
Learning from Multiple Independent Advisors in Multi-agent
Reinforcement Learning

Sriram Ganapathi Subramanian

Vector Institute, Toronto, Canada

University of Waterloo, Waterloo, Canada

sriram.subramanian@vectorinstitute.ai

Matthew E. Taylor

University of Alberta, Edmonton, Canada

Alberta Machine Intelligence Institute, Edmonton, Canada

matthew.e.taylor@ualberta.ca

Kate Larson

University of Waterloo

Waterloo, Canada

kate.larson@uwaterloo.ca

Mark Crowley

University of Waterloo

Waterloo, Canada

mcrowley@uwaterloo.ca

ABSTRACT
Multi-agent reinforcement learning typically suffers from the prob-

lem of sample inefficiency, where learning suitable policies involves

the use of many data samples. Learning from external demonstra-

tors is a possible solution that mitigates this problem. However,

most prior approaches in this area assume the presence of a single

demonstrator. Leveraging multiple knowledge sources (i.e., advi-
sors) with expertise in distinct aspects of the environment could

substantially speed up learning in complex environments. This pa-

per considers the problem of simultaneously learning frommultiple

independent advisors in multi-agent reinforcement learning. The

approach leverages a two-level Q-learning architecture, and ex-

tends this framework from single-agent to multi-agent settings. We

provide principled algorithms that incorporate a set of advisors by

both evaluating the advisors at each state and subsequently using

the advisors to guide action selection. We also provide theoretical

convergence and sample complexity guarantees. Experimentally,

we validate our approach in three different test-beds and show

that our algorithms give better performances than baselines, can

effectively integrate the combined expertise of different advisors,

and learn to ignore bad advice.

KEYWORDS
Multi-agent systems; Multi-agent reinforcement learning; Learning

from action advising; Reinforcement learning; Sample efficiency

ACM Reference Format:
Sriram Ganapathi Subramanian, Matthew E. Taylor, Kate Larson, and Mark

Crowley. 2023. Learning fromMultiple Independent Advisors in Multi-agent

Reinforcement Learning. In Proc. of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 10 pages.

1 INTRODUCTION
Reinforcement learning (RL) has been successful in obtaining super-

human performances in a wide range of challenges such as Atari

games [21], Go [30], and simple robotic tasks like opening doors

and learning visuomotor policies [16]. However, it has not been

straightforward to replicate these successes in complex real-world

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

problems. One reason is that these problems often have a multi-

agent structure, where more than one learning agent participates at

the same time, resulting in complicated dynamics. Despite research

advances in multi-agent reinforcement learning (MARL) [10], poor

sample efficiency in existing algorithms is one issue that still causes

significant hurdles in applying MARL to complex problems [28].

Using external sources of knowledge that help in accelerating

MARL training is one solution [2], which has extensive support

in literature [28]. However, most prior work include two limiting

assumptions. First, all demonstrations need to come from a single

demonstrator [4]. In complex MARL environments, since agents

learn policies that meet the twin goals of responding to changing

opponent(s) and environments [18], a learner can likely benefit

from multiple knowledge sources that have expertise in different

parts of the environment or different aspects of the task. Second,

all demonstrations are near-optimal (i.e., from an “expert”) [24]. In

practice, these knowledge sources are typically sub-optimal, and

we broadly refer to them as advisors (to differentiate from experts).

In this paper, we provide an approach that simultaneously lever-

ages multiple different (sub-optimal) advisors for MARL training.

Since the advisors may provide conflicting advice in different states,

an algorithm needs to resolve such conflicts to take advantage of

all the advisors effectively. We propose a two-level learning archi-

tecture and formulate a Q-learning algorithm for simultaneously

incorporating multiple advisors in MARL, improving upon the pre-

vious work of Li et al. [17] in single-agent RL. This architecture

uses one level to evaluate advisors and the other learns values for

actions. Further, we extend our approach to an actor-critic variant

that applies to the centralized training and decentralized execu-

tion (CTDE) setting [20]. Since RL is a fixed point iterative method

[36], we provide convergence results, proving that our Q-learning

algorithm converges to a Nash equilibrium [22] (under common as-

sumptions). Additionally, we provide a detailed finite-time analysis

of our Q-learning algorithm under two different types of learn-

ing rates. Finally, we experimentally study our approach in three

different multi-agent test-beds, in relation to standard baselines.

Since we relax the two limiting assumptions regarding learning

from demonstrators in MARL, our hope is that this approach will

spur successes in real-world applications, such as autonomous driv-

ing [9] and fighting wildfires [13], where MARL methods could use

existing (sub-optimal) solutions as advisors to accelerate training.

Our full paper with appendices is available on arXiv [34].

Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1144

2 RELATEDWORK
This work is most related to the approach of reinforcement learning
from expert demonstrations (RLED) [24]. A well-known RLED tech-

nique is deep Q-learning from demonstrations (DQfD) [11], which
combines a temporal difference (TD) loss, an L2 regularization

loss, and a classification loss that encourages actions to be close

to that of the demonstrator. Another method, normalized actor-
critic (NAC) [14], drops the classification loss and is more robust

under imperfect demonstrations. However, NAC is prone to weaker

performances than DQfD under good demonstrations due to the

absence of classification loss. A different approach, human agent
transfer (HAT) [38], extracts information from limited demonstra-

tions using a classifier, while confidence-based human-agent transfer
(CHAT) [42] improves HAT by using a confidence measurement to

safeguard against sub-optimal demonstrations. A related approach

is the teacher-student framework [39], where a pretrained policy

(teacher) can be used to provide limited advice to a learning agent

(student). Subsequent works expand this framework towards inter-

active learning [1], however, almost all works in this area assume a

moderate level expertise for the teacher. Moreover, these are all in-

dependent methods primarily suited for single-agent environments,

and may not be directly applicable in MARL context.

Furthermore, external knowledge sources have also been used in

MARL [28], where priorworks often assume near optimal experts[25,

44] or are only applicable to restrictive settings, such as fully co-

operative or zero-sum competitive games [23, 29, 30, 41, 47]. Leno

et al. [29] introduced a framework where an agent can learn from

its peers in a shared learning environment, in addition to learning

from the environmental rewards. Here the peers can be sub-optimal,

however this work only applies to cooperative environments. Other

works have provided a cooperative teaching framework for hierar-

chical learning [15, 45]. For multi-agent general-sum environments,

advising multiple intelligent reinforcement agents - decision making
(ADMIRAL-DM) [33] is a Q-learning approach that incorporates

real-time information from a single online sub-optimal advisor.

One limitation of many prior works is the assumption of a single

source of demonstration. In MARL, it may be possible to obtain ad-

visors from different sources of knowledge that provide conflicting

advice. For single-agent settings, Li et al. [17] provides the two-level

Q-learning (TLQL) algorithm that incorporates multiple advisors

in RL. The TLQL maintains two Q-networks, where the first Q-
network (high-level) keeps track of each advisor’s performance and

the second Q-network (low-level) learns the quality of each action.

We improve upon TLQL and make it applicable to MARL settings.

3 BACKGROUND
Stochastic Games: A N -player stochastic game is represented

by a tuple ⟨S,A1, . . . ,AN , r1, . . . , rN , P ,γ ⟩, where S is the state

space, Aj
is the action space of the agent j ∈ {1, . . . ,N }, and r j :

S × A1 × · · · × AN −→ R is the reward function of j. Also, P :

S×A1×· · ·AN −→ Ω(S) is the transition probability that determines

the next state given the current state and the joint action of all

agents, where Ω is a probability distribution. Finally, γ ∈ [0, 1) is
the discount factor. At each time t , all agents observe the global state
s and take a local action aj [27]. The joint action a = {a1, . . . ,aN }
determines the immediate reward r j for j and the next state of

the system s ′. Each agent learns a suitable policy that gives the

best responses to its opponent(s). The policy is denoted by π j :

S −→ Ω(Aj). Let π ≜ (π 1, . . . ,πN) be the joint policy of all agents.

At a state s , the value function of j under the joint policy π is

v
j
π (s) =

∑∞
t=0 γ

t Eπ ,P [r jt |s0 = s,π]. This represents the expected
discounted future reward of j, when all agents follow the policy π
from the state s . Related to the value function, is the action-value

function or the Q-function. The Q-function of agent j, under the

policy π , is given by, Q
j
π (s,a) = r j (s,a) + γ Es ′∼P [v

j
π (s ′)].

The setting we consider is general-sum stochastic games, where

the reward functions of the different agents can be related in any

arbitrary fashion. In this setting, the Nash equilibrium is typically

considered as the solution concept [12], where the joint policy

π∗ = [π 1∗ , . . . ,πN∗] for all s ∈ S and all j satisfies v j (s;π j∗ ,π
−j
∗) ≥

v j (s ;π j ,π−j
∗). Here,π−j

∗ ≜ [π 1∗ , . . . ,π
j−1
∗ ,π

j+1
∗ , . . . ,πN∗] represents

the joint policy of all agents except j. In a Nash equilibrium, each

agent plays the best response to the other agents and any deviation

from this response is guaranteed to be worse off. Further, Hu and

Wellman [12] proved that the Q-updates of an agent j, using the

Nash payoff at each stage eventually converges to its Nash Q value

(Q
j
∗), which is the action-value obtained by the agent j when all

agents follow the joint Nash equilibrium policy for infinite periods.

Two-levelQ-learning: The TLQL algorithm [17] enables single-

agent learning under the simultaneous presence of multiple advi-

sors providing conflicting demonstrations. Here, the challenge is to

determine which advisor to trust in a given state. In this regard, the

TLQL contains two Q-tables, a high-level Q-table (abbreviated as

high-Q) and a low-levelQ-table (abbreviated as low-Q). The high-Q
stores the value of the ⟨s,ad⟩ pair, where ad ∈ AD represents an

advisor (with AD representing the set of all advisors). The high-Q
also stores the value of following the RL policy in addition to each

advisor. The low-Q maintains the value of each state-action pair.

At each time step, the agent observes the state and selects an ad-

visor (or the RL policy) from the high-Q using the ϵ-greedy strategy.
If the high-Q returns an advisor, then the advisor’s recommended

action is performed. If the RL policy is returned, then an action is

executed from the low-Q based on the ϵ-greedy strategy [35]. The

low-Q is updated using the vanilla Q-learning Bellman update [43].

Subsequently, the high-Q is updated using a synchronization step.

In this step, when an advisor’s action is performed, the value of the

advisor in the high-Q is simply assigned the value of that action

from the low-Q . Finally, the high-Q of the RL policy is updated using

the relation hiдhQ(s,RL) = maxa lowQ(s,a). This synchronization
update of high-Q preserves the convergence guarantees, due to the

policy improvement guarantee in single-agent Q-learning [35].
There are two important limitations of TLQL. First, the high-Q

that represents the value of the advisors also depends on the RL

policy through the synchronization step. This Q value represents

the value of taking the action suggested by the advisor at the current

state and then following the RL policy from the next state onward.

This definition is problematic since at the beginning of training,

the RL policy is sub-optimal, and the objective is to accelerate

learning by relying on external advisors and avoid using the RL

policy at all. As advisors are evaluated at each state using the RL

policy, it is likely that the most effective advisor among the set

of advisors is not being followed until the RL policy improves.

Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1145

At this stage, it might be possible to simply follow the RL policy

itself, defeating the purpose of learning from advisors. Second,

the advisors have not been evaluated at the beginning of learning.

Hence, it is impossible to find the most suitable advisor to follow,

from the available advisors. While TLQL simply follows an ϵ-greedy
exploration strategy, this approach could take many data samples

to figure out the right advisor. We address both these limitations.

4 TWO-LEVEL ARCHITECTURE IN MARL
We consider a general-sum stochastic game, where there are a set

of agents that are learning a policy with an objective of providing a

best response to the other agents as well as the environment. Each

agent j can access a finite set of (possibly sub-optimal) independent

advisors AD j
. We use ad j to represent an advisor of j , where ad j ∈

{ad j
1
, . . . ,ad

j
|AD j |}. Each advisor ad j can be queried by j to obtain

an action recommendation at each state of the stochastic game.

These online advisors provide real-time action advice to the agent,

which helps in learning to dynamically adapt to opponents. We

consider a centralized training setting and assume 1) the advisors

are fixed and do not learn, 2) the communication between agents

and their advisors is free, 3) there is no communication directly

between learning agents, 4) the environment is fully observable (i.e.,

an agent can observe the global state, all actions, and all rewards),

and 5) the state and action spaces are discrete. Though we require

these assumptions for theoretical guarantees, we will show that it

is possible to relax a number of these assumptions in practice.

To make TLQL applicable to multi-agent settings, we parame-

terize both the Q-functions with the joint actions, as is common

in practice [18]. Also, we do not maintain the RL policy in the

high-Q table and do not perform a synchronization step. These

steps are no longer needed to preserve the convergence results in

multi-agent settings, since we do not have a policy improvement

guarantee (unlike in single-agent settings) [37]. Instead, we choose

to use the probabilistic policy reuse (PPR) technique [6], where a

hyperparameter (ϵ ′ ∈ [0, 1]) decides the probability of following

any advisor(s) (i.e., using the high-Q) or the agents’ own policy

(i.e., using the low-Q) for action selection, at each time step during

training. This hyperparameter starts with a high value (maximum

dependence on the available advisor(s)) at the beginning of training

and is decayed (linearly) over time. After some finite time step

during training, the value of this hyperparameter goes to 0 (no

further dependence on any advisor(s)) and the agent only uses its

low-Q (own policy) for action selection. This helps in two ways: 1)

in the time limit (t −→ ∞), a learning agent has the possibility of

recovering from poor advising (by learning from the environment),

and 2) eventually the trained agent can be independently deployed

(with no requirement of having access to any advisor(s)).

The general structure of our proposed Multi-Agent Two-Level
Q-Learning (MA-TLQL) algorithm is given in Figure 1. Since we

are in a fully observable setting, like [12], we specify that each

agent maintains copies of the Q-tables of other agents from which

it can obtain the joint actions of other agents for the current state.

If such copies cannot be maintained, agents could use the pre-

viously observed actions of other agents for the joint action as

done in prior works [33, 46]. We use the two-level architecture,

where each agent will maintain a high-Q as well as a low-Q . The

Figure 1: Structure of MA-TLQL, for a representative agent
having access to a set of AD advisor(s)

high-Q provides a value for the ⟨s,a−j ,ad j ⟩ tuples, where a−j =
{a1, . . . ,aj−1,aj+1, . . . ,aN } is the joint action of all agents except

the agent j. This high-Q is a value estimate for the advisor ad j as
estimated by the agent j at the state s and joint action a−j . The
high-Q estimates are updated with an evaluation update given by

hiдhQ
j
t+1(s,a

−j ,ad j) = hiдhQ j
t (s,a−j ,ad j)

+α
(
(r jt + γhiдhQ

j
t (s ′,a′

−j ,ad j) − hiдhQ
j
t (s,a−j ,ad j)

)
,

(1)

where s and s ′ are the states at t and t + 1, and α is the learning

rate. Also, a−j and a′−j are joint actions at s and s ′, respectively.
As described previously, a hyperparameter is used to decide

between choosing to follow an advisor or the RL policy. If the

agent follows an advisor, the high-Q is used to select an advi-

sor using an ensemble selection technique. Let us denote, Q j =

{hiдhQ j (s,a−j ,ad j
1
), . . . ,hiдhQ j (s,a−j ,ad jm)}, to represent the high-

Q estimates of a set of M advisors (with |M | = m) advising the

same action aj to an agent j. Here, ad
j
i represents an advisor i ∈

{1, . . . ,m} of j. Then the value of vote for action aj , at the state s
and the joint action a−j , denoted by V j (s,a−j ,aj), is calculated as

V j (s,a−j ,aj) = maxQ j

+
∑m
i=1,i,argmaxi hiдhQ j (s,a−j ,ad ji)

1

µ(s)hiдhQ
j (s,a−j ,ad ji).

(2)

Here, µ(s) is the number of times the agent has visited the state s .
In Eq. 2, if an action is recommended by more than one advisor, the

value of its vote is a weighted sum of all high-Q estimates of advisors

recommending that action. Each high-Q estimate (except the best

high-Q estimate) is weighted by the reciprocal of the number of

times the respective state is visited. In this way, when a state is

visited many times, the advisor with the best high-Q estimate is

likely to be followed (wisdom of individual). When a state is visited

only a few times, then the action suggested by amajority of advisors

is likely to be selected (wisdom of crowd). From Eq. 2, if an action aj

is recommended by only one advisor, then the value of vote for aj

will be equal to the high-Q estimate of that advisor. After the value

of votes for all actions are calculated, the action with the maximum

value of vote is executed, and the high-Q estimate of the advisor

recommending this action is updated by the agent j using Eq. 1.
If the agent decides to use its RL policy, it uses its low-Q , which

contains a value for the ⟨s,a−j ,aj ⟩ tuples (value for each action). At
each step, the low-Q is updated using a control update as follows:

Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1146

lowQ
j
t+1(s,a

−j ,aj) = lowQ j
t (s,a−j ,aj)

+α
(
r
j
t + γ maxa′j lowQ

j
t (s ′,a′−j ,a′j) − lowQ

j
t (s,a−j ,aj)

)
.

(3)

Now we describe how MA-TLQL addresses the two limitations

of TLQL. The first was the dependence of high-Q on the RL policy

in TLQL. Note, the high-Q in MA-TLQL maintains the Q values

of the advisor themselves, i.e., the value of following the advisor’s

policy from the current state onward (see Eq. 1). Thus, the coupling

between the advisor values and the RL policy is removed (no syn-

chronization). The second was the difficulty in picking the right

advisor in TLQL. MA-TLQL uses an ensemble technique to choose

the advisor during the early stages of learning. In later stages, it

switches to following the best advisor according to the high-Q esti-

mates, which addresses this limitation of TLQL. In Appendix J, we

present a toy example that illustrates the limitations of TLQL.

We provide the complete pseudocode for a tabular implemen-

tation of the MA-TLQL algorithm in Appendix A (Algorithm 1).

Further, we extend this approach to large state-action environments

using a neural network based implementation (Algorithm 2), which

uses a target network and a replay buffer, as in the DeepQ-learning

(DQN) algorithm [21]. We also provide an actor-critic implementa-

tion (Algorithm 3) which is suitable for CTDE [20]. We will refer

to this algorithm as multi-agent two-level actor-critic (MA-TLAC).

In MA-TLAC, each agent has two actors and two critics (high-level

and low-level), where the respective Q-functions serve as the critic

and the corresponding policies serve as the actors. In this CTDE

method, agents can obtain global information (including actions

and rewards of other agents) during training, however, the agents

only require access to its local observation during execution. This

makes our method applicable to partially observable environments

as in Lowe et al. [20]. MA-TLAC applies to continuous state space

environments as well (refer to Appendix A for more details).

5 THEORETICAL RESULTS
We present a convergence guarantee for tabular MA-TLQL and

characterize the convergence rate. For these results, we build on

some prior works that provide several fundamental results on the

nature of stochastic iterative functions [3, 5]. We apply these to MA-

TLQL in general-sum stochastic games using three assumptions

from Hu and Wellman [12], where the first two are standard [36].

Assumption 1. Every s ∈ S and aj ∈ Aj , for every agent j are
visited infinitely often, and the reward function (∀j) stays bounded.

Assumption 2. For all s, t , anda, 0 ≤ αt (s,a) < 1,
∑∞
t=0 αt (s,a) =

∞,
∑∞
t=0[αt (s,a)]2 < ∞.

Assumption 3. The Nash equilibrium is a global optimum or
saddle point in every stage game of the stochastic game.

The third assumption is a restriction on the nature of the stochas-

tic game. Several prior works note that this assumption is restrictive

but needed to theoretically prove the convergence of Q-learning
methods in general-sum stochastic games with two or more agents.

In practice, however, it is still possible to observe convergence of

Q-learning methods when this assumption is violated [12, 33, 46].

Nowwe prove our theoretical results. All theorem statements are

provided here, while the proofs can be found in Appendices B – D.

First, we provide the convergence guarantee for the low-Q . Recall,

the PPR technique guarantees that the MA-TLQL dependence on

high-Q is only until a finite time step during training. After this

step, the agent only uses its low-Q for action selection. As the

convergence result in Theorem 1 is provided in the time limit (t −→
∞), the influence of high-Q can be neglected for this result.

Theorem 1. Given Assumptions 1, 2, 3, the low-Q values of an
agent j converges to its Nash Q value in the limit (t −→ ∞).

Next, we provide sample complexity bounds for the MA-TLQL

algorithm. Instead of explicitly considering the high-Q values, we

specify that the underlying joint policy has a covering time of L.
The covering time specifies an upper bound on the number of time

steps needed for all state-joint action pairs to be visited at least once

starting from any state-joint action pair. Further, since the action

selection is only based on the low-Q values in the limit (t −→ ∞),

we are most interested in the sample complexity of low-Q , where
the dependence on the high-Q is effectively represented by L.

Regarding sample complexity, as is done in [5], we distinguish be-

tween two kinds of learning rates. Consider the following equation

for the low-Q (rewriting Eq. 3 and dropping low for simplicity),

Q
j
t+1(st ,at) =

(
1 − αωt (st ,at))(Q j

t (st ,at)
)

+αωt (st ,at)
(
r
j
t + γ maxa j Q

j
t (st+1,at+1)

)
.

(4)

The value of αωt (s,a) = 1

[#(s,a,t)ω] , where #(s,a, t) is the number

of times until t that the joint action a is performed at s . Here, we
consider ω ∈ (1/2, 1]. The learning rate is linear if ω = 1, and the

learning rate is polynomial if ω ∈ (1/2, 1).
The next theorem provides a lower bound on the number of time

steps needed for convergence in the case of a polynomial learning

rate. From Assumption 1, let us specify that all rewards for the

agent j are bounded by R
j
max

. We consider a variable Q
j
max

, which

denotes the maximum possible low-Q value for the agent j , which is

bounded byQ
j
max
= R

j
max

/(1−γ). Additionally, we also use another
variable β = (1 − γ)/2 to present our upcoming results concisely.

Theorem 2. Let us specify that with probability at least 1 − δ , for
an agent j, | |Q j

T −Q
j
∗ | |∞ ≤ ϵ . The bound on the rate of convergence

of low-Q , Q j
T , with a polynomial learning rate of factor ω is given by

(with Q j
∗ as the Nash Q-value of the agent j)

T = Ω
((L1+3ωQ2, j

max
ln(|S |Πi |Ai |Q

j
max

δ βϵ)
β 2ϵ 2

)
1−ω

/L

+
(
(Lβ ln

Q j
max

ϵ + 1)/2
) 1

1−ω
)
.

(5)

Assuming the same action spaces for all agents (i.e. |A1 | = |A2 | =
· · · = |AN | = |A|), we note that the dependence on the number

of agents is ln |A|N = N ln |A|. Overall this results in a sub-linear

dependence on the number of agents based on the value of ω,
which is far superior to recent works that report an exponential

dependence on the number of agents when learning in general-

sum stochastic game environments (with an arbitrary number of

agents) for convergence to a Nash equilibrium [19, 31]. Further,

the dependence on the state space and action space in Theorem 2

is sub-linear (ln |S |), and the dependence on the covering time is

Ω(L2ω−3ω2

+ L1/1−ω), which is a polynomial dependence.

The next theorem considers the linear learning rate case.

Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1147

Theorem 3. Let us specify that with probability at least 1 − δ , for
an agent j, | |Q j

T −Q
j
∗ | |∞ ≤ ϵ . The bound on the rate of convergence

of low-Q , Q j
T , with a linear learning rate is given by

T = Ω
(
(L +ψL + 1)

1

β ln

Qj
max

ϵ
Q
2, j
max

ln(|S |Πi |Ai |Q
j
max

δ βϵψ)
β2ϵ2ψ 2

)
, (6)

whereψ is a small arbitrary positive constant satisfyingψ ≤ 0.712.

Theorem 3 shows that the bound is linear in the number of agents

and sub-linear in the state and action spaces. This linear dependence

on the number of agents is also superior to prior results [19, 31].

Note, the dependence on the covering time in Theorem 3 could

be much worse than that of Theorem 2, depending on the value

of Q
j
max

and ϵ . Since the value of ϵ is small, the dependence is

certainly worse than that obtained for the polynomial learning rate

case. Also, the dependence on Q
j
max

is exponential as opposed to

a polynomial dependence for Theorem 2. The last two theorems

illustrate the performance benefit in using a polynomial learning

rate as opposed to a linear learning rate in our algorithm.

6 EXPERIMENTS AND RESULTS
We consider three different experimental domains, one each for

competitive, cooperative, and mixed settings, where each agent

has access to a set of four advisors. We use neural network im-

plementations of MA-TLQL and MA-TLAC, along with 5 other

baselines: DQN [21], DQfD [11], CHAT [42], ADMIRAL-DM [33],

and TLQL [17]. In Appendix F, we tabulate the characteristics of

these baselines and provide further details regarding our choices.

Since CHAT and ADMIRAL-DM assume the presence of a single

advisor, we use a weighted random policy approach for implement-

ing these two algorithms in the multiple-advisor setting, as in Li et

al. [17]. If different advisors provide different actions at the same

state, each action is weighted based on the number of advisors

suggesting that action. For DQfD, during pre-training [11], we pop-

ulate the replay buffer using advisor demonstrations from all the

available advisors. For all our experiments, we will describe the

critical details here, while the complete description is in Appen-

dix K. All the experiments are repeated 30 times, with averages

and standard deviations reported. For statistical significance we

use the unpaired 2-sided t-test and report p-values, where p < 0.05

is considered significant. The tests compare the highest perform-

ing algorithm (typically MA-TLQL) with the second-best baseline

and best/average advisor performance. We conduct a total of seven

experiments. The code for all experiments is open-sourced [32].

Appendix K tabulates all our experimental settings. Appendix L

provides the hyperparameter details and Appendix M contains the

wall clock times.

Experiments 1–4 use the competitive, two-agent version of Pom-

merman [26]. The environment is complex, with each state con-

taining roughly 200 elements related to agent position and special

features (e.g., bombs). The reward function is sparse: agents only re-

ceive a terminal reward of {−1, 0,+1}. Experiments are conducted

in two phases. In the first phase (training), our algorithms and

the baselines train against a standard DQN opponent for 50,000

episodes, where we plot the cumulative rewards. During this phase,

algorithms can use advisors to accelerate training. In the second

phase (execution), we test the performance of the trained policies

against DQN for 1000 episodes, where we plot the win rate (fraction

of games won) for each algorithm. During this phase, agents cannot

access advisors, take no exploratory actions, and do not learn. All

advisors pertaining to these four experiments are rule-based agents.

(a) Training

(b) Execution

Figure 2: Two agent Pommerman with four sufficient advi-
sors of different quality (Experiment 1)

Experiment 1: Our first experiment uses a set of four advisors

ranked in terms of quality from Advisor 1 to Advisor 4. Here, Ad-

visor 1 is the best advisor, capable of teaching the agent all skills

needed to win the game of Pommerman, and Advisor 4 only sug-

gests random actions. In Pommerman, there is a fixed set of six

skills that an agent needs to master to be able to win [26]. Since

this set of advisors can teach all these skills, we say the agent has

access to a sufficient set of advisors. We plot the training and exe-

cution performances in Figure 2(a) and (b) respectively, including

the performance of the best and average advisors (average of all

Advisors 1–4) against DQN. MA-TLQL gives the best performance

(p < 0.01) and is the only algorithm providing a better performance

than the best advisor (p < 0.11) in both training and execution. MA-

TLAC performs better than the average advisor (p < 0.04). None

of the others show better performances than the average advisor.

CHAT and ADMIRAL-DM are not capable of leveraging and distin-

guishing amongst a set of advisors. DQfD uses pre-training, which is

not very effective in the non-stationary multi-agent context. Learn-

ing from online advising is preferable in MARL. Also, DQfD and

CHAT are independent techniques that are not actively tracking the

opponent’s performance. While TLQL is capable of learning from

multiple advisors, its independent nature in addition to coupling

of advisor values with the RL policy reduces its effectiveness in

multi-agent environments. MA-TLQL gives a better performance

than MA-TLAC in both training and execution (p < 0.01). As noted

previously, the Q-learning family of algorithms tends to induce a

positive bias while using the maximum action value, which leads to

Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1148

providing the best possible response [40]. This explains the superior

performance of MA-TLQL. We conclude that MA-TLQL is capable

of leveraging a set of good and bad advisors. Further, the training

results in Figure 2(a) show that MA-TLQL is able to learn a better

policy faster than the baselines by using advisors (p < 0.01). The

evaluation results in Figure 2(b) show that amongst all algorithms

trained for the same number of episodes, MA-TLQL provides the

best performance, when deployed without any advisors (p < 0.01).

Both observations point to better sample efficiency in MA-TLQL.

Supplementary experiments in Appendix E show that MA-TLQL

comes to relying more on good advisors than poor advisors, as

compared to the baselines, illustrating its superiority.

(a) Training

(b) Execution

Figure 3: Two-agent Pommerman with four sufficient advi-
sors of similar quality (Experiment 2)

Experiment 2: We use the same domain as in Experiment 1,

but with a different set of advisors. Now, all four advisors can teach

strictly different Pommerman skills. For example, Advisor 1 can

teach how to escape the enemy (and nothing else), and Advisor 2

can teach how to obtain necessary power-ups (and nothing else

— full details are in Appendix K). These advisors provide psuedo-

random action advice in states outside their expertise. This set of

advisors is also a sufficient set. Now, learning agents must decide

what advisor to listen to in the current state. From the training and

execution results in Figure 3(a) and (b), we see that MA-TLQL gives

the best overall performance (p < 0.02), exceeding the average

performance of the four advisors (p < 0.05). Since all four advisors

have similar quality, we only choose to use the average performance

of the four advisors in this experiment for comparison. We conclude

that MA-TLQL is capable of leveraging the combined knowledge of

a set of advisors with different individual expertise, during learning.

Experiment 3:We use the same domain as in Experiment 1 but

with a different set of four advisors. These advisors are similar to

the set of advisors in our first experiment, where Advisor 1 gives

the best advice throughout the domain, and Advisor 4 is random.

(a) Training

(b) Execution

Figure 4: Two-agent Pommerman with four insufficient ad-
visors of different quality (Experiment 3)

However, this set of advisors is not capable of teaching all the

strategies (i.e, Pommerman skills) needed to win in Pommerman,

and compose an insufficient set (more details in Appendix K). It is

critical for agents to learn from the environment in addition to the

advisors. Training and execution results in Figure 4 shows the supe-

rior performance of MA-TLQL, the only algorithm that outperforms

the best advisor (p < 0.05) and all baselines (p < 0.02). Surprisingly,

TLQL performs better than MA-TLAC (p < 0.02), likely due to the

positive bias of Q-learning. This experiment reinforces the obser-

vation that MA-TLQL is capable of learning from good advisors

and avoids bad advisors (also see Appendix E). Since MA-TLQL

outperforms the best advisor, this experiment demonstrates that

MA-TLQL can learn from both, advisors and through direct interac-

tions with the environment, hence having a much improved sample

efficiency as compared to other algorithms that learn only from the

environment. This is observed during both training and execution.

Experiment 4: This is similar to the Experiment 2: four advisors

have similar quality, but each understands a different Pommerman

skill. However, our set of advisors in this experiment are insufficient

to teach all the skills in Pommerman, and the agent must also learn

from the environment. The results in Figure 5 shows that MA-TLQL

is capable of leveraging the combined expertise of the advisors and

learning from the environment to obtain the best performance, as

compared to the baselines (p < 0.04) and advisors (p < 0.05). This

makes MA-TLQL more sample efficient than the prior algorithms.

Experiment 5: We now switch to a four-agent version of Pom-

merman, which is two vs. two. This is a mixed setting as agents need

to learn cooperative as well as competitive skills. Overall, this is a

more complex domain with a larger state space. We consider four

sufficient advisors of different quality, similar to Experiment 1. We

conduct two phases — training (for 50,000 episodes) and execution

(for 1000 episodes). The training and execution results in Figure 6

Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1149

(a) Training

(b) Execution

Figure 5: Two-agent Pommerman with four insufficient ad-
visors of similar quality (Experiment 4)

(a) Training

(b) Execution

Figure 6: Team (mixed) Pommerman (Experiment 5)

show that MA-TLQL provides the best performance compared to

the baselines (p < 0.04) but does not perform better than the best

available advisor. Since this is a more complex domain, MA-TLQL

needs a larger training period for learning good policies. However,

MA-TLQL still performs better than the average performance of the

four advisors (p < 0.03). We conclude that although MA-TLQL’s

performance suffers in the more difficult mixed setting, it still out-

performs all the other baselines and is capable of distinguishing

between good and bad advisors (see also Appendix E). From both

training and execution results in Figure 6, we note that MA-TLQL

has a superior sample efficiency as compared to the other baselines.

(a) Training (b) Execution

Figure 7: Cooperative Pursuit setting (Experiment 6)

Experiment 6: This experiment switches to the cooperative

Pursuit domain [7]. There are eight pursuer learning agents that

learn to capture a set of 30 randomly moving targets (evaders) (de-

tails in Appendix K). We use four pre-trained DQN networks as the

advisors, learning for 500, 1000, 1500, and 2000 episodes, respec-

tively. We again have two phases — training and execution. During

training, all algorithms are trained for 2000 episodes. The trained

networks are then used in the execution phase for 100 episodes with

no further training or influence from advisors. Figure 7(a) plots the

episodic rewards obtained during training and the Figure 7(b) plots

the number of targets captured in the execution phase, where MA-

TLQL shows the best performance (p < 0.03). Hence, MA-TLQL

can outperform all baselines in a cooperative environment as well.

(a) Training (b) Execution

Figure 8: Mixed Predator-Prey setting (Experiment 7)

Experiment 7: This final experiment considers a mixed cooper-

ative competitive Predator-Prey environment which is a part of the

Multi Particle Environment (MPE) suite [20]. Our implementation

uses a discrete action space and a continuous state space (more

details in Appendix K). There are a total of eight predators trying

to capture eight prey (prey are not removed, but respawned upon

capture). In our experiment, each algorithm trains the predators

while the prey is trained using a standard DQN opponent. The

experiments have two phases of training and execution, which is

modelled as a CTDE setting. Here each agent obtains information

about the actions and rewards of all other agents during training,

but only has local observation during execution. Since this envi-

ronment requires decentralization during execution, we omit the

fully centralized MA-TLQL and ADMIRAL-DM.We also omit DQfD

Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1150

(a) Training (b) Execution

Figure 9: Ablation results using Experiment 1

since it gave poor performances previously. As in Experiment 6, we

use four pretrained DQN (predator) networks as advisors (trained

for 1000, 2000, 7000, and 12000 episodes). Training is conducted

for 12000 episodes and execution is conducted for 100 episodes.

The training results in Figure 8(a) (plot of episodic rewards) show

that MA-TLAC is the most sample efficient compared to other al-

gorithms as it is able to leverage the available advisors better than

others, thus outperforming them (p < 0.04). The execution results

in Figure 8(b) plots the average prey captured by each algorithm.

MA-TLAC outperforms others during execution as well (p < 0.03).

From all the p-values across the seven experiments, we note

that most of our observations are statistically significant. Despite

observing MA-TLQL outperforming the best advisor in many of

the experiments, some of these comparisons are not statistically

significant (i.e., p ≥ 0.05). While the main experiments of the paper

consider fixed advisors, our algorithms can also be implemented

with learning/changing advisors (see Appendix G). In Appendix I

we study performances under different numbers of advisors. Also,

our algorithms can be used along with opponent modelling tech-

niques as done by prior works [8] (more details in Appendix H).

7 ABLATION STUDY
In this section, we run an ablation study on the three components

of MA-TLQL that differ from the previously introduced TLQL al-

gorithm by Li et al. [17]. To recall these three components are: i)

joint action (JA) updates, ii) ensemble method (EM), and iii) advisor

evaluation (AE). For this ablation study we will consider the two-

agent version of Pommerman with four sufficient advisors having

different (Experiment 1) and similar quality (Experiment 2).

The ablation results corresponding to Experiment 1 are given

in Figure 9, where we plot the performances of TLQL and MA-

TLQL in addition to TLQL with each of the three components. In

Figure 9(a) and (b), the performance of TLQL with each of the

three components is better than vanilla TLQL. TLQL using the

ensemble method (i.e., TLQL+EM) is able to perform better than

vanilla TLQL, since at the beginning of training the Q-values of
the advisors are not accurate, and the ensemble technique chooses

the advisor action that is agreed upon by most advisors in the

given set (in line with our discussions in Section 4). Recall that

the set of four different advisors had four advisors of decreasing

quality, with the first three advisors capable of teaching some useful

Pommerman skills and the last advisor being just random (see

Appendix K). Using the ensemble prevents the use of the random

(a) Training (b) Execution

Figure 10: Ablation results using Experiment 2

advisor, as the first three advisors are more likely to agree upon an

action, increasing the possibility of the agent choosing that action.

Further, we see that TLQL highly benefits from using the joint

action update (i.e., TLQL+JA) instead of an independent update

seen in vanilla TLQL. The joint action update explicitly considers

the strategies of other agent(s) and helps in providing stronger best

responses as compared to an independent update in the multi-agent

environments. Finally, TLQL using advisor evaluation in the high-

Q table (i.e., TLQL+AE) provides the best benefit compared to the

other components. As discussed in Section 3 and Section 4, the high-

Q definition in vanilla TLQL is limiting since the advisor evaluation

through the high-Q is coupled with the inaccurate RL policy (and

AE addresses this limitation). Further, from Figure 9, we see that

MA-TLQL (integrating all the three components) shows the best

performance as compared to vanilla TLQL and individual TLQL

implementations with each of the three components (p < 0.05). Thus,
MA-TLQL is able to seamlessly integrate the advantages of each of

the individual components of TLQL, demonstrating its superiority.

We also consider a similar ablation study using Experiment 2 (see

Figure 10). As in Figure 9, we see that TLQL with each of the three

components performs better than vanilla TLQL. Since we have four

advisors of similar quality where each advisor is good at a different

Pommerman skill, their agreement on an action is expected to be

small. Hence, the ensemble technique (i.e., TLQL+EM) provides

only a small improvement over vanilla TLQL. However, the other

two components (i.e., TLQL+JA and TLQL+AE) provides a good

performance benefit over TLQL. Finally, MA-TLQL, that integrates

all the three components, provides the best performance (p < 0.03).

8 CONCLUSION
This paper provided a principled approach for learning from mul-

tiple independent advisors in MARL. Inspired by Li et al. [17], we

present a two-level architecture for multi-agent environments. We

discuss two limitations in TLQL and address these limitations in our

approach. Also, we provide a fixed point guarantee and sample com-

plexity bounds regarding the learning of MA-TLQL. Additionally,

we provided an actor-critic implementation that can work in the

CTDE paradigm. Further, we performed an extensive experimental

analysis of MA-TLQL and MA-TLAC in cooperative, competitive,

and mixed settings, where we show that these algorithms are capa-

ble of suitably leveraging a set of advisors, and perform better than

baselines. As future work, we would like to consider human advi-

sors and further explore some avenues in the real-world context.

Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1151

ACKNOWLEDGEMENTS
Resources used in preparing this research were provided by the

province of Ontario and the government of Canada through CIFAR,

NSERC and companies sponsoring the Vector Institute. Part of this

work has taken place in the Intelligent Robot Learning (IRL) Lab at

the University of Alberta, which is supported in part by research

grants from the Alberta Machine Intelligence Institute (Amii); a

Canada CIFAR AI Chair, Amii; Compute Canada; Huawei; Mitacs;

and NSERC.

REFERENCES
[1] Ofra Amir, Ece Kamar, Andrey Kolobov, and Barbara J. Grosz. 2016. Interactive

Teaching Strategies for Agent Training. In IJCAI. IJCAI Press, New York, NY,

USA, 9-15 July 2016, 804–811.

[2] Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone. 2017. Making friends

on the fly: Cooperating with new teammates. Artificial Intelligence 242 (2017),
132–171.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. 1996. Neuro-dynamic programming.
Optimization and neural computation series, Vol. 3. Athena Scientific, Chestnut

Street, USA.

[4] Tim Brys, Anna Harutyunyan, Halit Bener Suay, Sonia Chernova, Matthew E.

Taylor, and Ann Nowé. 2015. Reinforcement Learning from Demonstration

through Shaping. In IJCAI, July 25-31, 2015. AAAI Press, Buenos Aires, Argentina,
3352–3358.

[5] Eyal Even-Dar and Yishay Mansour. 2003. Learning Rates for Q-learning. Journal
of Machine Learning Research 5 (2003), 1–25.

[6] Fernando Fernández and Manuela M. Veloso. 2006. Probabilistic policy reuse in a

reinforcement learning agent. In 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006), May 8-12, 2006. ACM, Hakodate,

Japan, 720–727.

[7] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative

multi-agent control using deep reinforcement learning. In AAMAS. Springer,
IFAAMAS, Sao Paulo, Brazil, 66–83.

[8] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. 2016. Opponent

modeling in deep reinforcement learning. In International conference on machine
learning. PMLR, New York City, US, 1804–1813.

[9] Bassam Helou, Aditya Dusi, Anne Collin, Noushin Mehdipour, Zhiliang Chen,

Cristhian Lizarazo, Calin Belta, Tichakorn Wongpiromsarn, Radboud Duintjer

Tebbens, and Oscar Beijbom. 2021. The Reasonable Crowd: Towards evidence-

based and interpretable models of driving behavior. In IROS. IEEE, Prague, Czech
Republic, 6708–6715.

[10] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. 2019. A survey

and critique of multiagent deep reinforcement learning. Autonomous Agents and
Multi-Agent Systems 33, 6 (01 Nov 2019), 750–797. https://doi.org/10.1007/s10458-

019-09421-1

[11] Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,

Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold,

John P. Agapiou, Joel Z. Leibo, and Audrunas Gruslys. 2018. Deep Q-learning

From Demonstrations. In AAAI, February 2-7, 2018. AAAI Press, New Orleans,

Louisiana, USA.

[12] Junling Hu and Michael P Wellman. 2003. Nash Q-learning for general-sum

stochastic games. JMLR 4, Nov (2003), 1039–1069.

[13] Piyush Jain, Sean CP Coogan, Sriram Ganapathi Subramanian, Mark Crowley,

Steve Taylor, and Mike D Flannigan. 2020. A review of machine learning applica-

tions in wildfire science and management. Environmental Reviews 28, 4 (2020),
478–505.

[14] Mingxuan Jing, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Chao Yang, Bin Fang,

and Huaping Liu. 2020. Reinforcement Learning from Imperfect Demonstrations

under Soft Expert Guidance. In AAAI, February 7-12, 2020. AAAI Press, New York,

NY, USA, 5109–5116.

[15] Dong-Ki Kim, Miao Liu, Shayegan Omidshafiei, Sebastian Lopez-Cot, Matthew

Riemer, Golnaz Habibi, Gerald Tesauro, Sami Mourad, Murray Campbell, and

Jonathan P. How. 2020. Learning Hierarchical Teaching Policies for Cooperative

Agents. In AAMAS, May 9-13, 2020. IFAAMAS, Auckland, New Zealand, 620–628.

[16] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-end

training of deep visuomotor policies. JMLR 17, 1 (2016), 1334–1373.

[17] Mao Li, Yi Wei, and Daniel Kudenko. 2019. Two-level Q-learning: learning from

conflict demonstrations. The Knowledge Engineering Review 34 (2019).

[18] Michael L. Littman. 1994. Markov Games as a Framework for Multi-Agent

Reinforcement Learning. In ICML, July 10-13, 1994. Morgan Kaufmann, New

Brunswick, NJ, USA, 157–163.

[19] Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. 2021. A Sharp Analysis of

Model-based Reinforcement Learning with Self-Play. In ICML (Proceedings of
Machine Learning Research, Vol. 139). PMLR, Virtual Event, 7001–7010.

[20] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In

NeurIPS, December 4-9, 2017. Morgan Kaufmann Publishers, Long Beach, CA,

USA, 6379–6390.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529–533.
[22] John Nash. 1951. Non-cooperative games. Annals of mathematics (1951), 286–295.
[23] Shayegan Omidshafiei, Dong-Ki Kim, Miao Liu, Gerald Tesauro, Matthew Riemer,

Christopher Amato, Murray Campbell, and Jonathan P. How. 2019. Learning to

Teach in Cooperative Multiagent Reinforcement Learning. In AAAI, January 27 -
February 1, 2019. AAAI Press, Honolulu, Hawaii, USA, 6128–6136.

[24] Bilal Piot, Matthieu Geist, and Olivier Pietquin. 2014. Boosted Bellman Residual

Minimization Handling Expert Demonstrations. In ECML-PKDD, September 15-19,
2014, Vol. 8725. Springer, Nancy, France, 549–564.

[25] Tummalapalli Sudhamsh Reddy, Vamsikrishna Gopikrishna, Gergely V. Zaruba,

and Manfred Huber. 2012. Inverse reinforcement learning for decentralized

non-cooperative multiagent systems. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics (SMC 2012), October 14-17, 2012.
IEEE, Seoul, Korea (South), 1930–1935.

[26] Cinjon Resnick, Wes Eldridge, David Ha, Denny Britz, Jakob Foerster, Julian

Togelius, Kyunghyun Cho, and Joan Bruna. 2018. Pommerman: A multi-agent

playground. arXiv preprint arXiv:1809.07124 (2018).
[27] Lloyd S Shapley. 1953. Stochastic games. Proceedings of the national academy of

sciences 39, 10 (1953), 1095–1100.
[28] Felipe Leno Da Silva and Anna Helena Reali Costa. 2019. A Survey on Transfer

Learning for Multiagent Reinforcement Learning Systems. JAIR 64 (2019), 645–

703.

[29] Felipe Leno Da Silva, Ruben Glatt, and Anna Helena Reali Costa. 2017. Simultane-

ously Learning and Advising in Multiagent Reinforcement Learning. In AAMAS,
May 8-12, 2017. ACM, Sao Paulo, Brazil, 1100–1108.

[30] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. Nature 529, 7587 (2016), 484.
[31] Ziang Song, Song Mei, and Yu Bai. 2021. When Can We Learn General-Sum

Markov Games with a Large Number of Players Sample-Efficiently? arXiv preprint
arXiv:2110.04184 (2021).

[32] Sriram Ganapathi Subramanian. 2023. Learning from Multiple Independent

Advisors in Multi-agent Reinforcement Learning. https://github.com/Sriram94/

matlql

[33] Sriram Ganapathi Subramanian, Kate Larson, Matthew Taylor, and Mark Crowley.

2022. Multi-Agent Advisor Q-Learning. Journal of Artificial Intelligence Research
74 (2022), 1–74.

[34] Sriram Ganapathi Subramanian, Matthew E. Taylor, Kate Larson, and Mark

Crowley. 2023. Learning from Multiple Independent Advisors in Multi-agent

Reinforcement Learning. https://doi.org/10.48550/ARXIV.2301.11153

[35] Richard S Sutton and AndrewG Barto. 1998. Introduction to reinforcement learning.
Vol. 135. MIT press, Cambridge.

[36] Csaba Szepesvari and Michael L Littman. 1999. A unified analysis of value-

function-based reinforcement-learning algorithms. Neural computation 11, 8

(1999), 2017–2060.

[37] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In ICML. Cambridge University Press, Amherst, MA, USA, 330–337.

[38] Matthew E. Taylor, Halit Bener Suay, and Sonia Chernova. 2011. Integrating

reinforcement learning with human demonstrations of varying ability. InAAMAS,
May 2-6, 2011. IFAAMAS, Taipei, Taiwan, 617–624.

[39] Lisa Torrey and Matthew E. Taylor. 2013. Teaching on a budget: agents advising

agents in reinforcement learning. In AAMAS, May 6-10, 2013. IFAAMAS, Saint

Paul, MN, USA, 1053–1060.

[40] Hado van Hasselt. 2010. Double Q-learning. In NeurIPS. Curran Associates, Inc.,

Vancouver, British Columbia, Canada, 2613–2621.

[41] Yixi Wang, Wenhuan Lu, Jianye Hao, Jianguo Wei, and Ho-fung Leung. 2018.

Efficient Convention Emergence through Decoupled Reinforcement Social Learn-

ing with Teacher-Student Mechanism. In AAMAS, July 10-15, 2018. IFAAMAS /

ACM, Stockholm, Sweden, 795–803.

[42] ZhaodongWang andMatthewE. Taylor. 2017. Improving Reinforcement Learning

with Confidence-Based Demonstrations. In IJCAI, August 19-25, 2017. ICJAI,
Melbourne, Australia, 3027–3033.

[43] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine Learning
8, 3-4 (1992), 279–292.

[44] Kevin Waugh, Brian D. Ziebart, and Drew Bagnell. 2011. Computational Ra-

tionalization: The Inverse Equilibrium Problem. In ICML, June 28 - July 2, 2011.
Omnipress, Bellevue, Washington, USA, 1169–1176.

[45] Tianpei Yang, Weixun Wang, Hongyao Tang, Jianye Hao, Zhaopeng Meng,

Hangyu Mao, Dong Li, Wulong Liu, Yingfeng Chen, Yujing Hu, et al. 2021. An

Efficient Transfer Learning Framework for Multiagent Reinforcement Learning.

Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1152

https://doi.org/10.1007/s10458-019-09421-1
https://doi.org/10.1007/s10458-019-09421-1
https://github.com/Sriram94/matlql
https://github.com/Sriram94/matlql
https://doi.org/10.48550/ARXIV.2301.11153

NeurIPS, Virtual Event 34 (2021).
[46] Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang.

2018. Mean Field Multi-Agent Reinforcement Learning. In ICML, Vol. 80. PMLR,

Stockholm Sweden, 5571–5580.

[47] Dayong Ye, Tianqing Zhu, Zishuo Cheng, Wanlei Zhou, and S Yu Philip. 2020.

Differential Advising in Multi-Agent Reinforcement Learning. IEEE Transactions
on Cybernetics (2020).

Session 3E: Learning with Humans and Robots

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1153

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Two-level Architecture in MARL
	5 Theoretical Results
	6 Experiments and Results
	7 Ablation Study
	8 Conclusion
	References

