︸       ︷︷       ︸
terminal cost

.

(1)

A Nash equilibrium of the 𝑁 -player mean field type differential

game is a tuple of controls 𝑢∗
1
(𝑡), 𝑢∗

2
(𝑡), . . . , 𝑢∗

𝑁
(𝑡) satisfying

𝐽𝑁𝑛 (𝑢∗𝑛, 𝑢∗−𝑛) ≤ 𝐽𝑁𝑛 (𝑢𝑛, 𝑢∗−𝑛),∀𝑛 = 1, · · · , 𝑁 . (2)

As 𝑁 →∞, the optimal cost of a generic agent from 𝑥 at time 𝑡

becomes:

𝑉 (𝑥, 𝑡) =𝑚𝑖𝑛𝑢 {
∫ 𝑇

𝑡

𝑓 (𝑢 (𝑥 (𝜏), 𝜏), 𝜌 (𝑥 (𝜏), 𝜏))𝑑𝜏 +𝑉 (𝑥 (𝑇 ),𝑇 )}
(3)

where, 𝑢 (𝑥 (𝜏), 𝜏) is the control of a generic agent. The agent state
𝑥 (𝜏),∀𝜏 ∈ T is updated based on the agent dynamics ¤𝑥 (𝜏) =

𝑢 (𝑥 (𝜏), 𝜏). 𝑥 (𝜏) is the agent position by time 𝜏 and we denote

𝑥 = 𝑥 (𝜏), 𝑥 ∈ X. 𝜌 (𝑥, 𝑡),∀(𝑥, 𝑡) ∈ X × T is the population den-

sity of all agents in the system (i.e., mean-field state). 𝑓 (𝑢, 𝜌) is the
cost function.𝑉 (𝑥, 𝑡),∀(𝑥, 𝑡) ∈ X×T is the value function for each

individual agent, which can be interpreted as the minimum cost

of an agent when starting from position 𝑥 by time 𝑡 . 𝑉 (𝑥 (𝑇 ),𝑇 )
denotes the terminal cost. We have 𝑉 (𝑥,𝑇 ) = 𝑉 (𝑥),∀𝑥 ∈ X.

We denote partial derivatives of 𝜌 (𝑥, 𝑡) with respect to 𝑥, 𝑡 as

𝜌𝑥 and 𝜌𝑡 , respectively. It is the same for 𝑉 and 𝑢. The population

dynamics can be captured by a Fokker-Planck equation (FPK):

(FPK) 𝜌𝑡 + (𝜌 · 𝑢)𝑥 = 0, (4)

which describes the evolution of population density 𝜌 (𝑥, 𝑡) accord-
ing to the control 𝑢 (𝑥, 𝑡) of agents. The population density starts

from initial density 𝜌 (𝑥, 0) ≡ 𝜌 (𝑥),∀𝑥 ∈ X. Equation 3 can be

reformulated as a Hamilton-Jacobi equation:

(HJB) 𝑉𝑡 +min

𝑢
{𝑓 (𝑢, 𝜌) + 𝑢𝑉𝑥 } = 0, (5)

which captures the relationship between the cost 𝑉 (𝑥, 𝑡) and the

agent’s control 𝑢 (𝑥, 𝑡).
We reformulate the MFG system as:

[ST-MFG] :

min

𝑢

∫ 𝑇

𝑡

𝑓 (𝑢 (𝑥 (𝜏), 𝜏), 𝜌 (𝑥 (𝜏), 𝜏))𝑑𝜏 +𝑉 (𝑥 (𝑇 ),𝑇 ),∀(𝑥, 𝑡) ∈ X × T

𝑠 .𝑡 . ¤𝑥 (𝑡) = 𝑢 (𝑥 (𝑡), 𝑡), 𝑥 (𝑡) ≡ 𝑥,∀𝑡 ∈ T , (agent dynamics)

𝜌𝑡 + (𝜌 · 𝑢)𝑥 = 0,∀(𝑥, 𝑡) ∈ X × T , (population dynamics)

𝜌 (𝑥, 0) ≡ 𝜌 (𝑥),∀𝑥 ∈ X, (initial density)
𝑉 (𝑥,𝑇 ) ≡ 𝑉 (𝑥),∀𝑥 ∈ X. (terminal cost) (6)
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Denote the equilibrium solution by 𝜌∗ (𝑥, 𝑡) and 𝑢∗ (𝑥, 𝑡). The
optimal velocity field 𝑢∗ (𝑥, 𝑡) is our primary focus and will thus

be referred as the mean field equilibrium (MFE) in the subsequent

analysis.

The ST-MFG can be categorized based on the following critera:

(1) Non-stationarity: Note that ST-MFG is non-stationary, or

“evolutive MFG" [30]. The policy of the representative agent

and the mean field state evolve as time progresses.

(2) Finite time horizon: We study ST-MFG with finite time hori-

zon. It is challenging to solve ST-MFG with infinite time

horizon. This is because for non-stationary MFGs with in-

finite time horizon, the value function 𝑉 (𝑥,∞) could go to

infinity [29]. We leave this for future work.

(3) First-order MFG: Since agents like autonomous cars or robots

may not appear or disappear randomly in a conserved sys-

tem, there is no stochasticity in the FPK equation. Thus,

The FPK equation is reduced to a first-order deterministic

continuity/transport equation.

2.3 Solution Concepts
Definition 2.2. Mean Field Equilibrium (MFE)
In ST-MFG, (𝑢∗ (𝑥, 𝑡), 𝜌∗ (𝑥, 𝑡)),∀(𝑥, 𝑡) ∈ X × T is called an MFE if

following conditions hold:


(𝐹𝑃𝐾) 𝜌∗𝑡 + (𝜌∗ · 𝑢∗)𝑥 = 0 (7a)

(HJB) 𝑉 ∗𝑡 + 𝑢∗𝑉 ∗𝑥 + 𝑓 (𝑢∗, 𝜌∗) = 0 (7b)

𝑢∗ = 𝑔∗𝑝 (𝑉 ∗𝑥 , 𝜌∗) (7c)

where 𝑔∗𝑝 (𝑉𝑥 , 𝜌) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝 {𝑓 (𝑝, 𝜌) + 𝑝𝑉𝑥 },𝑉𝑥 ∈ R. For simplicity,

we omit discussion on solution properties. Readers can refer to

[23, 24] for more details.

Definition 2.3. Monotone MFG
An MFG is called a monotone MFG [37] is following conditions

holds:{
(𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒) 𝑓 (𝑢, 𝜌) = ˜𝑓 (𝑢) + ¯𝑓 (𝜌) (8a)

(Monotone) ∀𝜌, 𝜌′, (𝜌 − 𝜌′) · ( ¯𝑓 (𝜌) − ¯𝑓 (𝜌′)) ⩾ 0 (8b)

Equation 8a indicates that the cost function 𝑓 (𝑢, 𝜌) has a separable
structure. There is no cross product between 𝑢 and 𝜌 .

In this paper, we also consider another structure of the cost func-

tion: non-separable cost. We introduce a cross product into the cost

functional between the agent action 𝑢 and the population density

𝜌 to reflect the congestion effect, demonstrating the punishment to

the agents who select the same actions or end up in close proximity

under a policy. The more the agents stay in the same neighborhood,

the more congested that area is. This also renders the ST-MFG not

as a potential game, and thus, existing ML methods to solve poten-

tial MFGs do not apply. We investigate ST-MFGs with three cost

functions in numerical results (Section 6) where one is a Monotone

MFG and the remaining two are not Monotone MFGs.

2.4 Numerical Method
To solve ST-MFG, [24] discretized the spatiotemporal domain X ×
T by solution granularity Δ𝑥 and Δ𝑡 according to the Courant

Friedrichs Lewy (CFL) condition where 𝑢𝑚𝑎𝑥 · Δ𝑡 ⩽ Δ𝑥 , and then

solved a system of equations in MATLAB. However, the numerical

method encounters several issues: First, it cannotmeet a satisfactory

resolution in time and space. A small spatiotemporal granularity

Δ𝑥 and Δ𝑡 would significantly increase the problem scale, making

the ST-MFG not solvable. The numerical method with satisfactory

resolution only works in small-size domains. Second, the structure

of cost functions may impact the performance of numerical meth-

ods to find game equilibria. To tackle these challenges, this paper

leverages learning frameworks to solve ST-MFG.

3 RL-PIDL FRAMEWORK OVERVIEW
In this section, we propose a joint framework of RL and PIDL

to learn ST-MFG. In this framework, the evolution of population

density (i.e., mean-field state) is approximated by physics-informed

neural networks (PINN) while the decision making of the generic

agent is captured by a single-agent RL module.

Figure 1 demonstrates the working flow of the RL-PIDL method:

Three neural networks 𝜌-Net, 𝑢-Net and 𝑉 -Net are utilized to rep-

resent the population density, the agent’s control and cost, respec-

tively. 𝑢-Net and 𝑉 -Net are actor and critic networks in a single-

agent RL module given the population distribution 𝜌 and agent

dynamics in the environment. 𝜌-Net is approximated by a PIDL

module given the physical rule (FPK) regarding the relationship

between the evolution of population and the agent control. The

RL and PIDL modules internally depend on each other. The policy

learning of the generic agent triggers the update of system dynam-

ics, which in turn influences the learning process of the agent. A

fictitious play module is adopted to stabilize policy learning. We

now introduce RL and PIDL modules separately.

3.1 RL for Agent Optimal Control
Given the population density 𝜌 (𝑥, 𝑡),∀(𝑥, 𝑡) ∈ X × T (mean-field

state), the dynamic control problem of the generic agent can be

formulated into the following RL scheme.

(1) State 𝑠 ∈ S: The state of the representative agent 𝑠 ≡ (𝑥, 𝑡)
indicates that at time 𝑡 , the agent arrives at position 𝑥 .

(2) Action 𝑢 ∈ U: 𝑢 (𝑥, 𝑡) is the control of the agent at position
𝑥 by time 𝑡 .U ≡ [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 ]. In this paper, we assume the

agent adopts a deterministic policy. The 𝑢-Net is a determin-

istic policy network (Figure 1), parameterized by 𝜔 . In this

work, we apply Deep Deterministic Policy Gradient (DDPG)

method to the RL module.

(3) Transition 𝑠 → 𝑠′: The agent’s action triggers the state

transition (𝑥, 𝑡) → (𝑥 ′, 𝑡 ′), where 𝑥 ′ = 𝑥 + 𝑢 (𝑥, 𝑡) · 𝛿𝑡 , 𝑡 ′ =
𝑡 + 𝛿𝑡 . 𝛿𝑡 is the time interval in the decision making process

of the agent.

(4) Reward 𝑟 : The reward is the congestion cost incurred by

interaction with population in the system, i.e., 𝑟 (𝑢, 𝜌) =

𝑓 (𝑢 (𝑥, 𝑡), 𝜌 (𝑥, 𝑡))𝛿𝑡 .
(5) Value function 𝑉 : The value function 𝑉 (𝑥, 𝑡) represents

the total cost of the agent starting from location 𝑥 by time 𝑡 .

𝑉 (𝑥, 𝑡) is captured the critic network 𝑉 -Net, parameterized

by [. Mathematically,

𝑉 ∗ (𝑥, 𝑡) = min

𝑢
[𝑟 (𝑢 (𝑥, 𝑡), 𝜌 (𝑥, 𝑡)) +𝑉 ∗ (𝑥 ′, 𝑡 ′)] (9)
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Figure 1: RL-PIDL Framework

where 𝑉 ∗ is the minimum cost of the agent.

3.2 PIDL for Population Density Propagation
Wenow introduce physics-informed deep learning (PIDL) to approx-

imate population dynamics in the MFG system. The PIDL module

adopts a hybrid deep learning framework, which combines both

model-driven and data-driven neural networks [39]. The neural

network architecture in PIDL to capture system dynamics is illus-

trated in Figure 1. 𝜌-Net is parameterized by \ . The input is (𝑥, 𝑡)
and output is the population density at location 𝑥 by time 𝑡 .

The training of 𝜌-Net is guided by two parts in the loss function:

residual and the mean square errors (MSE). The residual (marked

in red) leverages physical rules that exist in the dynamic system

while MSE (marked in blue) is obtained by the gap between PINN

and observed data points.

In ST-MFG, the evolution of population state given the control

of agents 𝑢 (𝑥, 𝑡) follows the FPK equation (4), which indicates the

physical rule regarding the spatiotemporal distribution of popula-

tion. We use the physical rule to guide the training of 𝜌\ (𝑥, 𝑡) by
the following residual:

𝑞\ (𝑥, 𝑡) =
𝜕𝜌\ (𝑥, 𝑡)

𝜕𝑡
+ 𝜕[𝜌\ (𝑥, 𝑡)𝑢 (𝑥, 𝑡)]

𝜕𝑥
(10)

The PINN calculates the residual 𝑞\ (𝑥, 𝑡). When 𝜌\ (𝑥, 𝑡) becomes

close to 𝜌 (𝑥, 𝑡) satisfying the FPK equation, the residual gets close

to zero. 𝑢 (𝑥, 𝑡) represents the average policy of the agent obtained

by historical policies in the fictitious play module.

The observed data in the PIDL framework comes from the initial

distribution of population 𝜌 (𝑥, 0) ≡ 𝜌 (𝑥),∀𝑥 ∈ X (marked in blue

circles in Figure 1). The training of 𝜌\ (𝑥, 𝑡) based on observed

data follows the traditional supervised learning scheme. The mean

square errors (MSEs) are:

MSE𝑜 =
1

𝑁𝑜

𝑁𝑜∑︁
𝑘=1

(𝜌\ (𝑥𝑘𝑜 , 0) − 𝜌 (𝑥𝑘𝑜 ))2, 𝑥𝑘𝑜 ∈ X (11)

where 𝑁𝑜 is the size of data sample. 𝜌 (𝑥𝑘𝑜 , 0) is the observed popu-

lation density at position 𝑥𝑘𝑜 by time 0.

The loss function used in the PIDL module is computed as:

Loss = 𝛽𝑜MSE𝑜 + 𝛽𝑐𝑟𝑐 (12)

where 𝛽𝑜 and 𝛽𝑐 are hyperparameters, representing the weight

of MSE and residual in the loss function, respectively. 𝛽𝑜MSE𝑜

measures the data discrepancy and 𝛽𝑐𝑟𝑐 denotes the physical dis-

crepancy in the training of PIDL. Note that the observed data can

only be sampled from the state space when 𝑡 = 0 given the fact that

the initial condition of the FPK equation is known.

3.3 Fictitious Play for Policy Stabilization
Fictitious play (FP) is utilized to stabilize policy learning. We add

an FP buffer between the policy and population network. The FP

buffer is used to store all historical policies from the actor. The

residual (Equation 10) for the training of the population network is

calculated based on the average policy from the FP buffer. Mathe-

matically,

𝑢 (𝑥, 𝑡) =
𝑖∑︁
𝑗=1

𝑢𝜔 ( 𝑗 ) (𝑥, 𝑡),∀(𝑥, 𝑡) ∈ X × T (13)

where 𝑢𝜔 ( 𝑗 ) (𝑥, 𝑡) is the agent policy (i.e., 𝑢-Net) at the 𝑗 th iteration

during the training process.

3.4 Learning Algorithm
In this subsection, we develop a learning algorithm where the train-

ing of 𝜌-Net in the PIDL module is coupled with 𝑢-Net and 𝑉 -Net

in the RL module. We first discuss the solution granularity in the

learning scheme.

Solution granularity
Weuse finite difference based on the CFL condition (i.e.,𝑢𝑚𝑎𝑥Δ𝑡 ⩽

Δ𝑥 ) instead of autograd mechanism, to denote the partial derivative

information of neural networks and calculate residuals for PIDL.
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Therefore, equation 10 can be formulated as

𝑞\ (𝑥, 𝑡) =
𝜌\ (𝑥, 𝑡 + 𝜙Δ𝑡) − 𝜌\ (𝑥, 𝑡)

𝜙Δ𝑡
(i.e., 𝜌𝑡 )

+ 𝜌\ (𝑥, 𝑡)𝑢 (𝑥, 𝑡) − 𝜌\ (𝑥 − 𝜙Δ𝑥, 𝑡)𝑢 (𝑥 − 𝜙Δ𝑥, 𝑡)
𝜙Δ𝑥

(i.e., (𝜌𝑢)𝑥 )
(14)

where Δ𝑥 and Δ𝑡 represent the spatiotemporal granularity. In this

work, we assume 𝑢𝑚𝑎𝑥 = 1 and Δ𝑥 = Δ𝑡 . 𝜙 ∈ [1, ¯𝜙] is a random
step size when calculating partial derivatives in the residual, which

can help stabilize the training of the PINN without sampling too

many states 𝑠 = (𝑥, 𝑡) from state space.

Algorithm 1 MFG-RL-PIDL

1: Initialization: Population network 𝜌-Net: 𝜌\ (0) (𝑠); Actor net-
work 𝑢-Net: 𝑢𝜔 (0) (𝑠) and critic network 𝑉 -Net: 𝑉[ (0) (𝑠).

2: for 𝑖 ← 0 to 𝐼 do
3: Sample a batch of states s from state space X × T ;
4: for each state 𝑠𝑙 in s do —RL - the representative agent
5: Select 𝑢 according 𝑢𝜔 (𝑖 ) (𝑠𝑙 );
6: Obtain 𝜌 according 𝜌\ (𝑖 ) (𝑠𝑙 );
7: Execute 𝑢 and observe reward 𝑟 (𝑢, 𝜌);
8: Update state 𝑠𝑙 → 𝑠′

𝑙
;

9: Obtain value function: 𝑉[ (𝑖 ) (𝑠),𝑉[ (𝑖 ) (𝑠′).
10: end for
11: Calculate the advantage (Equation 15);

12: Store the actor network 𝑢𝜔 (𝑖 ) (𝑠) into buffer. —FP
13: Compute 𝑢 (Equation 13);

14: Obtain𝑀𝑆𝐸𝑜 (Equation 11); —PIDL - Population
15: Obtain residual (Equation 14 and 16);

16: Update 𝜌-Net, 𝑢-Net and 𝑉 -Net and obtain 𝜌\ (𝑖+1) (𝑠),
𝑢𝜔 (𝑖+1) (𝑠) and 𝑉[ (𝑖+1) (𝑠);

17: Check convergence (Equation 17).

18: end for
19: Output 𝑢, 𝜌

We now look into the proposed learning algorithm [MFG-RL-

PIDL], which is summarized in Algorithm (1). We first initialize

𝜌-Net, 𝑢-Net and 𝑉 -Net, parameterized by \ (0) , 𝜔 (0) and [ (0) , re-
spectively. During the 𝑖th iteration of the training process, we first

sample a batch of states s from state space X × T . For simplicity,

we assume agents are moving in a 1-dimension space X = [0, 𝑋 ].
We divide X and T into 𝑛 same pieces:

0 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑛 = 𝑋,

0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑇,

A batch of states s with size 𝑛 × 𝑛 is constructed as follows: ∀𝑙, 𝑘 =

1, 2, ..., 𝑛, (𝑥𝑙 , 𝑡𝑘 ) is sampled from [𝑥𝑙−1
, 𝑥𝑙 ] × [𝑡𝑘−1

, 𝑡𝑘 ] and we as-

sume 𝑥𝑙 and 𝑡𝑘 are uniformly distributed on [𝑥𝑙−1
, 𝑥𝑙 ] and [𝑡𝑘−1

, 𝑡𝑘 ].
For each state 𝑠𝑙 in the batch, the agent’s action generated by 𝑢-Net

triggers the state transition 𝑠𝑙 → 𝑠
′

𝑙
. Accordingly, the advantage in

the RL module is calculated as:

1

K(s)

K(s)∑︁
𝑙=1

[𝑟 (𝑢 (𝑠𝑙 ), 𝜌 (𝑠𝑙 )) +𝑉[ (𝑠′𝑙 ) −𝑉[ (𝑠𝑙 )] (15)

where K(s) is the batch size and 𝑠𝑙 ∈ s. 𝑠
′

𝑙
, 𝑙 = 1, ...,K(s) is the new

state after the agent selects her action at state 𝑠𝑙 . A fictitious play

buffer is utilized to store historical policy networks. We calculate

the average policy based on the fictitious play buffer and obtain the

MSE and residual in the loss function. The residual of 𝜌-net in the

PIDL module based on the batch of states is calculated as:

1

K(s)

K(s)∑︁
𝑙=1

𝑞\ (𝑠𝑙 ) (16)

We then update 𝜌-Net, 𝑢-Net and 𝑉 -Net according to loss function,

policy and value gradient, respectively. We check the following

convergence conditions for population-agent pair (𝜌,𝑢):

1

𝑁
|
𝑁∑︁
𝑘=1

𝑢𝜔 (𝑖 ) (𝑥
𝑘 , 𝑡𝑘 ) −

𝑁∑︁
𝑘=1

𝑢𝜔 (𝑖 ) (𝑥
𝑘 , 𝑡𝑘 ) | < 𝜖𝑢

1

𝑁
|
𝑁∑︁
𝑘=1

𝜌\ (𝑖 ) (𝑥
𝑘 , 𝑡𝑘 ) −

𝑁∑︁
𝑘=1

𝜌\ (𝑖−1) (𝑥𝑘 , 𝑡𝑘 ) | < 𝜖𝜌 (17)

The training process moves on to the next iteration till the conver-

gence conditions hold. The algorithm is implemented in PyTorch.

4 PURE PIDL FRAMEWORK OVERVIEW

Figure 2: Pure PIDL Framework

In this section, we propose another learning framework by lever-

aging the PIDL method alone. This framework adopts two PINNs:

𝜌-Net and 𝑉 -Net for FPK and HJB equations, respectively. Figure 2

demonstrates the working flow of the pure PIDL framework. The

left 𝜌-Net approximates the population propagation and the right𝑉 -

Net approximates the cost of the generic agent given the population

distribution and agent control over the environment.

4.1 PIDL for Population Density Propagation
In the pure PIDL framework, 𝜌-Net works as same as the PIDL

module in Section 3.2. We omit discussion for simplicity.

4.2 PIDL for Agent Optimal Control
In ST-MFG, the cost of the generic agent follows the HJB equation

(7b and 7c). We use the physical rule to guide the training of𝑉[ (𝑥, 𝑡)
by the following residual:

𝑞[ (𝑥, 𝑡) =
𝜕𝑉[ (𝑥, 𝑡)

𝜕𝑡
+ 𝑢

𝜕𝑉[ (𝑥, 𝑡)
𝜕𝑥

+ 𝑓 (𝑢, 𝜌) (18)
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When 𝑉[ (𝑥, 𝑡) becomes close to 𝑉 (𝑥, 𝑡) satisfying the HJB equa-

tion, the residual gets close to zero. The observed data in the

PIDL framework comes from the condition about terminal cost

𝑉 (𝑥,𝑇 ) ≡ 𝑉 (𝑥),∀𝑥 ∈ X (marked in blue circles in Figure 2). The

mean square errors (MSEs) are:

MSE𝑜 =
1

𝑁𝑜

𝑁𝑜∑︁
𝑘=1

(𝑉[ (𝑥𝑘𝑜 ,𝑇 ) −𝑉 (𝑥𝑘𝑜 ))2, 𝑥𝑘𝑜 ∈ X (19)

The loss function used to train the 𝑉 -Net consists of the MSE and

residual defined in Equation 18 and 19.

Remark. According to Equation 7c (𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝 {𝑓 (𝑝, 𝜌) + 𝑝𝑉𝑥 }),
the agent control𝑢 can be directly obtained by the cost function and

the partial derivative 𝑉𝑥 of 𝑉 -Net. We store 𝑢 (𝑖 ) at the 𝑖th iteration

into the fictitious play module during the training process.

4.3 Learning Algorithm
We briefly introduce the learning algorithm for the pure PIDL frame-

work, which is summarized in Algorithm (2). We first initialize 𝜌-

Net and𝑉 -Net, parameterized by \ (0) and[ (0) , respectively. During
the 𝑖th iteration of the training process, we first sample a batch of

states s from state space X × T . The residual and MSE for 𝑉 − 𝑛𝑒𝑡
are calculated according to Equation 18 and 19, respectively. We

calculate the average policy based on the fictitious play buffer and

then obtain the residual andMSE for 𝜌-Net. 𝜌-Net and𝑉 -Net are up-

dated according to their loss functions. We check the convergence

according to Equation 17.

Algorithm 2 MFG-Pure-PIDL

1: Initialization: 𝜌-Net: 𝜌\ (0) (𝑠) and 𝑉 -Net: 𝑉[ (0) (𝑠).
2: for 𝑖 ← 0 to 𝐼 do
3: Sample a batch of state s from X × T ;
4: Obtain𝑀𝑆𝐸𝑜 (Equ 19) and residual (Equ 18); — PIDL-𝑉 -Net

5: Calculate 𝑢 (𝑖 ) (Equ 7c);

6: Store 𝑢 (𝑖 ) into buffer and compute 𝑢; — FP

7: Obtain𝑀𝑆𝐸𝑜 and residual for 𝜌-Net — PIDL-𝜌-Net

8: Update 𝜌-Net and 𝑉 -Net according to loss function and

obtain 𝜌\ (𝑖+1) (𝑠) and 𝑉[ (𝑖+1) (𝑠);
9: Check convergence.

10: end for
11: Output 𝑢, 𝜌

5 LINKAGE BETWEEN TWOMETHODS
The difference between two proposed frameworks lies in how to

denote the HJB equation in the MFG system. The RL-PIDL module

leverages an agent-based learning scheme to study the optimal

control problem while the PIDL module adopts a PINN to approxi-

mate the HJB equation. In this section, we investigate the linkage

between these two methods.

Proposition 5.1. If the spatiotemporal granularity satisfies CFL

condition (i.e., 𝑢𝑚𝑎𝑥Δ𝑡 ⩽ Δ𝑥 ), the residual𝑉𝑡 +𝑢𝑉𝑥 + 𝑓 (𝑢, 𝜌) = 0 of

the PINN is equivalent to 𝑟 +𝑉 (𝑠′)−𝑉 (𝑠) = 0 where 𝑟 +𝑉 (𝑠′)−𝑉 (𝑠)
is the advantage for the critic network in the RL module.

Proof.

𝑟 +𝑉 (𝑠′) −𝑉 (𝑠) = 0

→𝑉 (𝑥, 𝑡) = 𝑓 (𝑢, 𝜌)Δ𝑡 +𝑉 (𝑥 ′, 𝑡 ′)
→𝑉 (𝑥, 𝑡) = 𝑓 (𝑢, 𝜌)Δ𝑡

+𝑉 (𝑥, 𝑡 + Δ𝑡) + 𝑢 Δ𝑡

Δ𝑥
[𝑉 (𝑥 + Δ𝑥, 𝑡 + Δ𝑡) −𝑉 (𝑥, 𝑡 + Δ𝑡)]︸                                                                  ︷︷                                                                  ︸

Approximate𝑉 (𝑥 ′, 𝑡 ′ ) by linear interpolation [24]

0 ⩽ 𝑢 Δ𝑡
Δ𝑥 ⩽ 1 holds because 𝑢 Δ𝑡

Δ𝑥 ⩽ 𝑢𝑚𝑎𝑥
Δ𝑡
Δ𝑥 ⩽ 1 (CFL condition).

We then have

𝑉 (𝑥, 𝑡) −𝑉 (𝑥, 𝑡 + Δ𝑡)
Δ𝑡

= 𝑓 (𝑢, 𝜌) + 𝑢𝑉 (𝑥 + Δ𝑥, 𝑡 + Δ𝑡) −𝑉 (𝑥, 𝑡 + Δ𝑡)
Δ𝑥

When Δ𝑡,Δ𝑥 → 0, −𝑉𝑡 = 𝑓 (𝑢, 𝜌) + 𝑢𝑉𝑥 . Therefore, Proposition 5.1

holds. □

Remark. (1) Proposition 5.1 shows that the critic network in

the RL module works as same as the 𝑉 -net in the PIDL mod-

ule. It means that the RL module captures the physical rule

regarding the relationship between the agent control and

total cost.

(2) The RL-PIDL framework can be replaced by the pure PIDL

framework if the dynamics are known. With Equation 7c,

the control of the generic agent can be directly obtained by

𝑉 -Net in the PIDLmodule without utilizing a policy network,

which speeds up the training process.

6 NUMERICAL EXPERIMENTS
In this section, we apply proposed methods to autonomous driving

system. We first introduce an ST-MFG regarding the speed control

of autonomous vehicles (AVs) and implement algorithms [MFG-

RL-PIDL] and [MFG-Pure-PIDL] on the speed control problem

with different cost structures. We then make a comparison of the

numerical method (Section 2.4) and our methods.

6.1 Problem Statement

Figure 3: Speed control for AVs

In Fogure 3, we consider a generic AV staring from position 𝑥 at time

𝑡 . The vehicle’s speed control is denoted by 𝑢 and the goal of the

generic AV is to minimize total travel cost 𝑉 (𝑥, 𝑡),∀(𝑥, 𝑡) ∈ X × T
by selecting optimal speed. The decision making of the generic AV

follows the HJB equation (5). When all cars follow the optimal speed

control, the aggregated density distribution 𝜌 (𝑥, 𝑡) (i.e., population
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state) evolves. Density 𝜌 follows the FPK equation (4), which is also

called continuity equation [24], demonstrating the road density in

traffic flowmodels. In this work, we adopts a ring road with length 1

(i.e., X = [0, 1]) as the traffic environment. It means positions 𝑥 = 0

and 𝑥 = 1 are the same. Vehicles are allowed to keep moving along

the ring road until time 𝑇 . The ring road scenario can be easily

extended to any road segments/links. We implement our methods

on the ST-MFG with three cost functions:

(1) LWR: The Lighthill-Whitham-Richards (LWR) model is a

traditional traffic flow model where the driving objective is

to maintain some desired speed. The cost function is:

𝑓 (𝑢, 𝜌) = 1

2

(𝑈 (𝜌) − 𝑢)2 (20)

where𝑈 (𝜌) is an arbitrary desired speed function with re-

spect to density 𝜌 . It is straightforward to find that the ana-

lytical solution of the LWR model is 𝑢 = 𝑈 (𝜌), which means

at MFE, vehicles maintain the desired speed on roads. We

denote the ST-MFG as [ST-MFG-LWR]

(2) Separable: The separable cost function can be written as the

sum of two univariate functions with respect to 𝑢 and 𝜌 :

𝑓 (𝑢, 𝜌) = 1

2

( 𝑢

𝑢𝑚𝑎𝑥
)2︸       ︷︷       ︸

energy

− 𝑢

𝑢𝑚𝑎𝑥︸︷︷︸
efficiency

+ 𝜌

𝜌 𝑗𝑎𝑚︸︷︷︸
safety

. (21)

where 𝜌 𝑗𝑎𝑚 is the jam density. The first term represents

AVs’ kinetic energy. The second term denotes the driving

efficiency by speed magnitude. The third term is driving

safety using a congestion penalty on density 𝜌 , implying

that AVs avoid to stay in high density areas. We denote the

ST-MFG as [ST-MFG-Sep]

(3) Non-separable: The cost function is

𝑓 (𝑢, 𝜌) = 1

2

( 𝑢

𝑢𝑚𝑎𝑥
)2︸       ︷︷       ︸

energy

− 𝑢

𝑢𝑚𝑎𝑥︸︷︷︸
efficiency

+ 𝑢𝜌

𝑢𝑚𝑎𝑥𝜌 𝑗𝑎𝑚︸       ︷︷       ︸
safety

. (22)

The difference between non-separable and separable costs

is the cross product of density and velocity. It means AVs

tend to decelerate in high density areas and accelerate in low

density areas. We denote the ST-MFG as [ST-MFG-Non-Sep]

Proposition 6.1. [ST-MFG-Sep] is a Monotone MFG.

Proof. The cost function in [ST-MFG-Sep] has a separable struc-

ture (Definition 2.3):

˜𝑓 (𝑢, 𝜌) = 1

2

( 𝑢

𝑢𝑚𝑎𝑥
)2 − 𝑢

𝑢𝑚𝑎𝑥
, ¯𝑓 (𝑢, 𝜌) = 𝜌

𝜌 𝑗𝑎𝑚

We have ∀𝜌, 𝜌′, (𝜌 − 𝜌′) ( ¯𝑓 (𝑢, 𝜌) − ¯𝑓 (𝑢, 𝜌′)) = 1

𝜌 𝑗𝑎𝑚
(𝜌 − 𝜌′)2 ⩾ 0.

Therefore, Proposition 6.1 holds. Note that both [ST-MFG-LWR] and

[ST-MFG-Non-Sep] contain the cross product of 𝑢 and 𝜌 , which do

not satisfy the separable structure defined in Monotone MFG. □

6.2 Numerical Results
Figure 4 demonstrates the algorithm performance to solve [ST-MFG-

LWR]. We assume𝑈 (𝜌) = 1 − 𝜌 . Solution granularity is Δ𝑥 = Δ𝑡 =
10
−3
. The x-axis represents the iteration index during the training.

Figure 4a and 4b plot the convergence gap (i.e., |𝜌 (𝑖 )−𝜌 (𝑖−1) |, |𝑢 (𝑖 )−

𝑢 (𝑖−1) |). MFE solved by the numerical method (Section 2.4) is used

as our benchmark.

(a) Convergence gap ( Pure-PIDL) (b) Convergence gap ( RL-PIDL)

(c) Loss ( Pure-PIDL) (d) Loss ( RL-PIDL)

Figure 4: Algorithm performance on [ST-MFG-LWR]

(a) Convergence gap ( Pure-PIDL) (b) Convergence gap ( RL-PIDL)

(c) Loss ( Pure-PIDL) (d) Loss ( RL-PIDL)

Figure 5: Algorithm performance on [ST-MFG-Sep]

(a) Convergence gap ( Pure-PIDL) (b) Convergence gap ( RL-PIDL)

(c) Loss ( Pure-PIDL) (d) Loss ( RL-PIDL)

Figure 6: Algorithm performance on [ST-MFG-Non-Sep]
Figure 4c and 4d visualize the closeness between the benchmark

and results at each iteration (i.e., |𝜌 (𝑖 ) − 𝜌∗ |, |𝑢 (𝑖 ) − 𝑢∗ |). Figure 5
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demonstrates the algorithm performance to solve [ST-MFG-Sep].

Parameters in the cost function are: 𝑢𝑚𝑎𝑥 = 1, 𝜌 𝑗𝑎𝑚 = 1. Solution

granularity is Δ𝑥 = Δ𝑡 = 10
−3

. Figure 6 demonstrates the algorithm

performance on [ST-MFG-Non-Sep]. Parameters remain the same

as [ST-MFG-Sep]. It is shown that the pure PIDL method is faster

to train than the RL-PIDL method.

Figures 7, 8, 9 demonstrate MFE (𝜌∗, 𝑢∗) of [ST-MFG-LWR],

[ST-MFG-Sep] and [ST-MFG-Non-Sep], respectively. The x-axis

represents position 𝑥 and the y-axis represents 𝑡 . Compared to [ST-

MFG-LWR], the initial density in [ST-MFG-Sep] and [ST-MFG-Non-

Sep] quickly dissipate. The density of [ST-MFG-Non-Sep] keeps

smooth and no wave forms.

(a) Density-𝜌 (b) Speed-𝑢

Figure 7: MFE of [ST-MFG-LWR]

(a) Density-𝜌 (b) Speed-𝑢

Figure 8: MFE of [ST-MFG-Sep]

(a) Density-𝜌 (b) Speed-𝑢

Figure 9: MFE of [ST-MFG-Non-Sep]

In Table 1, we make a comparison of different methods with two

solution granularities: Δ𝑡 = Δ𝑥 = 10
−3

and Δ𝑡 = Δ𝑥 = 10
−6
. The

computational time of our learning methods is the training time.

The numerical method does not work on ST-MFGs with solution

granularity Δ𝑥 = Δ𝑡 = 10
−6

because the size of state space X × T
becomes 10

6 ·10
6
. Our methods provide MFEs with better resolution

in time and space.

7 CONCLUSION
In this study, we establish a hybrid framework of RL and PIDL

to learn MFGs, which has a generalization capability to handle

large multi-agent systems in engineering and robotics application.

We propose two methods: RL-PIDL and pure PIDL, and develop

algorithms to solve ST-MFGs. Ourmethods are applied toMonotone

and Non-monotone MFGs in autonomous driving systems. The

overall findings include: (1) The joint framework of RL and PIDL

can be replaced by the pure PIDL framework when the dynamics

in the environment are known. The pure PIDL method is faster to

train than the RL-PIDL method. (2) Both learning frameworks can

handle ST-MFGs with finer solution granularity while numerical

methods cannot. Our methods provide MFE with a satisfactory

resolution in time and space.

Δ𝑡,Δ𝑥 Cost Metric Numerical PIDL RL + PIDL

1

10
3

LWR

Time 10.23 39.17 173.06

Iterations 80 200 500

Gap

𝑢 4.37 · 10
−6

4.98 · 10
−4

6.16 · 10
−4

𝜌 2.59 · 10
−16

1.35 · 10
−4

2.04 · 10
−4

Loss

𝑢
-

6.44 · 10
−3

2.94 · 10
−3

𝜌 2.97 · 10
−3

4.01 · 10
−4

Non-

sep

Time 12.64 85.93 193.12

Iterations 80 300 500

Gap

𝑢 1.26 · 10
−6

1.02 · 10
−3

7.85 · 10
−4

𝜌 1.76 · 10
−16

1.25 · 10
−4

4.57 · 10
−4

Loss

𝑢
-

4.36 · 10
−4

4.29 · 10
−3

𝜌 1.37 · 10
−3

1.46 · 10
−3

Sep

Time 11.57 57.66 171.42

Iterations 80 200 500

Gap

𝑢 3.98 · 10
−6

1.46 · 10
−3

4.11 · 10
−4

𝜌 2.37 · 10
−16

2.39 · 10
−4

4.75 · 10
−4

Loss

𝑢
-

4.28 · 10
−3

8.30 · 10
−3

𝜌 1.59 · 10
−3

9.06 · 10
−3

1

10
6

LWR

Time

NA

59.46 181.21

Iterations 200 500

Gap

𝑢 1.19 · 10
−3

1.73 · 10
−3

𝜌 7.84 · 10
−5

5.83 · 10
−4

Loss -

Non-

sep

Time 91.15 197.89

Iterations 300 500

Gap

𝑢 3.08 · 10
−3

1.31 · 10
−3

𝜌 6.72 · 10
−4

4.89 · 10
−4

Loss -

Sep

Time 70.08 186.06

Iterations 200 500

Gap

𝑢 2.19 · 10
−3

6.10 · 10
−3

𝜌 3.52 · 10
−4

1.28 · 10
−3

Loss -

Table 1: Comparison of different methods

Our methods can be extended in many ways for future work:

First, the flexibility of our PIDL module provides a more efficient

learning scheme in optimal control problems where agent or system

dynamics can be captured by physical rules. Second, we will study

how to apply proposed learning frameworks to non-stationary

MFGs with infinite time horizon.
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