
Kiko: Programming Agents to Enact Interaction Protocols
Samuel H. Christie V

North Carolina State University
Raleigh, NC, USA
schrist@ncsu.edu

Munindar P. Singh
North Carolina State University

Raleigh, NC, USA
mpsingh@ncsu.edu

Amit K. Chopra
Lancaster University

Lancaster, UK
amit.chopra@lancaster.ac.uk

ABSTRACT
Realizing a multiagent system involves implementing member
agents who interact based on a protocol while making decisions in
a decentralized manner. Current programming models for agents
offer poor abstractions for decision making and fail to adequately
bridge an agent’s internal decision logic with its public decisions.

We presentKiko, a protocol-based programmingmodel for agents.
To implement an agent, a programmer writes one or more decision
makers, each of which chooses from among a set of valid decisions
andmakesmutually compatible decisions onwhat messages to send.
By completely abstracting away the underlying communication
service and by supporting practical decision-making patterns, Kiko
enables agent developers to focus on business logic. We provide an
operational semantics for Kiko and establish that Kiko agents are
protocol compliant and able to realize any protocol enactment.

CCS CONCEPTS
• Computing methodologies→Multi-agent systems.

KEYWORDS
Decentralization, Decision making, Asynchrony, Causality

ACM Reference Format:
Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra. 2023. Kiko:
Programming Agents to Enact Interaction Protocols. In Proc. of the 22nd

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023, IFAAMAS,
10 pages.

1 INTRODUCTION
Enterprise and other applications, e.g., in business and healthcare,
involve interactions between social entities such as humans and
organizations [25] based on technical resources such as databases.
A sociotechnical system (STS) involves social and technical entities
[31, 37] and provides a useful abstraction for such applications.
Today, an STS is implemented using a conceptually central service
through which its entities interact. In contrast, we address the chal-
lenges of implementing a decentralized multiagent system (MAS)
to realize an STS. Here, each principal maps to an agent; the agents
interact with each other via asynchronous messaging.

The messages sent by an agent represent its public decisions. For
example, a Quote by Seller (for an item and price) represents a
decision by it; an Accept (of some Quote) sent by Buyer represents
a decision of Buyer; and so on. To coordinate their decisions, the
agents rely on an interaction protocol. By specifying the constraints

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,

London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

on messaging, a protocol specifies the constraints on decision mak-
ing between the agents in a MAS. For example, a Purchase protocol
in the above-introduced e-business setting may specify that the
price is offered by the seller, and payment is required for delivery.

A protocol is specified abstractly with reference to roles to be
adopted by agents in a multiagent system. Implementing an agent
according to a role means fleshing out the role with private (inter-
nal) decision logic that results in messages being emitted, that is,
decisions being made [16]. For example, suppose agents Bob and
Sally play Buyer and Seller, respectively, in Purchase. Sally’s
decision logic may be to send Quotes with lower prices to repeat
buyers. Bob’s decision logic may be to Accept a Quote if the price
fits within its budget. Such decision logic is the essence of an agent.

Supporting the common desire [28, 39] for programming models
that separate business logic from other components—and combat-
ing complexity in agent communication [10], in general—proves
challenging. Traditional protocol languages [3, 18, 24, 29, 42] spec-
ify message ordering, which limits flexibility [11]. JADE [5, 6], a
programming model for multiagent systems, is noteworthy for
its early support for FIPA protocols [19]; however, the FIPA ap-
proach is long outdated [34] and the FIPA protocols are limited to a
few patterns of interaction specified in terms of message ordering.
Agent-oriented programming models such as Jason [8] and JaCaMo
[7] provide cognitive abstractions for encoding an agent’s internal
reasoning but do not support protocols. Existing commitment-based
approaches [22, 41] either rely on centralized commitment stores
[2] or do not adequately address operationalizing asynchronous
communication [17]; some approaches map the problem to proto-
cols [26, 38]—and hence within the scope of this paper. Traditional
agent-orientedmethodologies [9, 15, 30] emphasize and incorporate
protocols as design abstractions. However, the protocol specifica-
tions in these approaches are informal (usually UML interaction
diagrams), which rules out protocol-based software abstractions for
engineering agents. In a nutshell, today we lack a protocol-based
programming model for agents that supports flexible, decentralized
decision making via asynchronous messaging.

Our contribution, Kiko, addresses this gap. Specifically, Kiko
advances a novel decision-oriented programming model that en-
ables structuring and implementing agents based on the protocol
roles they play. Kiko’s fundamental abstraction is that of a decision
maker, a construct for capturing the decision logic that selects and
makes a set of decisions from those currently available. The agent
developer’s primary task is to write the set of decision makers.

Kiko guarantees an agent’s compliance with the roles its plays.
Kiko supports practical decision-making patterns that challenge
other approaches, including correlation, cross-enactment reasoning,
emission sets, and multiprotocol reasoning. Notably, in providing
a decision-based programming interface, Kiko abstracts away the
communication service that transports messages between agents.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1154

https://orcid.org/0000-0003-1341-0087
https://orcid.org/0000-0003-3599-3893
https://orcid.org/0000-0003-4629-7594

In particular, decision making in Kiko avoids having to deal with
the order in which messages are received. Actual message emission
is also handled transparently in the programming model.

In addition, we contribute a formalization of the programming
model and prove its soundness and completeness with respect
to possible protocol enactments. We also present an optimized
compliance-checking method and establish its validity.

2 INFORMATION PROTOCOLS INTRODUCED
A protocol-based programming model for agents presumes a lan-
guage in which to specify protocols. We adopt BSPL [36], a declar-
ative protocol language that eschews the specification of message
ordering and instead specifies information constraints.

Listing 1: The Purchase protocol.
Purchase {

r o l e s Buyer , S e l l e r
pa ramete r s out ID key , out item , out p r i c e , out done

Buyer −> S e l l e r : RFQ[out ID key , out i tem]
S e l l e r −> Buyer : Quote [i n ID key , i n item , out p r i c e]
Buyer −> S e l l e r : Buy [i n ID key , i n item , i n p r i c e , out done]
Buyer −> S e l l e r : R e j e c t [i n ID key , i n p r i c e , out done]

}

An information protocol in BSPL specifies the roles, messages be-
tween roles, and information constraints that define which message
emissions are valid. Information causality captures information de-
pendencies: what information must or must not be known by an
agent playing a role to be able to send a message. Information in-
tegrity captures consistency in distributed settings: there cannot
be two messages sent with conflicting information in the same
protocol enactment. Given the local store of an agent (its history of
message observations), an agent can send any message that satisfies
the specified causality and integrity constraints.

Listing 1 illustrates the main ideas of information protocols.
It specifies a purchase protocol to be enacted by agents playing
roles Buyer and Seller. Purchase composes message schemas, each
with its sender and receiver roles and information parameters. For
example, RFQ is from Buyer to Seller and its parameters are ID and
item. A concrete message instance associates the parameter names
with value bindings, e.g., binding ID to a UUID and item to “ball.”

To support information integrity, some parameters in a message
schema are annotated key, e.g., ID in all the messages of Listing 1.
A tuple of bindings for the key parameters of a message schema
uniquely identifies both an instance of the schema and the enact-
ment to which it belongs, in which all nonkey parameters may have
at most one binding. For example, say RFQ occurs with bindings
[ID: 10, item: ball]. Then, a Quote with [ID: 10, item: hat, price: 10]
would violate integrity because for the same binding of ID there
are different bindings of item. Conversely, Quote with [ID: 11, item:
hat, price: 10] satisfies integrity despite the different binding for item
because it has a different binding of the key ID.

In a message schema, every message parameter is adorned ⌜in⌝,
⌜out⌝, or ⌜nil⌝. Adornments capture information causality con-
straints for the emission of an instance of a schema; ⌜in⌝ parame-
ters must be known from prior communications (they are causal
dependencies); ⌜out⌝ parameters and ⌜nil⌝ parameters must not
be known, but ⌜out⌝ parameters are bound in the emission. For

example, in Listing 1, Seller must know item before it can send
Quote, and in doing so produces a binding for price.

Knowledge of a parameter exists in the context of some binding
for the associated key. After receiving an RFQ with bindings [ID: 10,
item: ball], Seller knows that in the enactment ID=10 item is bound
to ball, and can produce a binding of price by sending Quote.

Integrity and causality apply to protocols generally. In Purchase

in Listing 1, all protocol parameters are adorned ⌜out⌝ in the pro-
tocol parameter line, meaning that each enactment of Purchase as
identified by the ID generates bindings for all of them. Further, the
parameter line enables composition with other protocols.

3 THE KIKO PROGRAMMING MODEL
We introduce the architectural basis for the programming model,
followed by examples that illustrate its features.

MAS Info Decision Makers

Protocol Adapter

Communication
Service

Config

Attempts Forms

Instances

Figure 1: The Kiko agent architecture.

Figure 1 shows the main components of the agent architecture as
focused on enacting protocols. The MAS Info and Decision Makers
are components provided by the agent programmer (indicated by
the border). The Protocol Adapter is a generic component provided
by Kiko that understands information protocols and provides an
API for plugging in Decision Makers. The adapters of all agents
collectively achieve a coordination service and assimilate informa-
tion received from messages [35]. The Communication Service is
anything that provides asynchronous messaging between agents.
Our implementation uses UDP, which is unordered and unreliable
(lossy).

An information protocol constrains only the emission of mes-
sages by agents, based on its causal dependencies. This means that
ordered delivery, as provided by TCP or a message queue, is not
required for correctly enacting a protocol. Further, message recep-
tion is idempotent, so messages can be retransmitted to enact a
protocol reliably despite message loss [12, 14]. Thus an unordered,
lossy transport like UDP is sufficient for enacting BSPL protocols.

MAS Info (Configuration). A protocol specifies a MAS abstractly
via reference to roles. A concrete MAS for a protocol is identified by
a UUID and assigns roles to the agents that will play them. MAS
identifiers are essential since an agent may play a role in several
MAS. The properties of a (concrete) MAS and the mailboxes of the
agents in theMAS are common knowledge to the agents in theMAS.
Kiko requires each agent to be configured with such knowledge;
Listing 2 gives such a configuration for agent Bob.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1155

Listing 2: Bob’s MAS Info Configuration.
s e l f = " Bob "
systems = {

" 5 f e c eb66 " : {
" p r o t o c o l " : Purchase ,
" r o l e s " : { Buyer : s e l f , S e l l e r : " S a l l y " } } }

agen t s = {
s e l f : [(" 1 9 2 . 1 6 8 . 1 . 1 0 0 " , 1 1 1 1)]
" S a l l y " : [(" 1 9 2 . 1 6 8 . 1 . 1 0 2 " , 1 1 1 1) , (" 1 5 2 . 1 . 2 7 . 2 0 2 " , 1 1 1 1)] }

In Listing 2, 5feceb66 is an identifier for a MAS that enacts
Purchase with Bob and Sally as Buyer and Seller, respectively.
Bob’s and Sally’s mailboxes are given as (IP, port) tuples. An agent
may have several mailboxes for receiving messages; in Listing 2,
Sally has two. Our focus is not on how a MAS is constituted, but
on programming abstractions that enable decentralized decision-
making. Listing 2 shows the kind of information needed to configure
a MAS, and it could be constructed dynamically at runtime.

Formally, we model an agent using a tuple ⟨𝑎, 𝐻𝑎, 𝐼𝑎,𝑂𝑎⟩, where
the components are the name of the agent, its history, input channel
(its mailbox), and output channel respectively. Channels 𝐼𝑎 and
𝑂𝑎 are simply sets of message instances being sent and received,
respectively, by agent 𝑎. Definition 1 defines a MAS.

Definition 1 (MAS). A multiagent system ` is a tuple ⟨𝑃,𝐴⟩,
where 𝑃 is a protocol, and 𝐴 is a map from roles of 𝑃 to agents.

Decision Makers. To write an agent, programmers supply the con-
figuration and write one or more decision makers. A decision maker
is invoked upon the occurrence of specified events. When invoked,
the adapter supplies it with prototypes of message instances that
the agent is enabled to send given the agent’s current history of
message observations. We refer to these prototypes as forms, after
documents with fields that need to be filled. A form of a message
schema has bindings for the parameters that are adorned ⌜in⌝ in
the schema, reflecting that its causal dependencies are satisfied,
leaving only the parameters adorned ⌜out⌝ to be bound. The pur-
pose of a decision maker is to flesh out some message instances
from the forms by supplying bindings for their ⌜out⌝ parameters;
the adapter collects this set of completed instances as an emission
attempt. The adapter verifies whether the attempt as a whole is
consistent with the agent’s history and if so, emits the instances in
the attempt; else it rejects the attempt.

Suppose Bob’s history is empty (it has observed no messages).
Then the only form available to Bob is Bob -> Sally: RFQ[5feceb66,
(ID), (item)], with unfilled parameters in parentheses. Since proto-
col enactments occur within the context of a MAS, each form and
any instance produced from it contains a MAS identifier (here,
5feceb66)—conceptually like the value for an implicit parame-
ter system in every message. Bob’s programmer may have written
a decision maker that fleshes out the above form into instances
such as Bob -> Sally: RFQ[5feceb66, 1, bat] and Bob -> Sally:
RFQ[5feceb66, 2, ball] based on some decision logic. These in-
stances are passed on to the adapter for emission. Listing 3 shows a
decision maker (in Python) called start that is invoked at system
initialization, upon InitEvent. The argument enabled contains
the available forms when start is invoked and the body of start
contains code to send two instances of the form, one each for bat
and ball. The instruction to the adapter to emit the instances is
implicit—after the decision maker returns, the adapter goes through

all forms to see which ones have been fleshed out into instances
and emits them (conditional to validation).

Listing 3: Bob’s initial decision to send RFQs.
@adapter . d e c i s i o n (even t = I n i t E v e n t)
de f s t a r t (enab led) :

f o r i tem in [" b a l l " , " ba t "] :
ID = s t r (uuid . uuid4 ())
f o r m in enab led . messages (RFQ) :

m. b ind (ID=ID , i tem= item)

Consider another example. Suppose Bob’s history contains the
above two RFQ instances and Sally -> Bob:Quote[5feceb66, 1, bat,
5]. Then, in addition to the RFQ form specified above, the following
forms would also be available to Bob: Bob -> Sally: Buy[5feceb66,
1, bat, 5, (done)] and Bob -> Sally: Reject[5feceb66, 1, bat, (done)].
Bob’s programmer may have implemented a decision maker (as
illustrated in Listing 4) that chooses from one of these two available
forms based on how acceptable the price is, fleshes it out by binding
done, and instructs the adapter to emit the resulting instance.

Listing 4: A simple Buy or Reject decision maker for Bob.
@adapter . d e c i s i o n
de f s t a r t (enab led) :

f o r m in enab led . messages (Buy) :
i f (m[" p r i c e "] < 2 0)

m. b ind (done =" c oo l ")
e l s e

r e j e c t = nex t (enab l ed . messages (Re j e c t , ID=m[" ID "]))
r e j e c t . b ind (done =" r e j e c t e d ")

We now give an example where a decision maker’s emission
attempt fails because it erroneously contains incompatible instances.
Specifically, Listing 5 is erroneous because Bob creates instances for
both Buy and Reject in the same enactment. This emission attempt
fails because Buy and Reject are mutually exclusive according to
Listing 1 (because both bind ⌜out⌝ done); neither will be emitted.

Listing 5: Decision maker attempting to send Buy and Reject.
@adapter . d e c i s i o n
de f i n d e c i s i v e (enab led) :

buy = nex t (enab l ed . messages (Buy))
r e j e c t = nex t (enab l ed . messages (Re j e c t , system=buy . system ,

ID=buy [" ID "]))
buy . b ind (done =" accep ted ")
r e j e c t . b ind (done =" r e j e c t e d ")

Listing 5’s error brings out a remarkable aspect of Kiko. Kiko
enables decision makers (programmers) to choose sets of instances
to emit. Whereas each of the instances in the set (e.g., Buy) would
be individually consistent and compatible with the history when
the decision maker was invoked and therefore could be emitted by
the adapter, collectively, the set of instances chosen by the deci-
sion maker could be internally incompatible (Buy and Reject) and
therefore fail emission by the adapter. By rejecting incompatible
emission sets, the adapter guarantees that an agent will not make
noncompliant emissions.

An alternative would be to limit a decision maker to work on at
most one form at a time. Then, its emission by the adapter would
be guaranteed. Such a decision maker is a special case for Kiko.

A specific triggering event may be specified for a decision maker
(e.g., InitEvent in Listing 3). If such a triggering event is not spec-
ified (e.g., as in Listing 4), the adapter automatically invokes the
decision maker whenever a communication event occurs. Event-
based invocation enables some optimizations: First, the agent need

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1156

not poll to wait for enough information to make a decision; not
polling may be seen as an extension of the pub/sub pattern be-
cause a decision can depend on multiple pieces of information
from multiple sources. Second, because all constraints are relative
to an enactment, and communication events contain keys identi-
fying their enactment, the enactment can be directly looked up,
thus avoiding linear scans or joins across an entire database for
validation.

However, there are cases where an agent may want to emit
messages outside of reacting to a message observation (whether
sent or received). For example, if the agent needs to make business
decisions only once per day, then waiting and making them all as
a batch could be more efficient and accurate. To support a wider
variety of behavioral patterns, Kiko uses an internal event queue on
which the developer can signal custom events, and decision makers
can be registered with custom filters to select which events should
trigger them.

We now formalize the concepts introduced in the above section.
An association binds values to some subset of the parameters of

a message schema.

Definition 2 (Association). If𝑚 is a schema in protocol 𝑃 , then

ℳ𝑚 is a relation with attributes payload(𝑚) = ⟨`,s𝑚, r𝑚, ®𝑖𝑚, ®𝑜𝑚⟩,
andℳ is the union of all such relations. The parameter name ` refers

to a multiagent system. A tuple𝑚 is an association of schema𝑚 if

and only if it is a tuple of parameter bindings ⟨𝑏𝑝 |𝑝 ∈ payload(𝑚)]⟩
in ℳ𝑚 .

We use𝑚[...] for projecting parameters to their bindings in the
message instance; e.g.,𝑚[s𝑚] is the sender of𝑚, and𝑚[®𝑘𝑚] is the
projection of𝑚’s key parameters.

A message instance is an association where all parameters are
bound.

Definition 3 (Message Instance). An association 𝑚 ∈ ℳ𝑚

is a message instance and instance(𝑚) holds if and only if all of its

parameters are bound: 𝑝 ∈ payload(𝑚),𝑚[𝑝] ≠ ∅.
ℐ ⊂ℳ is the set of all instances.

A form is an association where the ⌜out⌝ parameters are un-
bound.

Definition 4 (Form). An association𝑚 ∈ℳ𝑚 is a form (refer-

ring to a document with empty fields that need to be filled) if some

⌜out⌝ parameter has a null value. That is, ∀𝑝 ∈ payload(𝑚) \ ®𝑜𝑚 :
𝑝 ≠ ∅ and ∃𝑝 ∈ ®𝑜𝑚 : 𝑚[𝑝] = ∅

ℱ ⊂ℳ is the set of all forms.

We introduce the notion of context to capture enactments within
a specific MAS.

Definition 5 (Context). The context of an association is its

MAS and its keys:𝑚[`, ®𝑘𝑚].

Associations share context if their MAS and any of their keys
have the same bindings. A form is enabled when all of its ⌜in⌝
parameter bindings match those from observed instances that share
context (consistency), and its ⌜out⌝ and ⌜nil⌝ parameters do not
conflict with any observed instances (compatibility), as given by
Definitions 6—10.

Definition 6 (Consistent). Let𝑀, 𝑁 ⊆ℳ be sets of associa-

tions; then 𝑁 is consistent with 𝑀 (and consistent(𝑁,𝑀) holds) if
and only if the ⌜in⌝ bindings in 𝑁 are the same as bindings from

associations that share context in𝑀 :

∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 : 𝑚[`, ®𝑘𝑚 ∩ ®𝑘𝑛] = 𝑛[`, ®𝑘𝑚 ∩ ®𝑘𝑛] =⇒
𝑚[payload(𝑚) ∩ ®𝑖𝑛] = 𝑛[payload(𝑚) ∩ ®𝑖𝑛].

Definition 7 (Out-Compatible). Let𝑀, 𝑁 ⊆ℳ be sets of asso-

ciations; then 𝑁 is out-compatible with𝑀 (and compatible®𝑜 (𝑁,𝑀)
holds) if and only if no ⌜out⌝ bindings in 𝑁 are in payloads of asso-

ciations that share context in𝑀 :

∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 : 𝑚[`, ®𝑘𝑚∩®𝑘𝑛] = 𝑛[`, ®𝑘𝑚∩®𝑘𝑛] =⇒ payload(𝑚)∩
®𝑜𝑛 = ∅

Definition 8 (Nil-Compatible). Let𝑀, 𝑁 ⊆ℳ be sets of asso-

ciations; then 𝑁 is nil-compatible with𝑀 (and compatible®𝑛 (𝑁,𝑀)
holds) if and only if no ⌜nil⌝ bindings in 𝑁 are in payloads of associ-

ations that share context in𝑀 :

∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 : 𝑚[`, ®𝑘𝑚∩®𝑘𝑛] = 𝑛[`, ®𝑘𝑚∩®𝑘𝑛] =⇒ payload(𝑚)∩
®𝑛𝑛 = ∅

Definition 9 (Derived). Let 𝐻𝑎 be an agent history and𝑚 be a

formwhose sender is𝑎; then𝑚 is derived from𝐻𝑎 (and derived(𝑚,𝐻𝑎)
holds) if and only if all of𝑚’s ⌜in⌝ parameters are drawn from in-

stances that share context in the history:

∀𝑝 ∈ ®𝑖𝑚, ∃𝑛 ∈ 𝐻𝑎 : 𝑛[`, ®𝑘𝑚 ∩ ®𝑘𝑛] = 𝑚[`, ®𝑘𝑚 ∩ ®𝑘𝑛] ∧ 𝑝 ∈ ®𝑖𝑛 ∧
𝑚[𝑝] = 𝑛[𝑝]

Definition 10 (Enabled). A message form 𝑚 is enabled and

enabled(𝑚,𝑎, 𝐻𝑎) holds if and only if:

(1) 𝑚 is sent by 𝑎:𝑚[s𝑚] = 𝑎

(2) consistent({𝑚}, 𝐻𝑎)
(3) compatible®𝑜 ({𝑚}, 𝐻𝑎) ∧ compatible®𝑛 ({𝑚}, 𝐻𝑎)
(4) derived(𝑚,𝐻𝑎)
We also say that enabled(𝑎, 𝐻𝑎) ⊂ ℱ is the set of message forms

that 𝑎 is enabled to send.

Definition 11 says a decision maker constructs only instances
that preserve the bindings from message forms.

Definition 11 (Decision Maker). Let 𝑄 be a set of message

forms; a decision maker is a function 𝑑 : 𝒫 (ℱ) → 𝒫 (ℐ) such that

𝑚′ ∈ 𝑑 (𝑄) =⇒ instance(𝑚′) ∧ ∃𝑚 ∈ 𝑄 : 𝑚′[s𝑚, r𝑚, ®𝑖𝑚] =

𝑚[s𝑚, r𝑚, ®𝑖𝑚].

3.1 Decision-Making Challenges and Solutions
We highlight select decision making patterns supported by Kiko.

3.1.1 Correlation. An agent may simultaneously be involved in
several enactments of a protocol. For example, Buyer may be con-
currently engaged with Seller in several distinct enactments, each
for some item at some price. The programming model should enable
correlating communications by enactment.

Kiko supports correlation through the automatic derivation of
correlated forms by the adapter (as described above). The adapter
computes forms based on all information available, potentially from
the observation of multiple correlated instances. Kiko also makes
it convenient to find correlated forms where the decision logic
requires it. For example, in Listing 4, correlated Reject forms are
found by the ID of the Buy forms.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1157

3.1.2 Cross-Enactment Decisions. Agents should be able to use
information across enactments in their decision making.

Kiko enables cross-enactment reasoning by providing forms from
all currently active contexts, that is, enactments in all systems, to the
decision makers together. Thus, the decision maker can select forms
frommultiple contexts and flesh them out for emission. For example,
Bob could participate in multiple systems, all enacting Purchase, to
request quotes for the same item from multiple sellers. Then, Bob
can send a Buy for the Quote with the lowest price (Listing 6).

Listing 6: Selecting cheapest Buy across multiple contexts.
@adapter . d e c i s i o n
de f cheape s t (enab led) :

buys = enab led . messages (Buy)
cheape s t = min (buys , key= lambda b : b [" p r i c e "])
cheape s t . b ind (done=True)

3.1.3 Multiple Protocols. An agent will often play roles in multiple
unrelated protocols, using information from one to make decisions
in another.

Kiko enables implementing agents that play roles in multiple
unrelated protocols. For example, we specify Approval in Listing 7.
By enacting Approval concurrently with Purchase, Bob can seek
Alice’s approval on any purchases. To do so, Bob must map be-
tween the protocols inside its decision makers, which is supported
by the enabled set containing forms from all the protocols Bob is
enacting.

Listing 7: The Approval protocol.
Approva l {

r o l e s Reques te r , Approver
paramete r s out aID key , out r eques t , out approved

Reques t e r −> Approver : Ask [out aID key , out r e que s t]
Approver −> Reques t e r : Approve [i n aID , i n r eques t , out approved]

}

Listing 8 shows Bob’s decision maker for constructing an Ask

(approval) for each Buy as it becomes available as a form, copying
Buy’s payload into request.

Listing 8: Requesting approval for a purchase across proto-
cols.
@adapter . enab l ed (Buy)
de f r e qu e s t _ app r o v a l (buy) :

ask = nex t (adap te r . enab led_messages . messages (Ask) , None)
r e t u r n ask . b ind (ID= s t r (uuid . uuid4 ()) , r e qu e s t =buy . pay load)

3.1.4 Emission sets. For additional flexibility, Kiko enables a deci-
sion maker to emit multiple instances atomically: if the instances
are mutually compatible, then they are all emitted, else none are
emitted. Thus, e.g., if an emission set contained Buy and Reject

instances for the same enactment, no instance in the set would be
emitted. Such atomicity of emission ensures correctness and gives
full authority to the decision maker to choose its intendedmessages;
multiple attempts can be made if needed. Selecting some consis-
tent subset of the emission set for emission, by contrast, would be
arbitrary and could lead to unintended enactments.

Listing 9 shows a decision maker, where Bob figures out the best
combination of items it can buy (as computed by some optimization,
whose details are not relevant for our purposes), sending Buys for
all those items and Rejects for the others.

Listing 9: A decision maker that sends Buy in some contexts
and Rejects in the others.
1 @adapter . d e c i s i o n
2 de f s e l e c t _ g i f t s (enab led) :
3 bes t , r e s t = best_combo (enab led)
4 f o r b i n b e s t : # buy the b e s t i t ems
5 b . b ind (done=True)
6 f o r r i n r e s t : # r e j e c t the r e s t
7 r . b ind (done=True)

Another variety of decision logic where emission sets are valu-
able is a combination of “front-end” and “back-end” reasoning. For
example, imagine Sally has a supplier with whom it engages via
some protocol. Suppose Sally wants to order an item from its sup-
plier whenever it delivers an item to a buyer. To accomplish this, it
may have a decision maker which puts Deliver (to the buyer) and
Reorder (from supplier) in the same emission set.

3.1.5 Reception-Order Freedom. Requiring agents to receive mes-
sages in a particular order can only delay the reception of infor-
mation, which in turn would limit the agent’s ability to respond
flexibly to events.

Kiko takes advantage of the fact that BSPL doesn’t rely on mes-
sage ordering for correctness, and abstracts awaymessage reception
entirely from decision making. An agent’s adapter receives mes-
sages as they arrive and depending on the information in them,
makes forms available to decisionmakers. By doing so, Kiko enables
agents to respond flexibly to events.

Listing 10: Rescind Quote.
S e l l e r −> Buyer : Resc ind [i n ID key , i n item , i n p r i c e , out

r e s c i nd ed]
Buyer −> S e l l e r : Buy [i n ID key , . . . , n i l r e s c i n d ed]

For example, Listing 10 extends Purchase by allowing Seller
to Rescind a quote. Because it depends on price, Rescind must be
sent after Quote, but could reach Bob first. Because reception is not
constrained except by integrity (inconsistent messages are rejected),
Rescind will be received, checked, and added to the history when it
arrives. As such, the matching Buy will be disabled, and Bob need
not waste any effort considering it (e.g., by requesting approval).

Note that by programming in terms of enabled forms, a decision
maker such as the one in Listing 4 that emits Buys need not change
at all; the disabled Buys are simply not provided to the decision
maker for consideration.

3.1.6 Loose Coupling. Clearly, protocols support the independent
development of agents by capturing the constraints relevant to
interoperation between them. In general, if a protocol changes, then
one would expect that the agents’ decision making would have to
change as well. Because Kiko is based on information though, it is
not necessarily the case that protocol changes lead to changes in
an agent’s decision making, thus supporting loose coupling even
better.

For example, suppose (as illustrated in Listing 11) Purchase in-
cluded a Deliver message from Seller that depended on payment

provided by Buy:

Listing 11: Delivery.
Buyer −> S e l l e r : Buy [i n ID key , i n item , i n p r i c e , out payment]
S e l l e r −> Buyer : D e l i v e r [i n ID key , i n payment , out d e l i v e r y]

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1158

Then, suppose Purchase were extended so that Buyer could pay
indirectly via bank transfer (as illustrated in Listing 12) . Because
the messages in Listing 12 do not change the messages emitted by
Seller, only how it receives the necessary information, Seller’s
decision logic need not be changed to support indirect payment.
Seller’s adapter will automatically derive the Deliver form when
the indirect payment has been received, demonstrating loose cou-
pling between the agents.

Listing 12: Bank Transfer.
Buyer −> S e l l e r : Accept [i n ID key , i n p r i c e , out a c cep tance]
Buyer −> Bank : R eque s t T r an s f e r [i n ID key , i n p r i c e , out t x i n f o]
Bank −> S e l l e r : T r a n s f e r [i n ID key , i n t x i n f o , out payment]

3.1.7 Single Form Decision Makers. The general decision making
pattern of supporting the emission of sets of instances is highly
flexible, but for cases in which an agent need emit only instance
at a time, Kiko supports the convenient abstraction of single form
decision makers. Such decision makers are functions invoked with a
single message form; its return value is either a message instance for
emission (binding its ⌜out⌝ parameters), or a null value canceling
the emission. Listing 13 shows an example where an enabled form
of Quote is fleshed out.

Listing 13: Single Form Decision Maker for Quote.
@adapter . enab l ed (Quote)
de f send_quote (msg) :

msg [" p r i c e "] = random . r and i n t (2 0 , 1 0 0)
r e t u r n msg

3.2 Adapter Implementation
Figure 2 blows up the adapter from Figure 1 to highlight its internal
components (highlighted in green).

Receiver Emitter

Checker

Receptions Instances

Local Store

Valid
Instances

History

Enablement Decision Makers

Enactments Forms

Attempts

Figure 2: Adapter implementation.

The Emitter and Receiver interface with the communication
service, putting messages on and receiving them from the wire, re-
spectively. The Local Store records the agent’s history of emissions
and receptions. The Checker validates (checking for satisfaction of
causality and integrity constraints in the protocol specifications)
any attempt (by a decision maker) to emit a set of messages (Def-
inition 12). If an attempt is validated, then the instances in it are
added to the Local Store and passed on the Emitter for emission;
else, the attempt is discarded.

Definition 12 (Send-Check). If 𝐻𝑎 ⊆ℳ is a history for agent

𝑎, and 𝑇 ⊆ℳ is a set of message instances, check𝑠 (𝑇,𝐻𝑎) holds if
and only if:

(1) 𝑎 is enabled to send every𝑚 in 𝑇 :

∀𝑚 ∈ 𝑇, enabled(𝑚,𝑎, 𝐻𝑎)
(2) 𝑇 is out-, and nil-compatible with 𝑇 :

compatible®𝑜 (𝑇,𝑇) ∧ compatible®𝑛 (𝑇,𝑇)
If check𝑠 (𝑇,𝐻𝑎) holds, then 𝑇 is a valid set of emissions for 𝑎 and

thus a valid extension of 𝐻𝑎 .

The Checker also validates received messages for integrity; if
they pass, they are added to the Local Store, else they are discarded
(Definition 13).

Definition 13 (Receive-Check). If 𝐻𝑎 ⊆ ℳ is a history for

agent 𝑎, and𝑚 ∈ℳ is a message instance, check𝑟 (𝑚,𝐻𝑎) holds if
and only if:

(1) 𝑚 is receivable by 𝑎: 𝑎 =𝑚[r𝑚]
(2) 𝑚 is consistent and out-compatible with the history:

consistent({𝑚}, 𝐻𝑎) ∧ compatible®𝑜 ({𝑚}, 𝐻𝑎)
If check𝑟 (𝑇,𝐻𝑎) holds, it is valid for 𝑎 to receive every instance in 𝑇

and 𝑇 is a valid extension of 𝐻𝑎 .

The Local Store is used by Enablement to compute the forms
that the agent is enabled to send. Algorithm 1 describes how en-
abled forms are computed for each context. We use an incremental
method, so that only those contexts that have new information
are updated. First, on Line 1, every context that shares key bind-
ings with the observed instance �̂� is checked to see if it enables
any instances of𝑚. Lines 2 and 3 check that the ⌜out⌝ and ⌜nil⌝
parameters of the schema, respectively, are not already bound in
the context. Line 4 copies the bindings of the ⌜in⌝ parameters from
the context, Line 6 copies the system ID, and Line 7 adds the form
to the result set for processing by decision makers.

Input :Message schema𝑚, Message instance �̂�
𝑄 ← {};

1 foreach 𝑐 ∈ 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔_𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠 (�̂�) do
2 𝑜 ← �𝑝 : 𝑝 ∈ ®𝑜𝑚 ∧ 𝑝 ∈ 𝑐.bindings;
3 𝑛 ← �𝑝 : 𝑝 ∈ ®𝑛𝑚 ∧ 𝑝 ∈ 𝑐.bindings;
4 𝑖 ← ∀𝑝 : 𝑝 ∈ ®𝑖𝑚 =⇒ 𝑝 ∈ 𝑐.bindings;

if 𝑜 ∧ 𝑖 ∧ 𝑛 then
5 𝑚[®𝑖𝑚] ← 𝑐.bindings[®𝑖𝑚];
6 𝑚[`] ← �̂� [`];
7 𝑄 ← 𝑄 ∪𝑚;

end
return Q;

end
Algorithm 1: Derive instance of schema from observation.

4 OPERATIONAL SEMANTICS
Protocols are formalized in an online Appendix. Here, we formalize
an agent and MAS computations via a transition semantics.

Figure 3 gives the transition semantics.
The Recv rule specifies how messages are received. For agent 𝑎

to receive a message instance𝑚 there are three conditions: (1)𝑚

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1159

Message Schema 𝑚 ∈ 𝑆𝑃
Message Instance 𝑚 ∈ ℳ
History 𝐻 ∈ ℋ ⊆ℳ
Input 𝐼 ⊆ ℳ
Output 𝑂 ⊆ ℳ
Agent 𝑎 ≔ ⟨𝐻𝑎, 𝐼𝑎,𝑂𝑎⟩ ∈ 𝒜
Check check𝑟 ∈ ℳ ×ℋ→ {T, F}

check𝑠 ∈ 𝒫 (ℳ) ×ℋ→ {T, F}
Enabled enabled ∈ 𝒜 ×ℋ→ 𝒫 (ℱ)
Decision maker 𝑑 ∈ 𝒫 (ℱ) → 𝒫 (ℳ)
Consistent consistent ∈ 𝒫 (ℳ) → {T, F}

Recv
𝑚 ∈ 𝐼𝑎 𝑚 ∉ 𝐻𝑎 check𝑟 (𝑚,𝐻𝑎)
𝑎⟨𝐻𝑎, 𝐼𝑎,𝑂𝑎⟩ −→ 𝑎⟨𝐻𝑎 ∪ {𝑚}, 𝐼𝑎,𝑂𝑎⟩

Tx
𝑚 ∈ 𝑂𝑥 𝑚[r] = 𝑦

𝐼𝑦 −→ 𝐼𝑦 ∪ {𝑚}

Decide
𝑄 := enabled(𝑎, 𝐻𝑎) 𝑇 := 𝑑 (𝑄) check𝑠 (𝑇,𝐻𝑎)

𝑎⟨𝐻𝑎, 𝐼𝑎,𝑂𝑎⟩ −→ 𝑎⟨𝐻𝑎 ∪𝑇, 𝐼𝑎,𝑂𝑎 ∪𝑇 ⟩

Figure 3: Notation and core semantics.

Decide2

𝑄 := enabled(𝑎, 𝐻𝑎) 𝑇 := 𝑑 (𝑄)
compatible®𝑜 (𝑇,𝑇) compatible®𝑛 (𝑇,𝑇)
𝑎⟨𝐻𝑎, 𝐼𝑎,𝑂𝑎⟩ −→ 𝑎⟨𝐻𝑎 ∪𝑇, 𝐼𝑎,𝑂𝑎 ∪𝑇 ⟩

Figure 4: Optimized decision that checks for internal consis-
tency instead of full validity.

must be in the agent’s input channel 𝐼𝑎 , (2)𝑚 must not already be
in the agent’s history 𝐻𝑎 , and (3)𝑚 must be a valid extension of
𝐻𝑎 . If these three conditions are met, then𝑚 is added to 𝐻𝑎 .

The Tx rule models message delivery by copying messages from
an output channel to the appropriate input channel; unreliability is
modeled by not exercising the rule.

Finally, Decide specifies how messages are instantiated for emis-
sion: First, a set 𝑄 of message forms is computed based on the
agent’s history. Next, a set of instances are derived from the mes-
sage forms by applying a decision maker 𝑑 to the enabled form set.
If this set of instances is valid, then it is added to both the agent’s
history and output channel. Otherwise, the rule cannot be applied
and no messages are sent.

No rules are required for cases where the messages fail a validity
check; there is simply no transition in those cases. A transition for
a MAS is simply a transition for one of its agents.

Figure 4 shows an alternative version of theDecide rule,Decide2.
Because transitions are atomic, the forms will not be disabled before
the transition completes, so they do not need to be rechecked for
validity; checking internal compatibility is sufficient (e.g., not se-
lecting both an Accept and Reject in the same enactment). Checking
only internal compatibility of a small set of emissions should be

faster than a full send-check, which requires both internal compati-
bility and that the instance is consistent and compatible with the
rest of the agent’s history.

Our goal is to show that a MAS developed using our operational
semantics to implement a protocol will be both correct (that is, reach
only valid states) and complete (it is possible to implement a system
that can reach any valid state). As such, we formalize the state of
a MAS, which states are reachable according to the operational
semantics, and which states match a protocol enactment.

Definition 14 (MAS State). The state of a MAS ` is the set of

its agent histories: {𝐻𝑎 |𝑎 ∈ 𝐴` }
Definition 15 (Reachable State). Given MAS ` and transition

semantics 𝒯 , state 𝑠 of MAS ` is reachable and an element of 𝒮`,𝒯 if

and only if there is a sequence of transitions 𝑡𝑖 ∈ N→ 𝒯 that results

in state 𝑠 .

ℰ𝑃 (formally defined in the appendix) is the set of reachable
enactments of protocol 𝑃 , where a reachable enactment 𝐸 ∈ ℰ𝑃 is a
set of role histories each constructed by a sequence of viable events
according to 𝑃 ’s specification.

Definition 16 (Matching State). If ` is a MAS implementing

protocol 𝑃 , then state 𝑠 of ` matches 𝐸 ∈ ℰ𝑃 , written 𝑠 ≡ 𝐸, if and

only if, for every agent history 𝐻𝑎 in 𝑠 and instance𝑚 ∈ 𝐻𝑎 :

(1) if 𝑎 plays s𝑚 in ` then 𝑚 is sent in the corresponding role

history 𝐻s𝑚 ∈ 𝐸 (that is, 𝑎 =𝑚[s𝑚] =⇒ ⟨sent,𝑚⟩ ∈ 𝐻r𝑚)

(2) if 𝑎 plays the receiver of 𝑚 in ` then 𝑚 is received in the

corresponding role history 𝐻r𝑚 ∈ 𝐸 (that is, 𝑎 =𝑚[r𝑚] =⇒
⟨received,𝑚⟩ ∈ 𝐻r𝑚)

Simulation is the idea that transitions in the MAS should match
the reachable enactments in its protocol; each transition may be
equivalent to a set ofmultiple viable extensions because the Decide
rule can produce a set of message instances, where viable extensions
cover only one instance at a time.

Definition 17 (Simulation). If ` is a MAS implementing proto-

col 𝑃 , then state 𝑠 ∈ 𝒮` simulates 𝐸 ∈ ℰ𝑃 , written 𝑠 ∼ 𝐸, if and only

if, for every agent history 𝐻𝑎 in 𝑠 and instance𝑚 ∈ 𝐻𝑎 :

(1) 𝑠 matches 𝐸

(2) for every transition 𝑡 , the state 𝑠 ′ : 𝑠
𝑡→ 𝑠 ′ matches some en-

actment 𝐸 ′ reachable from 𝐸 in a finite number of viable ex-

tensions.

Theorem 1 gives the correctness of our operational semantics
by showing that compliant MAS can only reach states that match
reachable enactments of a protocol. Even though the states reached
by the MAS will depend on the decision makers, they can only
select subsets of the enabled forms, and therefore cannot reach an
invalid state (that is, one that does not match an enactment that is
reachable under the protocol semantics).

Theorem 1. Given a MAS ` implementing protocol 𝑃 , every reach-

able state 𝑠 ∈ 𝒮` simulates some enactment 𝐸 ∈ ℰ𝑃 .
Theorem 2 shows that the conditions for Decide are redundant,

given that the forms are drawn from enabled(𝑎, 𝐻𝑎) and decision
makers preserve their bindings (and thus consistency and compat-
ibility with history); all that needs to be checked for the selected
emissions 𝑇 is that they are compatible with each other.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1160

Theorem 2. Decide2 is equivalent to Decide.

Theorem 3 shows completeness for our operational semantics:
the operational semantics do not restrict a MAS from simulating
any reachable enactment of the protocol. Or, given a reachable
enactment of a protocol, it is possible to construct decision makers
for the agents that would reach that enactment. This is not to
say that every implementation is complete; proving completeness
for a given implementation would require formalizing its decision
makers as transition rules.

Theorem 3. Given aMAS ` implementing protocol 𝑃 , there is some

set of decision makers 𝐷 that can simulate any reachable enactment

in ℰ𝑃 , assuming that all sent message instances are received.

The proofs of these theorems are in the appendix.

5 DISCUSSION
Kiko bridges business logic and communications: an agent provides
business decisions and the underlying adapter applies the protocol
semantics to determine which messages are viable. The underlying
causal information semantics captures the information flow and
avoids having to generate guards [33]. An agent makes and commu-
nicates a set of decisions (as reflected in the forms provided by the
adapter) based on some evaluation of the state of the world. The de-
cision making is conceptualized declaratively and suits rule-based
programming languages such as Jason.

An interesting direction is to extend Kiko’s notion of forms to
support norms-based decision making. For example, the discharge
of a commitment by an agent could be made available as a form to
be picked and instantiated by the agent. Baldoni et al. [4] present a
model for accountability that is implemented in JaCaMo via obli-
gations and relates to both (the giving of) accounts and recovery
strategies when things go wrong. Kiko’s adapter could incorporate
standard protocols for demanding accounts from other agents when
norm violations occur and incorporate them into further decision
making, e.g., to decide from which agent to buy items.

Variants of programming models based on information protocols
have been proposed in recent years. The idea of enabled message
forms was first introduced in Stellar [21]; however, Stellar lacked
support for emission sets and relied on the abstraction of message
handlers as opposed to decision makers. Thus, Bob’s implemen-
tation in Stellar would be a set of message handlers, one for each
type of message it could observe. Within a message handler, one
could retrieve a form and instantiate it. Message handling-based
abstractions are lower level compared to Kiko’s decision makers,
which are information-based. To see this, suppose an agent needed
information from two instances, say 𝑖1 and 𝑖2, which it may receive
in any order, to be able to send a third instance 𝑖3 (e.g., a shipper may
need the address from the buyer and the item from the seller to be
able to deliver). Then, in the message handling approach of Stellar,
one would write separate message handlers for 𝑖1 and 𝑖2 and in each
one check whether the form for 𝑖3 is available. By contrast, in Kiko,
one would simply write a single decision maker that completes
the form for 𝑖3. The Mandrake [13] and PoT [14] programming
models share Stellar’s limitations; however, they both also address
application-level fault tolerance, a theme that is a direction for Kiko.

Like Stellar (and Mandrake and PoT), Kiko enables building ap-
plications directly over an unordered, unreliable communication
service such as UDP formessage transport. Kiko is therefore compat-
ible with the influential end-to-end argument [32], which advocates
building applications over simple communication services, both for
reasons of enabling application-level flexibility and performance.
By contrast, message ordering-based protocol approaches would be
incompatible with the end-to-end argument. Establishing the per-
formance of Kiko-based agents and MAS compared to traditional
application architectures that rely on complex communication ser-
vices and middleware is a crucial direction. Preliminary evidence
from Mandrake and PoT indicates high performance.

Kiko’s features such as support for correlation, cross-enactment
reasoning, and multiple protocols are not readily supported in pro-
gramming models for message ordering-based protocol approaches.
This is because all of the above features have to do with querying
information, which is inadequately represented in ordering-based
protocols. Emission sets are unique to Kiko and are a powerful
feature that enables emitting a set of message instances (possibly
from different protocols and to different agents) atomically.

In our semantics, decision makers execute atomically with re-
spect to the history, which simplifies checking the internal compat-
ibility of the emission set before emitting all its instances. However,
an alternative semantics is possible where decision makers exe-
cute concurrently from the same history. Concurrent execution
would enable taking advantage of multicore and cloud architec-
tures. Implementation-wise, decision makers could be spawned off
as actors [1, 23]. The tradeoff is that the emission sets produced by
concurrent decision makers may be in conflict with each other (e.g.,
one set contains Buy whereas another contains Reject for the same
enactment) and therefore an internal compatibility check would
no longer suffice. Each emission set would have to be checked for
validity against the history, which could be more expensive.

IoT-based paradigms such as edge and fog computing and the
industry paradigm of realizing applications via microservices are
conceptually decentralized. In the case of microservices especially,
decentralization is driven by the scalability afforded by the con-
tainerization of application components. Current microservices
development approaches tend to avoid distributed database trans-
actions in favor of loose coupling [27]. However, this raises the
question: On what basis should microservices coordinate their com-
putations? Information protocols could be thought of as a model
for business transactions. Therefore, approaches like Kiko, suitably
adapted to microservices, can help.

SARL [20], an agent programming language, supports communi-
cation using events in spaces that are akin to environments [40].
SARL would benefit from a protocol-based programming model.
Kiko would benefit from a more general treatment of events. Cur-
rently, in Kiko, messages model events. However, some domain
events don’t map to messages. For example, while a Quote may
reasonably be modeled as a message, Shipment may actually cor-
respond to a package traveling in the back of a truck. Receiving
a shipment, therefore, requires sensing the arrival of the package.
Extending Kiko’s adapter to incorporate observation of events from
the environment would be valuable.

Supplementary Material. The appendix and the Kiko software
are available at: https://gitlab.com/masr/bspl/-/tree/kiko.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1161

https://gitlab.com/masr/bspl/-/tree/kiko

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments. We thank
the EPSRC (grant EP/N027965/1) and the US National Science Foun-
dation (grant IIS-1908374) for partial support.

REFERENCES
[1] Gul A. Agha. 1986. Actors. MIT Press, Cambridge, Massachusetts. https:

//doi.org/10.7551/mitpress/1086.001.0001
[2] Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.

2019. Process Coordination with Business Artifacts and Multiagent Technologies.
Journal on Data Semantics 8, 2 (June 2019), 99–112. https://doi.org/10.1007/s13740-
019-00100-8

[3] Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti,
and Munindar P. Singh. 2009. Choice, Interoperability, and Conformance in
Interaction Protocols and Service Choreographies. In Proceedings of the 8th In-

ternational Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Budapest, 843–850. https://doi.org/10.5555/1558109.1558129

[4] Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi. 2021.
Robustness Based on Accountability in Multiagent Organizations. In Proceedings

of the 20th International Conference on Autonomous Agents andMultiAgent Systems

(AAMAS). IFAAMAS, Online, 142–150. https://doi.org/10.5555/3461017.3461040
[5] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. 2007. Developing

Multi-Agent Systems with JADE. Wiley, Chichester, UK. https://doi.org/10.1002/
9780470058411

[6] Federico Bergenti, Giovanni Caire, Stefania Monica, and Agostino Poggi. 2020.
The First Twenty Years of Agent-Based Software Development with JADE. Jour-
nal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 34, 2 (2020), 36.
https://doi.org/10.1007/s10458-020-09460-z

[7] Olivier Boissier, Rafael H. Bordini, Jomi Fred Hübner, Alessandro Ricci, and
Andrea Santi. 2013. Multi-agent oriented programming with JaCaMo. Science
of Computer Programming 78, 6 (June 2013), 747–761. https://doi.org/10.1016/j.
scico.2011.10.004

[8] Rafael H. Bordini and Jomi Fred Hübner. 2010. Semantics for the Jason Variant
of AgentSpeak (Plan Failure and some Internal Actions). In Proceedings of the

19th European Conference on Artificial Intelligence (ECAI) (Frontiers in Artificial

Intelligence and Applications, Vol. 215). IOS Press, Lisbon, 635–640. https://doi.
org/10.3233/978-1-60750-606-5-635

[9] Luca Cernuzzi, Thomas Juan, Leon Sterling, and Franco Zambonelli. 2004. The
Gaia Methodology. In Methodologies and Software Engineering for Agent Systems:

The Agent-Oriented Software Engineering Handbook, Federico Bergenti, Marie-
Pierre Gleizes, and Franco Zambonelli (Eds.). Multiagent Systems, Artificial
Societies, and Simulated Organizations, Vol. 11. Kluwer, Dordrecht, Netherlands,
Chapter 4, 69–88. https://doi.org/10.1007/1-4020-8058-1_6

[10] Amit K. Chopra, Alexander Artikis, Jamal Bentahar, Marco Colombetti, Frank
Dignum, Nicoletta Fornara, Andrew J. I. Jones, Munindar P. Singh, and Pınar
Yolum. 2013. Research Directions in Agent Communication. ACM Transactions on

Intelligent Systems and Technology (TIST) 42, 2, Article 20 (March 2013), 23 pages.
https://doi.org/10.1145/2438653.2438655

[11] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2020. An Evalu-
ation of Communication Protocol Languages for Engineering Multiagent Sys-
tems. Journal of Artificial Intelligence Research (JAIR) 69 (Dec. 2020), 1351–1393.
https://doi.org/10.1613/jair.1.12212

[12] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2021. Bungie:
Improving Fault Tolerance via Extensible Application-Level Protocols. IEEE

Computer 54, 5 (May 2021), 44–53. https://doi.org/10.1109/MC.2021.3052147
[13] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2022. Mandrake:

Multiagent Systems as a Basis for Programming Fault-Tolerant Decentralized
Applications. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS)

36, 1, Article 16 (April 2022), 30 pages. https://doi.org/10.1007/s10458-021-09540-
8

[14] Samuel H. Christie V, Daria Smirnova, Amit K. Chopra, and Munindar P. Singh.
2020. Protocols Over Things: A Decentralized Programming Model for the
Internet of Things. IEEE Computer 53, 12 (Dec. 2020), 60–68. https://doi.org/10.
1109/MC.2020.3023887

[15] Massimo Cossentino, Nicolas Gaud, Vincent Hilaire, Stéphane Galland, and
Abderrafiaa Koukam. 2010. ASPECS: An Agent-Oriented Software Process for
Engineering Complex Systems. Journal of Autonomous Agents and Multi-Agent

Systems (JAAMAS) 20, 2 (March 2010), 260–304. https://doi.org/10.1007/s10458-
009-9099-4

[16] Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. 2005.
Interaction Protocols as Design Abstractions for Business Processes. IEEE

Transactions on Software Engineering 31, 12 (Dec. 2005), 1015–1027. https:
//doi.org/10.1109/TSE.2005.140

[17] Nirmit Desai and Munindar P. Singh. 2008. On the Enactability of Business
Protocols. In Proceedings of the 23rd Conference on Artificial Intelligence (AAAI).

AAAI Press, Chicago, 1126–1131. http://www.aaai.org/Library/AAAI/2008/
aaai08-178.php

[18] Angelo Ferrando, Michael Winikoff, Stephen Cranefield, Frank Dignum, and
Viviana Mascardi. 2019. On Enactability of Agent Interaction Protocols: Towards
a Unified Approach. In Proceedings of the 7th International Workshop on Engineer-

ing Multi-Agent Systems (EMAS) (Lecture Notes in Computer Science, Vol. 12058).
Springer, Montréal, 43–64. https://doi.org/10.1007/978-3-030-51417-4_3

[19] FIPA. 2003. FIPA Interaction Protocol Specifications. http://www.fipa.org/
repository/ips.html FIPA: The Foundation for Intelligent Physical Agents. Ac-
cessed 2023-02-27.

[20] Stéphane Galland, Sebastian Rodriguez, and Nicolas Gaud. 2020. Run-time En-
vironment for the SARL Agent-Programming Language: The Example of the
Janus platform. Future Generation Computer Systems 107 (June 2020), 1105–1115.
https://doi.org/10.1016/j.future.2017.10.020

[21] Akin Günay and Amit K. Chopra. 2018. Stellar: A Programming Model for
Developing Protocol-Compliant Agents. In Proceedings of the 6th International

Workshop on Engineering Multi-Agent Systems (EMAS) (Lecture Notes in Computer

Science, Vol. 11375). Springer, Stockholm, 117–136. https://doi.org/10.1007/978-3-
030-25693-7_7

[22] Akın Günay, Michael Winikoff, and Pınar Yolum. 2015. Dynamically Generated
Commitment Protocols in Open Systems. Journal of Autonomous Agents and

Multi-Agent Systems (JAAMAS) 29, 2 (March 2015), 192–229. https://doi.org/10.
1007/s10458-014-9251-7

[23] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal Modular Actor
Formalism for Artificial Intelligence. In Proceedings of the 3rd International Joint

Conference on Artificial Intelligence (IJCAI). William Kaufmann, Stanford, 235–245.
http://ijcai.org/Proceedings/73/Papers/027B.pdf

[24] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchro-
nous Session Types. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL). ACM, San Francisco, 273–284.
https://doi.org/10.1145/1328438.1328472

[25] Michael N. Huhns, Nigel Jacobs, Tomasz Ksiezyk, Wei-Min Shen, Munindar P.
Singh, and Philip E. Cannata. 1992. Enterprise Information Modeling and Model
Integration in Carnot. In Enterprise Integration Modeling: Proceedings of the First

International Conference, Charles J. Petrie, Jr. (Ed.). MIT Press, Hilton Head, South
Carolina, 290–299. https://doi.org/10.7551/mitpress/2768.003.0036

[26] Thomas Christopher King, Akın Günay, Amit K. Chopra, and Munindar P. Singh.
2017. Tosca: Operationalizing Commitments over Information Protocols. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence

(IJCAI). IJCAI, Melbourne, 256–264. https://doi.org/10.24963/ijcai.2017/37
[27] Rodrigo N. Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and

Marcos Kalinowski. 2021. Data Management in Microservices: State of the Prac-
tice, Challenges, and Research Directions. Proceedings of the VLDB Endowment

14, 13 (Sept. 2021), 3348–3361. https://doi.org/10.14778/3484224.3484232
[28] Mark Little. 2017. Virtual Panel: Microservices in Practice. https://www.infoq.

com/articles/microservices-in-practice/. Accessed: 1 Mar 2023.
[29] JamesOdell, H. VanDyke Parunak, and Bernhard Bauer. 2001. RepresentingAgent

Interaction Protocols in UML. In Proceedings of the 1st International Workshop

on Agent-Oriented Software Engineering (AOSE 2000) (Lecture Notes in Computer

Science, Vol. 1957). Springer, Toronto, 121–140. https://doi.org/10.1007/3-540-
44564-1_8

[30] Lin Padgham and Michael Winikoff. 2005. Prometheus: A Practical Agent-
OrientedMethodology. InAgent-OrientedMethodologies, Brian Henderson-Sellers
and Paolo Giorgini (Eds.). Idea Group, Hershey, Pennsylvania, Chapter 5, 107–135.
https://doi.org/10.4018/978-1-59140-581-8.ch005

[31] Jeremy Pitt, Julia Schaumeier, and Alexander Artikis. 2012. Axiomatization of
Socio-Economic Principles for Self-Organizing Institutions: Concepts, Experi-
ments and Challenges. ACM Transactions on Autonomous and Adaptive Systems

(TAAS) 7, 4, Article 39 (Dec. 2012), 39 pages. https://doi.org/10.1145/2382570.
2382575

[32] Jerome H. Saltzer, David P. Reed, and David D. Clark. 1984. End-To-End Argu-
ments in System Design. ACM Transactions on Computer Systems 2, 4 (Nov. 1984),
277–288. https://doi.org/10.1145/357401.357402

[33] Munindar P. Singh. 1996. Synthesizing Distributed Constrained Events from
Transactional Workflow Specifications. In Proceedings of the 12th International

Conference on Data Engineering (ICDE). IEEE, New Orleans, 616–623. https:
//doi.org/10.1109/ICDE.1996.492212

[34] Munindar P. Singh. 1998. Agent Communication Languages: Rethinking the
Principles. IEEE Computer 31, 12 (Dec. 1998), 40–47. https://doi.org/10.1109/2.
735849

[35] Munindar P. Singh. 1998. A Customizable Coordination Service for Autonomous
Agents. In Intelligent Agents IV: Proceedings of the 4th International Workshop on

Agent Theories, Architectures, and Languages (ATAL-97) (Lecture Notes in Computer

Science, 1365). Springer, Providence, Rhode Island, 93–106. https://doi.org/10.
1007/BFb0026752

[36] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-
ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th

International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1162

https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.1007/s13740-019-00100-8
https://doi.org/10.1007/s13740-019-00100-8
https://doi.org/10.5555/1558109.1558129
https://doi.org/10.5555/3461017.3461040
https://doi.org/10.1002/9780470058411
https://doi.org/10.1002/9780470058411
https://doi.org/10.1007/s10458-020-09460-z
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.1007/1-4020-8058-1_6
https://doi.org/10.1145/2438653.2438655
https://doi.org/10.1613/jair.1.12212
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1109/MC.2020.3023887
https://doi.org/10.1109/MC.2020.3023887
https://doi.org/10.1007/s10458-009-9099-4
https://doi.org/10.1007/s10458-009-9099-4
https://doi.org/10.1109/TSE.2005.140
https://doi.org/10.1109/TSE.2005.140
http://www.aaai.org/Library/AAAI/2008/aaai08-178.php
http://www.aaai.org/Library/AAAI/2008/aaai08-178.php
https://doi.org/10.1007/978-3-030-51417-4_3
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
https://doi.org/10.1016/j.future.2017.10.020
https://doi.org/10.1007/978-3-030-25693-7_7
https://doi.org/10.1007/978-3-030-25693-7_7
https://doi.org/10.1007/s10458-014-9251-7
https://doi.org/10.1007/s10458-014-9251-7
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.7551/mitpress/2768.003.0036
https://doi.org/10.24963/ijcai.2017/37
https://doi.org/10.14778/3484224.3484232
https://www.infoq.com/articles/microservices-in-practice/
https://www.infoq.com/articles/microservices-in-practice/
https://doi.org/10.1007/3-540-44564-1_8
https://doi.org/10.1007/3-540-44564-1_8
https://doi.org/10.4018/978-1-59140-581-8.ch005
https://doi.org/10.1145/2382570.2382575
https://doi.org/10.1145/2382570.2382575
https://doi.org/10.1145/357401.357402
https://doi.org/10.1109/ICDE.1996.492212
https://doi.org/10.1109/ICDE.1996.492212
https://doi.org/10.1109/2.735849
https://doi.org/10.1109/2.735849
https://doi.org/10.1007/BFb0026752
https://doi.org/10.1007/BFb0026752

IFAAMAS, Taipei, 491–498. https://doi.org/10.5555/2031678.2031687
[37] Munindar P. Singh. 2013. Norms as a Basis for Governing Sociotechnical Systems.

ACM Transactions on Intelligent Systems and Technology (TIST) 5, 1, Article 21
(Dec. 2013), 23 pages. https://doi.org/10.1145/2542182.2542203

[38] Munindar P. Singh and Amit K. Chopra. 2020. Clouseau: Generating Commu-
nication Protocols from Commitments. In Proceedings of the 34th Conference

on Artificial Intelligence (AAAI). AAAI Press, New York, 7244–7252. https:
//doi.org/10.1609/aaai.v34i05.6215

[39] Benjamin Smith. 2021. Getting started with serverless for developers: Part 2 - The
business logic. https://aws.amazon.com/blogs/compute/getting-started-with-
serverless-for-developers-part-2-the-business-logic/. Accessed: 1 Mar 2023.

[40] Danny Weyns, Andrea Omicini, and James Odell. 2007. Environment as a First
Class Abstraction inMultiagent Systems. Journal of Autonomous Agents andMulti-

Agent Systems (JAAMAS) 14, 1 (Feb. 2007), 5–30. https://doi.org/10.1007/s10458-
006-0012-0

[41] Michael Winikoff. 2007. Implementing Commitment-Based Interactions. In
Proceedings of the 6th International Joint Conference on Autonomous Agents and

MultiAgent Systems (AAMAS). IFAAMAS, Honolulu, 868–875. https://doi.org/10.
1145/1329125.1329283

[42] Michael Winikoff, Nitin Yadav, and Lin Padgham. 2018. A New Hierarchical
Agent Protocol Notation. Journal of Autonomous Agents and Multi-Agent Systems

(JAAMAS) 32, 1 (Jan. 2018), 59–133. https://doi.org/10.1007/s10458-017-9373-9

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1163

https://doi.org/10.5555/2031678.2031687
https://doi.org/10.1145/2542182.2542203
https://doi.org/10.1609/aaai.v34i05.6215
https://doi.org/10.1609/aaai.v34i05.6215
https://aws.amazon.com/blogs/compute/getting-started-with-serverless-for-developers-part-2-the-business-logic/
https://aws.amazon.com/blogs/compute/getting-started-with-serverless-for-developers-part-2-the-business-logic/
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1145/1329125.1329283
https://doi.org/10.1145/1329125.1329283
https://doi.org/10.1007/s10458-017-9373-9

	Abstract
	1 Introduction
	2 Information Protocols Introduced
	3 The Kiko Programming Model
	3.1 Decision-Making Challenges and Solutions
	3.2 Adapter Implementation

	4 Operational Semantics
	5 Discussion
	References

