
Feedback-Guided Intention Scheduling for BDI Agents
Michael Dann
RMIT University

Melbourne, Australia
michael.dann@rmit.edu.au

John Thangarajah
RMIT University

Melbourne, Australia
john.thangarajah@rmit.edu.au

Minyi Li
RMIT University

Melbourne, Australia
minyi.li@rmit.edu.au

ABSTRACT
Intelligent agents, like those based on the popular BDI agent par-
adigm, typically pursue multiple goals in parallel. An intention
scheduler is required to reason about the possible interactions be-
tween the agent’s intentions tomaximize some utility. An important
consideration when scheduling intentions is the user’s preferences
over the goals and the ways in which the goals are achieved. These
preferences are generally unknown in advance, time-consuming to
elicit, hard to model, and difficult to incorporate into an intention
scheduler. In this paper, we present aMonte Carlo Tree Search based
intention scheduler (pref-MCTS) that is able to learn the user’s
preferences over intention schedules via low-burden comparative-
type queries. It incorporates the learned preferences in guiding the
search, leading to execution policies that are optimized towards
the user’s preferences and expectations. We evaluate our approach
using an artificial oracle that shows that pref-MCTS improves
over state-of-the-art baselines, even when provided with a limited
number of preference queries and noisy labels. We also conducted
a user study and showed that pref-MCTS is able to learn user
preferences and generate schedules that are preferred by the users
in real-time.

KEYWORDS
Preference-based reasoning; Intention scheduling; Learning prefer-
ences.

ACM Reference Format:
Michael Dann, John Thangarajah, and Minyi Li. 2023. Feedback-Guided
Intention Scheduling for BDI Agents. In Proc. of the 22nd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023),
London, United Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Autonomous agents typically serve to automate tasks for some hu-
man users. The BDI (Belief-Desire-Intention) [17] model of agency
is a popular and mature agent paradigm that is the basis of several
agent programming languages, e.g., JACK [31], JadeX [16] and Ja-
son [2]. BDI agents are characterized by goals that the agent aims
to achieve, and plans that are recipes for how to achieve those goals.
When an agent commits to achieving a goal, that goal becomes
an intention, and a plan is chosen from a set of possible plans to
achieve that intention.

A key feature of BDI agents is their ability to pursue multiple
intentions simultaneously. This provides concurrency and flexibility
in large scale applications. However, the interleaving of steps in
different intentions may result in conflicts or synergies, e.g., where

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

the execution of a step in one intentionmakes the execution of a step
in another intention impossible. These interactions are important
considerations when scheduling and interleaving intentions.

One significant line of work within BDI agent scheduling centres
around using goal-plan trees (GPTs) [23] to reason about interac-
tions. Various methods have been attempted, including summary-
information-based scheduling [22, 24], coverage-based schedul-
ing [25, 30], and Monte Carlo Tree Search (MCTS)-based schedul-
ing [9–11, 32, 33]. None of this work, however, considers preferences
over the goals and the ways in which the goals are achieved. Visser
et al. [28, 29] use a summary-information based approach to sched-
ule intentions such that some pre-specified preferences are satisfied.
For example, a travel-assistant agent might attempt to satisfy pref-
erences related to the mode of transport (e.g., train, plane, car)
when booking transport for a holiday. However, this approach was
simplistic and limited to pre-specified preferences over some fixed
properties, such as mode of transport, class of accommodation, etc.

In contrast, user preferences over goal achievements can be com-
plex, e.g., the preference of a goal achievement might be conditional
on the achievement of another; the relative urgency of the goals
might depend on the current context; and so on. User preferences
are also time-consuming to elicit, difficult to capture in a preference
language, and more importantly, users may not realise or be able
to express their preferences until the scheduling task is in progress.
Therefore, relying purely on humans to handcraft preferences or
preference relations is impractical, especially in complex problem
domains. However, this is an important challenge as we develop
autonomous systems that assist humans.

We address these limitations and propose a novel MCTS-based
intention scheduler, pref-MCTS, that: (a) learns the user’s prefer-
ences over intention schedules during execution, via low-burden
comparison-type queries; and (b) seamlessly incorporates the learned
preferences into strategies that guide the search, leading to exe-
cution policies that are optimized toward the user’s preferences
and expectations. The preference learner and the Monte Carlo Tree
Search component interleave with each other throughout the sched-
uling process, promoting mutual enhancement in both learning
and scheduling performance.

We evaluate pref-MCTS in two ways: (i) via an artificial “oracle”
function that mimics a human user; and (ii) via a study with real
human participants. The use of an oracle function enables fine-
grained control over the experimental parameters and facilitates
the reproduction of results. Moreover, it allows us to stress test
pref-MCTS in a range of scenarios with different query budgets
and noisy preference labels. The results of this experiment show
that, after a limited number of queries, pref-MCTS aligns better
with the user’s preferences than state-of-the-art baselines.

The human user study seeks to evaluate the practical effective-
ness of pref-MCTS in a setting where the participants are asked

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1173

to cast their preferences in real-time. The results from this study
show that pref-MCTS: (i) is able to generate outcomes that are
strongly preferred by human users, even after limited comparison
queries; (ii) is not burdensome and can be used in real-time; and
(iii) can account for preference relationships that would otherwise
be non-trivial to elicit from human users.

2 PRELIMINARIES AND RELATEDWORK
In BDI-based agent programming languages (e.g. JACK [31], JadeX
[16]), the behaviour of an agent is specified in terms of beliefs,
goals, and plans. An agent has goals that represent states of the
environment it aims to achieve. The agent’s information about
the environment (and itself) are modelled as beliefs; and plans are
recipes for the agent to modify the environment in order to achieve
its goals.

Plans are composed of steps, which are either primitive actions
that directly change the agent’s environment, or subgoals that are
in turn achieved by other plans. This relationship between a top-
level goal, its plans and subgoals defines a tree structure for each
top-level goal, termed a goal-plan tree (GPT) [23, 24]. When the
agent commits to a goal, an intention is formed that essentially
instantiates a GPT for that goal.

2.1 Goal-Plan Trees
Intuitively, each GPT, 𝑡𝑖 , captures the various ways in which the
agent may achieve a particular goal. At the root is a goal node
representing the top-level goal, and its children are plan nodes
representing the potential plans to achieve that goal. The children
of plan nodes may be action nodes or further goal nodes (repre-
senting subgoals). The next step pointer, 𝑥𝑖 , stores the current state
of progress. It initially points to the top-level goal, then updates
according to the execution path chosen. If the next step is an action,
it is performed in an atomic manner. If the next step is a subgoal,
a (sub)plan is selected to achieve the subgoal, and the steps in the
(sub)plan are then executed, in a similar manner. In essence, this
corresponds to progressively selecting an execution path through
the goal’s GPT structure. For an extended definition of goal-plan
trees, see [32].

2.2 Intention Selection
An agent will often pursue multiple intentions concurrently and
the paths chosen to achieve these intentions can interact with each
other, possibly hindering the achievement of some intentions, e.g.,
if two intentions compete for the same resource [26]. The intention
scheduling problem is the problem of choosing a path through each
GPT and finding a suitable interleaving of the steps in each of the
paths, so as to maximise some utility. For instance, a common utility
is to maximise the total number of goals achieved [9, 11, 22] or to
balance the elapsed time among the goals achieved [32]. Visser
et al. [28, 29] considered maximising a fixed set of pre-specified
preferences, as mentioned in the introduction of this paper. In
contrast, the approach we present in this paper does not know or
assume preferences of the user but instead elicits preferences over
potential trajectories during the scheduling process, as we detail
ahead.

2.3 MCTS-based Intention Scheduling
Similar to Yao and Logan [32], our approach to intention sched-
uling is built around Single-Player Monte-Carlo Tree Search (SP-
MCTS) [18]. The SP-MCTS-based scheduler takes four parame-
ters as input: 𝐸, the current state of the agent’s environment; 𝐼 =
{(𝑡1, 𝑠1), ..., (𝑡𝑛, 𝑠𝑛)}, a set of GPTs and their current step pointers; 𝛼 ,
the number of node expansions (i.e. iterations) to be performed; and
𝛽 , the number of simulations to be performed per node expansion.

Each node of the MCTS tree represents a state, with the root
node (denoted by [0) representing the current state. The edges
in the search tree represent either the selection of a plan or the
execution of an action, and connect the parent node representing
the original state to the resultant child node. Starting from [0, the
algorithm iteratively builds a search tree based on stochastic simu-
lations. Each iteration involves the following process:

Selection: The selection phase selects a leaf node [𝑒 for expansion.
The selection is based on the reward values backpropagated from
simulations to each node [in the search tree, and adopts the UCB1
formula [5] to balance the exploration of less visited nodes with
the exploitation of high reward nodes:

UCB1([) = s([) + 𝑐
√

2 ln𝑁
𝑚[

(1)

where𝑚[is the number of visits to node [so far, s is an aggregate
score function that measures the average quality of all simulations
passing through [, 𝑁 is the total number of simulations performed
so far, and 𝑐 controls the degree of exploration. The selection starts
from the root node [0 and progressively selects the child node with
the highest UCB1 value until a leaf node [𝑒 is reached.

Expansion: Once a leaf node [𝑒 is selected, a list of nodes repre-
senting the possible next steps from [𝑒 are added as children of [𝑒 .

Simulation: In this phase, a child node [𝑐 of [𝑒 is randomly cho-
sen for simulation. The simulation starts from [𝑐 and selects ex-
ecutable steps at random until no further action or plans can be
executed, i.e., a terminal state is reached and a trajectory is gener-
ated. Each generated trajectory is associated with a performance
vector v = (𝑣1, · · · , 𝑣𝑝), which is used to calculate the trajectory’s
return. In much previous work on MCTS-based intention schedul-
ing [9, 11, 32], v is a binary vector that captures the achievement
status of all top-level goals in the environment, and the return is just
the sum of this vector, i.e. the number of top-level goals achieved.

Back-propagation: After 𝛽 simulations, the return of each gen-
erated trajectory is backpropagated to all nodes in the search tree
that were traversed, so that the visit count and the aggregate score
s can be updated accordingly.

After 𝛼 iterations, the child node of [0 with the best quality (ac-
cording to s) will be selected, and the corresponding (𝑡∗, 𝑠∗) ∈ 𝐼

will be executed by the scheduler.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1174

3 INTENTION SCHEDULINGWITH
FEEDBACK

Often, a user has different criteria to evaluate the quality of a tra-
jectory, and these criteria might be complex. For example, the user
might place more importance on some goals compared to others.
Similarly, they might prefer certain goals to be achieved more
quickly than others. These preferences might also be conditional,
e.g., the achievement of a goal might only be desirable if some
other goal was also achieved. However, most existing scheduling
approaches are merely designed to maximise the number of goals
achieved. While Yao and Logan [32] introduce a more sophisticated
approach that aims to achieve a “fair” interleaving of plans (one
that progresses all intentions at roughly the same speed), this does
not account for situations where the user may want one goal to be
prioritised over another.

Instead of assuming that an evaluation function is ready and
given, we enhance the existing work by bringing a human into
the loop so as to elicit their preferences. A key advantage of the
proposed approach is that it makes no assumptions about the types
of preferences that a user might have; so long as all relevant criteria
are captured by the trajectories’ performance vectors, the approach
is capable of learning arbitrary preference functions.

3.1 Eliciting a Preference Function
To facilitate user-friendly and low burden preference elicitation,
we apply Pairwise Comparison, where the user indicates their pref-
erence for one option over another. This is considered one of the
lowest burden elicitation methods [14] and has been applied in var-
ious domains including but not limited to requirement engineering
[1, 13], multi-objective optimisation [20], and dialogue system eval-
uation [34]. To elicit scheduling preferences, the user is presented
with two trajectories, 𝜏𝑘 and 𝜏𝑙 (and their associated performance
vectors v𝑘 and v𝑙), and prompted to indicate which one they prefer.
Their responses are recorded in a database 𝐷 of triples (𝜏𝑘 , 𝜏𝑙 , `),
where ` is a distribution over {𝑘, 𝑙} that indicates the user’s prefer-
ence. If the user prefers one trajectory over the other, then ` puts
all of its mass on that choice. If they regard the two trajectories as
equally preferable, then ` is uniform. If they indicate that the two
trajectories are incomparable, then the pair is ignored.

To give a concrete example, suppose that a user is asked to
provide preferences for a robot that performs household chores.
The performance vectors in this case might capture the times at
which various tasks were completed, e.g., in trajectory 𝜏𝑘 , the dishes
were washed by 9:30am and the vacuuming was done by 10:30am,
while in trajectory 𝜏𝑙 , the vacuuming was done by 9:45am and the
dishes were washed by 10:15am. If the user does not mind which
order the tasks are completed in and only wants the combined
chores to be completed as quickly as possible, they will prefer 𝜏𝑙
over 𝜏𝑘 , and thus ` (𝑘) = 0, ` (𝑙) = 1. If, on the other hand, they
only want the dishes to be washed by 9.30am (ready for breakfast
use), they will instead prefer 𝜏𝑘 over 𝜏𝑙 , i.e., ` (𝑘) = 1, ` (𝑙) = 0.

Our training approach aims to acquire a preference function that
can be used to evaluate trajectories for an MCTS-based scheduler.
We follow the Bradley-Terry model [3] for estimating preference
functions based on pairwise preference responses. This model as-
sumes that the probability of the user preferring one trajectory over

Figure 1: The architecture of the preference function.

another depends exponentially on the value of some latent pref-
erence function, 𝑟 , such that the probability of 𝜏𝑘 being preferred
over 𝜏𝑙 is given by a softmax function:

𝑃 (𝜏𝑘 ≻ 𝜏𝑙) =
𝑒𝑟 (v𝑘)

𝑒𝑟 (v𝑘) + 𝑒𝑟 (v𝑙)
(2)

where v𝑘 and v𝑙 are the performance vectors of 𝜏𝑘 and 𝜏𝑙 .
For those familiar with the chess rating system, or online games

that have a ladder system, the value 𝑟 (v𝑖) returned by the preference
function can be interpreted as an Elo rating (whose calculation is
also based on the Bradley-Terry model [8]) or a match making
rating (MMR) [27] for the performance vector v𝑖 .

To train the preference function from the database of user re-
sponses, we adopt the neural network architecture shown in Figure 1.
The two parallel channels, highlighted in yellow, each take a per-
formance vector v as input and return a preference score estimate
𝑟 (v). Per the Bradley-Terry model, the preference score estimates
are then fed through a softmax layer to determine the probabilities
of the trajectories being preferred.

To ensure that the network’s predictions are invariant to the
order in which the trajectories are presented, we adopt a Siamese
architecture [4, 15, 21] that shares parameters across the parallel
channels. This means that, for example, if the network outputs
probabilities of (90%, 10%) for input (v𝑘 , v𝑙), it is guaranteed to
output (10%, 90%) for the reversed input (v𝑙 , v𝑘).

The network is trained by minimising the cross-entropy loss
between the predicted preferences and the user’s actual preference
responses to the pairwise comparison queries:

𝑙𝑜𝑠𝑠 (𝑟) = −
∑

(𝜏𝑘 ,𝜏𝑙 ,`) ∈D
` (𝑘)𝑙𝑜𝑔𝑃 (𝜏𝑘 ≻ 𝜏𝑙) + ` (𝑙)𝑙𝑜𝑔𝑃 (𝜏𝑙 ≻ 𝜏𝑘) (3)

Since the number of pairwise comparisons is assumed to be tractable
(we do not wish to burden the user with a large number of queries),
we train from the full data set rather than performing a train-test
split. We train for a fixed number of iterations and select the model
with the least training error.

3.2 Incorporating Preferences into MCTS
We now turn to the task of incorporating the learned preference
function into an MCTS-based scheduler, so as to schedule according
to the user’s preferences. We use Dann et al.’s [11] scheduler as

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1175

a starting point, since its performance is state-of-the-art and its
source code is publicly released.

The key modification we need to make is to change the aggre-
gate score function, s, used in the selection phase of MCTS. For
each node [under consideration, instead of calculating the average
number of goals achieved (as in previous work that solely aims to
maximise this quantity [9, 11, 22]), our preference-based scheduler
calculates the average value of the preference function for all tra-
jectories passing through [. That is, the aggregate score function s
used in the UCB1 formula (Preliminaries, Equation 1) becomes:

s([) =
∑𝑚
𝑖=1 𝑟 (v𝑖)
𝑚

(4)

where {v1, . . . , v𝑚} are the performance vectors for all trajectories
passing through [𝑒 .

While this change in itself is straightforward, it introduces a
subtle issue regarding the algorithm’s exploration rate: In the UCB1
formula, the degree of exploration depends not only on the explo-
ration constant, 𝑐 , but rather on the relative scale of 𝑐 and s. The
larger the scale of the score function s, the larger the exploration
constant must be. Since the scale of the learned preference func-
tion is dependent on the data set, this makes it difficult to pick
a one-size-fits-all value for 𝑐 . To address this, after training the
preference function 𝑟 , we apply it to a fixed set of reference trajec-
tories and normalise its output to have zero mean and unit variance.
This allows us to achieve a similar degree of exploration across
experimental domains while adopting a fixed value of 𝑐 .

3.3 Iteratively Incorporating Feedback
One last detail that remains is the question of how the human user
fits into the overall training procedure. Since the number of pairwise
comparisons needed to learn an accurate preference function may
be difficult to estimate upfront, we propose an iterative approach,
as summarised in Algorithm 1.

To begin with, some default scheduler is used to generate an
initial set of trajectories (lines 9–10). In our experiments, we use

Algorithm 1 Overall Training Procedure
1: var: max number of pairwise comparisons to gather, 𝑁𝑡𝑜𝑡

2: var: number of new trajectories scheduled per epoch, 𝑁𝑡

3: var: number of new pairwise comparisons per epoch, 𝑁𝑐

4:
5: Initialise trajectory set, T← ∅
6: Initialise training database, 𝐷 ← ∅
7:
8: while |𝐷 | < 𝑁𝑡𝑜𝑡 and user is not satisfied do
9: Schedule 𝑁𝑡 trajectories and append them to T. (Use
10: default scheduler for the first iteration.)
11:
12: for 𝑖 = 1 to 𝑁𝑐 do
13: Sample two trajectories (𝜏𝑘 , 𝜏𝑙) uniformly from T.
14: Elicit preference ` from user.
15: 𝐷 ← 𝐷 ∪ (𝜏𝑘 , 𝜏𝑙 , `)
16:
17: Train a preference function 𝑟 from 𝐷 .
18: Normalise 𝑟 w.r.t. default trajectories.

Dann et al.’s [11] unmodified scheduler as the default. The user is
then asked to provide feedback on a number of trajectory pairs,
drawn uniformly from the set of generated trajectories (lines 12–
15). 1This feedback is used to train a preference function (line 17),
which is normalised using the default trajectories as a reference set
(line 18). Lastly, the entire process is repeated iteratively, using the
most recently trained preference function to perform scheduling.

The main benefit of this iterative approach is that the user can
choose to terminate the process once they are satisfied with the
performance of the scheduler, which keeps the amount of feedback
required to a minimum. We also note that too much iteration may
prove burdensome for the user, i.e., they may prefer to provide
feedback in larger batches, which can be achieved by setting 𝑁𝑐 to
a larger value in Algorithm 1. We investigate the trade off between
feedback frequency and scheduling quality in our experiments.

4 EVALUATION - TEST ORACLE
In order to evaluate our approach we conducted two experiments:
(i) an empirical evaluation with the use of a test oracle; and (ii) an
evaluation with human participants. We describe the evaluation
with the test oracle here and the user study in the next section.

The aim of the first experiment was to answer the following
questions:

(1) Is (pref-MCTS) capable of learning an accurate preference
function from a tractable number of pairwise comparisons?

(2) How does varying the feedback frequency affect the perfor-
mance of pref-MCTS?; and

(3) How robust is pref-MCTS to inconsistent feedback?

For this initial experiment, rather than enlisting human partici-
pants to judge trajectory pairs, we mimic the end user via an oracle
function 𝑜 (v) that maps a performance vector to a score value. This
approach to evaluating preference learners is not new [7], and offers
several advantages compared to enlisting human users:

• It allows for easier reproduction of results, which is necessary
for others to continue work on this topic.
• It provides a natural performance measure for the experi-
ments (how well the schedulers maximise the oracle score)
and gives us a natural best-case baseline to compare against,
as described shortly.
• With an oracle, Algorithm 1 can be run many more times
than is feasible with human participants, allowing us to
calculate granular results with tight error bounds. (In our
later evaluation with human participants, we report only
coarse, high-level findings.)

A further advantage of employing an oracle is that we can study
the effect of inconsistent user feedback in a scientific way. To ac-
count for the fact that a user’s judgements may not always be
consistent with some internal score function, we incorporate noise
into the labelling process. For each trajectory pair queried, we add
Gaussian noise to the oracle scores, then determine the preference
by comparing the noisy scores:

1Uniform sampling of trajectory pairs may appear simplistic, but in preliminary exper-
iments it performed surprisingly well. This choice is discussed further in the appendix.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1176

𝑠𝑘 = 𝑜 (vk) + 𝑛𝑘 ∼ N(0, 𝜎2) (5)

𝑠𝑙 = 𝑜 (vl) + 𝑛𝑙 ∼ N(0, 𝜎2) (6)

` (𝑘) =

0, if 𝑠𝑘 > 𝑠𝑙

1, if 𝑠𝑘 < 𝑠𝑙

0.5, otherwise
` (𝑙) = 1 − ` (𝑘) (7)

4.1 Oracles Considered
Although much previous work on intention scheduling has focused
on goal achievement, a user’s preferences may depend on additional
criteria. Hence we consider three different types of oracle function
in our experiments:
• Weighted goals: The oracle scores depend solely on which
goals were achieved, with different weightings given to the
goals.
• Contextual weighted goals: Same as above, except that the
goal weightings are permuted based on an environment vari-
able, which in our experiments can take three possible values.
For example, the environment variable might represent the
weather (sunny / cloudy / rainy), where watering the garden
has less value on a rainy day.
• Time taken: The oracle scores are a non-linear function of
the time taken to achieve each goal.

The exact mathematical formulae for the oracle functions are pro-
vided in the appendix.

4.2 Baselines
We benchmark our scheduler against two alternatives:
• Dann et al.’s [11] scheduler, which strives to maximise goal
achievement and was shown to outperform several com-
peting schedulers at this task. Henceforth, we refer to this
scheduler as the MCTS-goals baseline.
• A modified, “cheat” version of Dann et al.’s [11] scheduler
that has direct knowledge of the oracle function and seeks to
maximise it. We refer to this as the MCTS-oracle baseline.

Since the first of these schedulers also serves as the default scheduler
for the first iteration of pref-MCTS, what one should expect to
see is a learning curve where pref-MCTS initially matches the

MCTS-goals baseline, then gradually improves towards the MCTS-
oracle baseline.

4.3 Environment Details
To provide a thorough, varied evaluation of our approach, we em-
ploy a synthetic goal-plan tree generator. A fresh set of GPTs is
generated at the start of each scheduling episode, so that the overall
training task mimics a situation where the goals are semantically
consistent across episodes, but the steps required to achieve them
vary. We use the same GPT generator as employed in several recent
papers [9, 11, 32]. Each scheduling task contains 10 GPTs, with
30 environment variables shared across the trees. Each GPT has a
depth of 3, with 2 plans for every goal. Each plan contains 3 actions
and 1 subgoal.

For the weighted goals and contextual weighted goals oracles,
the tasks need to be difficult enough that the schedulers do not
consistently achieve all goals, since this would render comparison
impossible. Therefore, for experiments involving these oracles, we
impose a time limit on the trajectories that makes it challenging to
achieve all goals.

Full training hyperparameters (choice of optimiser, learning rate,
etc.) are provided in the appendix. Source code is available at:
https://github.com/mchldann/FeedbackGuidedIntentionScheduling.

4.4 Results
The learning progress of pref-MCTS under the three different
oracle types is shown in Figure 2. In these experiments there is no
noise added to the oracle scores; we investigate the impact of noise
later. Dashed lines indicate the performance of the baselines (which
do not learn, hence their performance is fixed), while each of the
stepped curves shows the result for a different value of 𝑁𝑐 (the
number of new pairwise comparisons elicited per iteration). The
schedulers are evaluated in terms of how well they maximise the
oracle score, and each curve is averaged over 50 individual trials.
Shaded regions indicate bootstrapped 95% confidence intervals,
calculated per Seaborn’s lineplot().

Under the weighted goals oracle, which has the least functional
complexity, pref-MCTS makes fast progress (Figure 2a). Its sched-
uling performance improves drastically after only tens of samples,
and matches that of the MCTS-oracle baseline after around 80
samples.

(a) Weighted goals (b) Contextual weighted goals (c) Time taken

Figure 2: Learning curves for pref-MCTS under different types of oracle function.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1177

Figure 3: The impact of varying the noise level (𝜎) under the
time taken oracle.

Modifying the oracle so that the goal weightings are contextual
has a noticeable impact on sample efficiency (Figure 2b). Here, pref-
MCTS takes around 250 samples to reach its peak performance, or
roughly three times longer than under the previous oracle. This is
a logical result, given that the context variable takes three possible
values. It also suggests that our approach could run into sample
efficiency issues if there were a much greater number of contexts.
However, in most imaginable real-world scenarios, it is unlikely
that all goal weightings would vary significantly under different
contexts, as is the case here. Realistically, there are likely to be some
goals that are important regardless of context, in which case the
learned preference function ought to generalise at least partially.
Indeed, this assumption is consistent with the results of our later
user study conducted with human participants.

Also note that with the increase in functional complexity, pref-
MCTS no longer quite reaches the performance of MCTS-oracle.
However, it still improves significantly and closes most of the gap
between MCTS-goals and MCTS-oracle.

The most striking result under the time taken oracle (Figure 2c)
is that the feedback frequency has much more of an impact than
in the previous experiments, with 𝑁𝑐 = 100 significantly underper-
forming 𝑁𝑐 = 5 and 𝑁𝑐 = 25. This likely relates to the quality of the
trajectories generated by the default scheduler (MCTS-goals) at
the start of training: Under the previous oracles, there is a reason-
able chance of MCTS-goals generating high-quality trajectories
through chance, since the default scheduler used to generate the
initial trajectories may luckily complete goals with large weight-
ings. However, to generate a high-quality trajectory under the time
taken oracle, the scheduler must achieve certain goals quickly. This
is unlikely to occur through chance, because the default scheduler
is not designed to optimise goal timings. Accordingly, the prefer-
ence function is initially trained from a data set containing few
high-quality trajectories, which in turn makes it a poor judge of
such trajectories. Increasing the feedback frequency mitigates this
problem, because pref-MCTS improves quickly and the data set
does not become saturated with poor-quality trajectories.

Figure 3 shows the impact of adding noise to the training labels
under the time taken oracle. Table 1 provides additional context,
showing how the standard deviation of the noise affects the mis-
classification rate (the proportion of the training labels, `, that are

Noise std. dev. Misclassification rate

0.25 6.4%
0.50 10.9%
1.00 15.6%
2.00 25.1%

Table 1: Misclassification rates for the time taken oracle.

inverted by the noise). Note that the maximum possible misclassifi-
cation rate due to noise is 50% (not 100%) because half the samples
will still be classified correctly under random labelling.

The results are essentially consistent with what one would ex-
pect; as the noise grows, the performance of pref-MCTS dete-
riorates. However, they also show that pref-MCTS can tolerate
a reasonable degree of inconsistent labelling; until the misclas-
sification rate reaches around 10–15%, its performance is barely
affected. Moreover, while its performance degrades under heavy
noise (𝜎 = 2.0), it still outperforms the MCTS-goals baseline.

4.5 What Does the Preference Predictor Learn?
While pairwise comparison is a low burden method for preference
elicitation, one of its limitations is that it cannot capture preference
strength. For example, suppose that the user does in fact base their
judgements on some internalised score value, similar to the oracle.
If they consider trajectories 𝜏𝑎 , 𝜏𝑏 and 𝜏𝑐 to have scores of 0.1, 0.2
and 10.0 respectively, then they will express preferences of 𝜏𝑐 ≻ 𝜏𝑏
and 𝜏𝑏 ≻ 𝜏𝑎 . However, this does not capture the fact that the former
of these preferences is much stronger than the latter. Accordingly,
the best we can hope for is that the learned preference function will
be monotonic increasing with respect to the user’s score. Of course,
if it were practical to elicit numerical score values from the user
then our approach could be simplified; one would just train directly
from the numeric labels, rather than using the Bradley-Terry model.
An implicit assumption throughout this work is that this is not
feasible.

In light of the above discussion, we decided to investigate the
shape of the function that pref-MCTS learns under different con-
ditions by plotting the learned preference value versus the oracle
score (Figure 4).

The function is taken at the end of training (after 300 samples)
and each point represents one of the trajectories generated during
training. The discrete vertical bands arise from the fact that the goal
achievement oracles yield only a fixed number of distinct outputs.

Comparing Figure 4b to Figure 4a, the effect of adding a context
variable is noticeable, with the learned function becoming more
spread out and the greater overlap between bands signifying more
prediction errors. While not shown here, a similar effect occurs
when adding noise to the training labels. Interestingly, both plots
have a roughly linear trend, despite what was noted above about
the approach failing to capture the scale of preferences. However,
this likely only reflects the fact that there are no major gaps in the
score functions of oracles considered, in contrast to our extreme
example, where there was a large jump in score from 𝜏𝑏 to 𝜏𝑐 .

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1178

(a) Weighted goals

(b) Contextual weighted goals

Figure 4: Learned score versus oracle score after 300 samples.

5 EVALUATION - USER STUDY
Whilst the above evaluation employing an artificial oracle allowed
us to stress test pref-MCTS with complex functions and validate
its effectiveness against the state-of-the-art of intention schedulers,
we also wanted to test pref-MCTS with real human users to test
its practical effectiveness in real-time.

5.1 Setup
For this study, we presented users with trajectories from a simpli-
fied version of the game Super Mario World2, with an automated
player controlling Mario. Mario has four goals: (i) complete level;
(ii) find secret area; (iii) find Yoshi; and (iv) find mushroom. The
performance vectors presented to the participants conveyed four
pieces of information: (i) the goal completion statuses (ii); the level
completion time (if applicable); (iii) the number of coins earned;
and (iv) the number of enemies defeated. Figure 5 illustrates some
of these characteristics. pref-MCTS was used to schedule the au-
tomated player’s actions, with the human participants providing
their feedback by comparing and selecting their preferred trajecto-
ries. We recruited 10 adults to participate in this study, comprising
colleagues and students. All possessed a background in computer
science but had limited knowledge of intention scheduling. Partici-
pants were not told any details about the underlying algorithm.

2https://en.wikipedia.org/wiki/Super_Mario_World

Figure 5: SuperMarioWorld illustration - (a)Mario (b)Mush-
room (c) Yoshi (d) Beanstalk leading to secret area.

5.2 Process
We first generate an initial batch of trajectories using the MCTS-
goals scheduler, which is configured to maximise the total number
of goals achieved, i.e., level completion, mushroom found, yoshi
found, and secret area found.

The user is then prompted with 10 randomly sampled pairs of
trajectory performance vectors, each specifying the goals achieved
and the three quantitative variables: completion time, coins, and
enemies defeated. For each pair, the user is asked whether they
prefer one trajectory over the other, or whether they have equal
preference over the pair. Figure 6 illustrates a sample preference
query. We also ask and note a brief rationale for the choice.

Based on the feedback received, pref-MCTS generates a first
batch of trajectories incorporating user preferences. Another 10
pairs are then sampled and presented to the user for a second round
of preference collection, following the same procedure as in the first
round. Using this second round of feedback, pref-MCTS generates
a second batch of trajectories incorporating user preferences.

Finally, users are prompted to compare the initial batch of sample
trajectories with the trajectory samples generated after the first and
the second iterations of user feedback collection (i.e., first batch and
second batch), respectively. We do this by presenting the users with
the average achievements of each trajectory batch, including: (i) the
percentage of level completion; (ii) the percentage of trajectories
where the secret area was found; (ii) the percentage of trajectories
where Yoshi was found; (iv) the percentage of trajectories where
the mushroom was found; (v) the average time use; (vi) the average
number of coins earned; and (vii) the average number of enemies
defeated. Figure 7 shows an example comparison between trajectory
batches generated in different iterations.

Users were asked whether they prefer the initial batch of tra-
jectories or the preference-based trajectories generated after each
feedback iteration, and to what extent they prefer or do not prefer
one over the other: slightly or strongly. We also asked for a brief
rationale for why they would prefer one batch over the other.

5.3 Results
The results of the qualitative evaluation of the preference-based
trajectories compared to the initial batch are presented in Figure 8.
All of the users preferred the trajectories generated by pref-MCTS
over the initial batch, with a majority (70%) strongly preferring the

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1179

Figure 6: Sample performance trajectory pair shown to the user when requesting feedback.

Figure 7: Sample comparision query of batches of trajectories with average performance values.

preference-based batches. This validates the practical usefulness
and effectiveness of our pref-MCTS scheduler.

The results show that pref-MCTS was able to learn prefer-
ences quickly, generating strongly preferred outcomes after just
one round of limited (10) preference queries. On the other hand, the
strong outcomes from the first batch meant that there was no no-
ticeable improvement from the second batch, since the scheduler’s
performance was already strong.

We note that for one of the three participants who ‘slightly
preferred’ the first batch over the initial batch, the initial batch of
trajectories already achieved a rate of 80% level completion, due to
the randomness of the trajectory generation. Level completion was
a key preference of that user, hence it was hard to for them to see a
strong improvement.

We also note that the users were able to cast their preference
votes quickly, with the total time for evaluating 20 pairs of trajecto-
ries (over the two iterations) taking less than 5 minutes to complete.
This indicates that the comparison queries are not burdensome and
that the entire algorithm can be run in real-time.

We analyzed the user’s responses and their rationale for their
preference choices to gain further insight. It was interesting to ob-
serve that, despite the many possible combinations of preferences
over the multiple criteria, human preferences, though diverse, were
often simple in contrast to the preference functions of the artificial
oracle from the previous section. This may help to explain why the
learning curve in our user study appeared to be very sharp. Level
completion was a common high priority (though not always the
highest one), while preferences over the remaining factors were

Figure 8: Results of user preference study, comparing the ini-
tial batch with pref-MCTS-generated batches.

much more diverse. Some users prioritised ‘speed running’, i.e., fin-
ishing the level in as little time as possible, some preferred finding
Yoshi, and many preferred multiple criteria together (e.g., maximis-
ing both the number of coins earned and enemies defeated). Eliciting
diverse and multifaceted preference relationships is non-trivial and
difficult to achieve via handcrafted rules, but our approach is able to
account for such preferences effectively via low-burden comparison
queries.

6 CONCLUSION
In this paper we proposed pref-MCTS, an MCTS-based intention
scheduler that learns user preferences through iterative, low-burden
queries. The intentions are then scheduled to optimise towards
those preferences.

We stress tested pref-MCTS using an artificial oracle, both to
enable reproduction of results and to allow the experimental pa-
rameters to be fine-tuned. We tested different types of preference
functions and introduced different levels of noise in the simulated
human responses. The results showed that pref-MCTS improves
over state-of-the-art baselines, even when provided with a limited
number of preference queries, and that it is also reasonably tolerant
to noisy preference responses.

We also conducted a user study with human participants and
showed that pref-MCTS is able to learn user preferences from
a limited number of comparison queries in real-time. The trajec-
tory comparisons were not burdensome and the approach was able
to account for diverse preference relationships based on a com-
bination of factors. It would be impractical to elicit and precisely
represent such preferences prior to scheduling, for example, as done
in previous work by Visser et al. [28, 29].

Whilst pref-MCTS in this work has focussed on BDI agents,
it could also be applied to other types of systems such as HTN
planners that have similar features to BDI systems (see [12] for a
comparison) and generally require preferences to be pre-specified
in order for the planner to reason over them [19].

There are a number of potential directions for future work, in-
cluding but not limited to: i) exploring different types of preference
queries [6], e.g., point-wise (seeking an absolute preference score
for a trajectory), list-wise (seeking preferences over multiple trajec-
tories), etc., and ii) utilising historical preference data from similar
domains to bootstrap the learning mechanism.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1180

REFERENCES
[1] Yvonne Bijan, Junfang Yu, Jerrell Stracener, and Timothy Woods. 2013.

Systems requirements engineering—State of the methodology. Systems
Engineering 16, 3 (2013), 267–276. https://doi.org/10.1002/sys.21227
arXiv:https://incose.onlinelibrary.wiley.com/doi/pdf/10.1002/sys.21227

[2] Rafael Bordini, Jomi Hübner, and Michael Wooldridge. 2007. Programming
Multi-Agent Systems in AgentSpeak Using Jason. Vol. 8. https://doi.org/10.1002/
9780470061848

[3] Ralph Allan Bradley and Milton E. Terry. 1952. Rank Analysis of Incomplete
Block Designs: I. The Method of Paired Comparisons. Biometrika 39, 3/4 (1952),
324–345. http://www.jstor.org/stable/2334029

[4] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
1993. Signature Verification Using a "Siamese" Time Delay Neural Network. In
Proceedings of the 6th International Conference on Neural Information Processing
Systems (Denver, Colorado) (NIPS’93). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 737–744.

[5] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree Search Methods.
IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
Rank: From Pairwise Approach to Listwise Approach. In Proceedings of the 24th
International Conference on Machine Learning (Corvalis, Oregon, USA) (ICML
’07). Association for Computing Machinery, New York, NY, USA, 129–136. https:
//doi.org/10.1145/1273496.1273513

[7] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. 2017. Deep Reinforcement Learning from Human Preferences. In
Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf

[8] Rémi Coulom. 2007. Computing Elo ratings of move patterns in the game of Go.
In Computer games workshop.

[9] Michael Dann, John Thangarajah, Yuan Yao, and Brian Logan. 2020. Intention-
Aware Multiagent Scheduling. In Proceedings of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020), B. An, N. Yorke-
Smith, A. El Fallah Seghrouchni, and G. Sukthankar (Eds.). 285–293.

[10] Michael Dann, Yuan Yao, Natasha Alechina, Brian Logan, and John Thangarajah.
2022. Multi-Agent Intention Progression with Reward Machines. In Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI
2022, Vienna, Austria, 23-29 July 2022, Luc De Raedt (Ed.). ijcai.org, 215–222.
https://doi.org/10.24963/ijcai.2022/31

[11] Michael Dann, Yuan Yao, Brian Logan, and John Thangarajah. 2021. Multi-Agent
Intention Progression with Black-Box Agents. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, Zhi-Hua Zhou
(Ed.). International Joint Conferences on Artificial Intelligence Organization,
132–138. Main Track.

[12] Lavindra de Silva and Lin Padgham. 2004. A Comparison of BDI Based Real-
Time Reasoning and HTN Based Planning. In AI 2004: Advances in Artificial
Intelligence, 17th Australian Joint Conference on Artificial Intelligence, Cairns,
Australia, December 4-6, 2004, Proceedings. 1167–1173.

[13] Georgia Dede, Persefoni Mitropoulou, Mara Nikolaidou, Thomas Kamalakis, and
Christos Michalakelis. 2020. Safety requirements for symbiotic human–robot
collaboration systems in smart factories: a pairwise comparison approach to
explore requirements dependencies. Requirements Engineering 26 (2020), 115–
141.

[14] Richard D. Goffin and James M. Olson. 2011. Is It All Relative? Comparative
Judgments and the Possible Improvement of Self-Ratings and Ratings of Others.
Perspectives on Psychological Science 6, 1 (2011), 48–60. http://www.jstor.org/
stable/41613423

[15] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. 2015. Siamese neural
networks for one-shot image recognition. In ICML deep learning workshop, Vol. 2.
Lille.

[16] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A
BDI Reasoning Engine. In Multi-Agent Programming: Languages, Platforms and
Applications, Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fal-
lah Seghrouchni (Eds.). Springer US, Boston, MA, 149–174. https://doi.org/10.

1007/0-387-26350-0_6
[17] A. S. Rao and M. P. Georgeff. 1991. Modeling rational agents within a BDI-

architecture. In Principles of Knowledge Representation and Reasoning. Proceedings
of the second International Conference. Morgan Kaufmann, San Mateo, 473–484.

[18] Maarten P.D. Schadd, Mark H.M.Winands, Mandy J.W. Tak, and JosW.H.M. Uiter-
wijk. 2012. Single-player Monte-Carlo tree search for SameGame. Knowledge-
Based Systems 34 (2012), 3–11. https://doi.org/10.1016/j.knosys.2011.08.008 A
Special Issue on Artificial Intelligence in Computer Games: AICG.

[19] Shirin Sohrabi, Jorge A. Baier, and Sheila A. McIlraith. 2009. HTN Planning with
Preferences. In IJCAI 2009, Proceedings of the 21st International Joint Conference
on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009. 1790–1797.

[20] Kendall Taylor, Huong Ha, Minyi Li, Jeffrey Chan, and Xiaodong Li. 2021.
Bayesian Preference Learning for Interactive Multi-objective Optimisation. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2021). Association for Computing Machinery, 466–475.

[21] Gerald Tesauro. 1989. Connectionist Learning of Expert Preferences by Compari-
son Training. In Advances in Neural Information Processing Systems, D. Touretzky
(Ed.), Vol. 1. Morgan-Kaufmann.

[22] John Thangarajah and Lin Padgham. 2011. Computationally Effective Reasoning
About Goal Interactions. J. Autom. Reasoning 47 (06 2011), 17–56. https://doi.
org/10.1007/s10817-010-9175-0

[23] John Thangarajah, Lin Padgham, and Michael Winikoff. 2003. Detecting &
Avoiding Interference Between Goals in Intelligent Agents. Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (11 2003), 721–
726.

[24] John Thangarajah, Lin Padgham, and Michael Winikoff. 2003. Detecting &
Exploiting Positive Goal Interaction in Intelligent Agents. Proceedings of the
Interantional Conference on Autonomous Agents 2, 401–408. https://doi.org/10.
1145/860575.860640

[25] John Thangarajah, Sebastian Sardina, and Lin Padgham. 2012. Measuring Plan
Coverage and Overlap for Agent Reasoning. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems - Volume 2
(Valencia, Spain) (AAMAS ’12). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 1049–1056.

[26] John Thangarajah, Michael Winikoff, Lin Padgham, and Klaus Fischer. 2002.
Avoiding Resource Conflicts in Intelligent Agents. In ECAI ’02: proceedings of the
european conference on artificial intelligence. Lyon, France, 18–22.

[27] Maxime Véron, Olivier Marin, and Sébastien Monnet. 2014. Matchmaking in
multi-player on-line games: studying user traces to improve the user experience.
In Proceedings of Network and Operating System Support on Digital Audio and
Video Workshop. 7–12.

[28] Simeon Visser, John Thangarajah, and James Harland. 2011. Reasoning about Pref-
erences in Intelligent Agent Systems. In IJCAI 2011, Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence. IJCAI/AAAI, Barcelona,Spain,
426–431.

[29] Simeon Visser, John Thangarajah, James Harland, and Frank Dignum. 2016.
Preference-based reasoning in BDI agent systems. Autonomous Agents and Multi-
Agent Systems 30, 2 (2016), 291–330.

[30] Max Waters, Lin Padgham, and Sebastian Sardiña. 2014. Evaluating coverage
based intention selection. In International conference on Autonomous Agents and
Multi-Agent Systems, AAMAS ’14, Paris, France, May 5-9, 2014, Ana L. C. Bazzan,
Michael N. Huhns, Alessio Lomuscio, and Paul Scerri (Eds.). IFAAMAS/ACM,
957–964. http://dl.acm.org/citation.cfm?id=2617398

[31] Michael Winikoff. 2005. Jack™ Intelligent Agents: An Industrial Strength Platform.
175–193. https://doi.org/10.1007/0-387-26350-0_7

[32] Yuan Yao and Brian Logan. 2016. Action-Level Intention Selection for BDI Agents.
In Proceedings of the 2016 International Conference on Autonomous Agents & Mul-
tiagent Systems (Singapore, Singapore) (AAMAS ’16). International Foundation
for Autonomous Agents and Multiagent Systems, Richland, SC, 1227–1236.

[33] Yuan Yao, Brian Logan, and John Thangarajah. 2016. Robust Execution of BDI
Agent Programs by Exploiting Synergies between Intentions. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence (Phoenix, Arizona) (AAAI’16).
AAAI Press, 2558–2564.

[34] Wangchunshu Zhou and Ke Xu. 2020. Learning to compare for better training and
evaluation of open domain natural language generation models. In Proceedings
of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI’20, Vol. 34).
AAAI Press, 9717–9724.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1181

