
A Behaviour-Driven Approach for Testing Requirements via User
and System Stories in Agent Systems

Sebastian Rodriguez
RMIT University

Melbourne, Australia
sebastian.rodriguez@rmit.edu.au

John Thangarajah
RMIT University

Melbourne, Australia
john.thangarajah@rmit.edu.au

Michael Winikoff
Victoria University of Wellington

Wellington, New Zealand
michael.winikoff@vuw.ac.nz

ABSTRACT
Testing is a critical part of the software development cycle. This
is even more important for autonomous systems, which can be
challenging to test. In mainstream software engineering, Behaviour-
Driven Development (BDD) is an Agile software development prac-
tice that is well accepted and widely used. It involves defining test
cases for the expected system behaviour prior to developing the as-
sociated functionality. In this work, we present a BDD approach to
testing the behavioural requirements of an agent system specified
via User and System Stories (USS). USS is also based on established
Agile processes and is shown to be intuitive and readily mapped
to agent concepts. More specifically we extend USS so that they
can be used for testing, and develop a behaviour-driven testing
framework based on USS. We show how test cases can be devel-
oped, and how to evaluate the test cases by using a state-of-the-art
mutation testing system, PITest, which we have integrated into our
test framework. A key feature of our work is that we leverage a
range of state-of-the-art development tools, inheriting the rich set
of features they provide.

KEYWORDS
User Stories; System Stories; AOSE; Behaviour-Driven Develop-
ment; Test-Driven Development Testing; Requirements testing

ACM Reference Format:
Sebastian Rodriguez, John Thangarajah, and Michael Winikoff. 2023. A
Behaviour-Driven Approach for Testing Requirements via User and System
Stories in Agent Systems. In Proc. of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Testing and validation is a critical aspect of any form of software
development, and even more so for autonomous systems to build
trust. To this end, there have been a number of testing approaches
presented over the years by the agent oriented software engineering
(AOSE) community [2, 8, 9, 17, 19]. In this work we contribute to
that body of work and present a novel behaviour-driven approach
to testing the requirements of an agent system that are specified
via User and System Stories (USS) [29].

The alignment of AOSE techniques with mainstream software
engineering is also an important consideration for our community,
to not only support the adoption of AOSE, but also to inherit and
build on well-established, demonstrated, and accepted techniques.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Agile software development is one of the most popular approaches
in mainstream software engineering [22]. The use of USS for re-
quirements [29] builds on Agile concepts and processes [3].

User stories and system stories present the requirements from
the user and system perspective respectively, and are intended to
capture behavioural requirements. An example user story is as
follows: as an owner of an autonomous vehicle, I want the vehicle
to obey the speed limit, so that traffic laws are obeyed. Each story is
accompanied by a set of acceptance criteria, which provide guidance
to verify that the story is faithfully implemented. For example
for the system story above, an acceptance criterion is: given the
autonomous vehicle is driving at the current speed limit, when a
new speed limit lower than the current is met, then the vehicle slows
to the new speed before the new limit applies. The User and system
stories are an accepted way to capture requirements in a format
that both domain experts and software engineers can collectively
understand and discuss, and that is intuitive [29].

Test-Driven Development (TDD) is an Agile practice that is now
well accepted. It involves defining test cases before developing the
associated new functionality. Behaviour-driven development (BDD)
builds on this by having test cases express system behaviour, speci-
fied using a domain-expert-friendly format, such as user stories.

There is a range of work on testing requirements against de-
sign [1, 14, 15, 36, 37] and against code [2, 8, 9, 17, 19]. Our work is
novel in that we adopt a behaviour-driven approach, so we do test-
ing starting with USS. Unlike Rodriquez et al. [30], who presented
an approach to validate the outputs (i.e. execution traces) of a com-
plete agent system against the requirements specified via USS, our
approach can test parts of the system (e.g. unit tests), not just the
whole complete system. Finally, unlike the Beast methodology [7],
we support goals and plans and integrate mutation testing.

We extend USS so that they are amenable to BDD (Section 3).
We then show how USS can be used to generate test cases (Section
4) for goals, plans, percepts and beliefs, with the aim of verifying
their implemented behaviours against the requirements. That is,
we check that the requirements specifications match the code. For
example for goals, we check whether the expected plans to achieve
the goal are implemented, and whether the conditions that deter-
mine the success of goals are correctly implemented. The quality
of the testing is reliant on the quality of the test cases that are
generated. Hence, we also integrate a mutation testing system, to
provide test coverage analysis of the suite of test cases.

We present our BDD approach using an illustrative case study
of a simple search and rescue simulation application [29]. We show
how we use a popular and well-established BDD tool, Cucumber

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1182

(http://cucumber.io), to specify USS and develop test cases to val-
idate the requirements implemented in the SARL [28] agent pro-
gramming language (http://www.sarl.io). The Cucumber tool also
enables the generation of developer-friendly reports. As the muta-
tion testing system, we use PITest (http://pitest.org), which is state
of the art.

A key feature of our approach is the use and integration of
modern software tools that are widely adopted in the industry as
the gold standard. This provides a number of benefits (e.g. developer
familiarity, reliable and usable tools) which we discuss in Section 5.

2 BACKGROUND AND RELATEDWORK
In this section we provide a brief introduction to behaviour driven
development which is well established in mainstream software
engineering. We recap the notion of User and System stories as
presented in [29]; summarize the behaviour-driven development
approach; and provide an introduction to the goals and plans in
agent systems which we build on in our work.

2.1 User and System Stories (USS)
A user story [10] is an informal, natural language specification of
the requirements of one or more features of a software system. It is
a popular tool used in Agile software development to capture a sim-
plified description of requirements from an end-user perspective.

Rodriguez et al. [29] introduced the concept of a system story
which further refines user stories from the system’s perspective.
They showed how user and system stories (USS) can be used to
manage requirements in AOSE.

USS are represented using the Gherkin syntax template: As (role),
I want to (do something), So that (reason). Scenario 1 (first 4 lines)
shows an example user story of a drone operator coordinating
drones in a search and rescue operation.

Scenario 1: Example user story and acceptance criterion
Feature: Search for victims

As Drone Operator,
I want to assign drones areas to explore,
So that they find victims and notify me.

Scenario: Drone is idle
Given drone is at base
When it is assigned an area to explore
Then it begins exploring that area autonomously

Scenario: Drone is busy
Given drone is currenty exploring
When it is assigned an area to explore
Then it adds new area to its exploration queue

Each story also contains a set of acceptance criteria, which
are a set of statements that identify the intended behaviour of
the system under various scenarios. These are captured by the
Given/When/Then format which is part of the Behaviour Driven
Development (BDD) approach - given the necessary preconditions
for the system to execute the behavior being described, when the
triggers of the behavior are activated, then these results are effected
by the successful execution of that behavior. Figure 1 illustrates

acceptance criteria for the explore area behaviour of a drone, under
two scenarios: drone is idle and drone is busy.

2.2 Behaviour Driven Development
Behaviour-driven development (BDD) [20] is an Agile software
development practice that encourages collaboration between the
technical system developers and the domain experts, who are often
non-technical. BDD encourages rapid prototyping and iterations
by continuously refining user requirements into smaller units that
are readily implemented and tested in the system. In fact, BDD is a
form of test-driven development where test cases are defined before
developing the associated new functionality. In BDD the test cases
are based on system behaviour, specified using a domain-expert-
friendly format, such as user and system stories.

The first phase of the (iterative) BDD process is to define the
specification of a desired feature of the system in terms of user
stories. The second phase involves the development of acceptance
criteria collaboratively so all the parties agree on the expected be-
haviours. In the third phase test cases are created for the behaviours
based on the agreed acceptance criteria. Finally, the behaviour is
implemented with the test cases guiding the development to ensure
the acceptance criteria are met. An additional stage in any test-first
development cycle is to refactor the production code to improve its
design. This can be done with the knowledge that the behaviour
required will be tested.

There are a number of tools that support the BDD process. Of
particular importance to our testing framework is Cucumber. Cu-
cumber allows the specification of USS in the Gherkin language and
supports the translation of acceptance criteria into test cases. It pro-
vides support for most modern programming languages (e.g Java,
Python, C++) and also supports the generation of reports in HTML,
JSON and other formats. In Section 4 we describe how we inte-
grate Cucumber and other software tools in developing our test
framework.

2.3 Goals and Plans
We extend USS to capture key properties of goals, plans, beliefs
and percepts (see Section 3). In doing so we build on the prior
conception of these entities in the literature.

Percepts are part of the interface between an agent and its envi-
ronment [21]: a percept is (possibly processed) information from
the environment to the agent that triggers a response.

Goals, plans, and beliefs are considered in the context of the
Belief-Desire-Intention1 (BDI) [5, 25–27] framework, which con-
ceptualises autonomous agents in terms of2 beliefs, goals, and plans.

A belief is simply information represented in the agent that
reflects what it believes to be true about the world and/or itself.
Beliefs can be represented in a range of forms, often, inspired by
logic programming, as sets of terms.

Plans are typically defined (e.g. [4, 18, 23, 24, 34]) in terms of
an event that they handle (which might be adding or removing a
goal, or adding or removing a belief), a context condition which
indicates whether the plan is applicable in the current situation,
1It really should be “BDIP”: Plans are a key component of the framework [5]
2We focus here on the design and implementation view, where we have goals rather
than desires, and where the focus is more on plans, with intentions merely being
partially instantiated plans at runtime.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1183

http://cucumber.io
http://www.sarl.io
http://pitest.org

and a plan body that is executed over time after the plan is selected,
and which may include a range of step types, including posting
events or creating goals, which may trigger sub-plans.

Goals are more complex. There are a range of types of goals in
the literature [6, 11, 13, 33]. However, implemented platforms typi-
cally only support a limited range of goal types, with achievement
goals being universally supported, and maintenance goals being
commonly supported [6]. An achievement goal specifies a condition
to be achieved by performing some tasks, and a maintenance goal
specifies a condition that must be maintained by performing tasks
to re-establish the condition, if it becomes false.

Goals have a number of key properties [35]: they are persistent
(dropped only when they are considered fulfilled or impossible
to fulfil), unachieved (dropped when they are fulfilled), possible
(dropped when they are impossible to fulfil), known (i.e. repre-
sented within the agent), and consistent (i.e. an agent should not
simultaneously attempt to pursue inconsistent goals).

These properties are reflected in each achievement goal being
defined in terms of two key conditions: the sucess condition 𝑠 when
it is considered to be fulfilled, and the failure condition 𝑓 when it is
considered to be impossible to fulfil. For maintenance goals, these
are defined in terms of the condition𝑚 that it needs to maintain,
and the condition 𝑓 when it is considered to be impossible to fulfil.

3 EXTENDING USS FOR BDD
In this section we extend USS described in [29] to allow information
required to test the system to be specified. Different information
is required for different entity types, and so we introduce a clas-
sification of System Stories. A System Story can be classified as
being: a Goal Story (which describes a goal that the agent wants
to achieve or maintain), a Plan Story (which describes a plan to be
used to achieve a goal or recover a maintenance condition), a Belief
Inference Story (which defines relationships between agent beliefs,
and how they should be inferred), or a Perception Story (which de-
fines how to handle a particular percept). Although these additional
concepts are also associated with design and implementation, the
system stories that use them are requirements (see examples later
in this section). Rodriguez et al. [29] define mappings from stories
to agent concepts. For instance, a What (“I want to . . . ”) element of
a System Story maps to either an action or a goal.

The remainder of this section defines the additional information
required for each agent conecept. This additional structure is de-
fined using annotations in the Gherkin language. The additional
structure relates primarily to the acceptance criteria, although we
also tag a story with its type (e.g. @perception).

Goal Stories: describe a goal that an agent wants to achieve or
maintain in order to satisfy another goal or handle a perception,
for example, Explore Area. Goal Story’s acceptance criteria need to
identify and capture what does the goal mean in the domain or
in the expert’s view. For instance, in a search and rescue domain,
one of the goals of the system will be to Explore Area. But, what
does it mean to Explore Area? Under which conditions can the sys-
tem effectively consider that a given area has been explored to an
adequate degree? Since Explore Area is a achievement goal, this

condition3 corresponds to the goal’s success condition [35]. Using
the Gherkin language introduced in Section 2.1, we can capture
this requirement as in Scenario 24.

Note that the last two lines of Scenario 2 (“When . . . ”) are actually
a pattern that is the same for all @goal-success conditions. They

Scenario 2: Explore Area goal success acceptance criteria
@goal−success
Scenario: Goal success
Given I believe current_area_explored is greater than 95%
When I evaluate current_goal success
Then goal success is true

define the Given condition (e.g. “I believe current_area_explored is
greater than 95%”) as being a goal success condition by indicating
that the result of the condition being met is that the goal should be
considered successful. It is also possible to define syntactic sugar
that expands a more concise syntax of the form “@goal-success I
believe current_area_explored is greater than 95%” to the syntax of
Scenario 2.

In addition to capturing the goal-success condition, for an
achievement goal, we can also define the following additional in-
formation:
goal-context - the condition under which the goal is able to be

adopted (e.g. a drone is not able to adopt the goal Explore
Area if the battery level is low).

goal-failure - the condition under which the goal fails (e.g. if there
is a system failure).

goal-plan - one or more plans that are relevant to achieve this goal
and the condition under which each plan is applicable (See
Scenario 3 for an example).

Scenario 3: PlowSweep Plan for the Explore Area goal
@goal−plan
Scenario: HIGH priority area
Given I believe current_area priority is HIGH
When I adopt the ExploreArea goal
Then plan PlowSweep is applicable

A similar approach can be used to capture the requirements for
Maintenance goals (e.g. "Maintain Battery Level"). Specifically, in
addition to capturing the goal-context (the same as for achievement
goals), we also would capture: (i) the condition to be maintained
(goal-condition): should this condition become false, it will trigger
an attempt to recover (e.g. triggering a recharge plan should the
battery level become too low); (ii) a single recovery plan (goal-
plan) that is used to recover; and (optionally) (iii) the condition
(goal-failure) under which the goal is considered impossible to
maintain and should no longer try to recover, e.g. if no charging
station is available, or there is a system failure.

Plan stories: each describes a plan to be used to recover a mainte-
nance condition or achieve a goal (e.g. plow sweep story). In writing
plan stories, a number of acceptance criteria scenarios might be
provided, each defining a behaviour that the system should exhibit,

3It should be a single condition: a goal with more than one success condition may be
an indication that the goal should be split into two goals.
4The complete story is in the supplementary information.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1184

and that can be tested. Following a behaviour-driven approach,
these acceptance criteria should capture “high level" observable
behaviour of the agents, and avoid step-by-step description of the
plan’s actions. For example, Scenario 4 shows an acceptance cri-
terion that indicates that when the Drone agent explores an area
using plow sweep, it should create a path with certain waypoints
(the <x>, <y> etc. are Gherkin syntax that allows a story to refer
to a table of specific values, e.g. see Scenario 5. See supplementary
material for the full feature definition.).

Scenario 4: PlowSweep Plan Story
Scenario: create Plow waypoints
Given an area at <x>, <y> of <height> by <width>
When I start plan
Then I should create path with '<waypoints>'

Belief Inference Stories: in some scenarios it is important to
capture the relationships between beliefs and how we can infer
the value of one belief based on another (e.g. inferring Drone bat-
tery level of LOW from a battery charge reading of 25%). We use
Belief Inference stories, for example Scenario 5, to capture this
understanding in terms of test cases.

Scenario 5: PlowSweep Plan achieves Explore Area
@belief−infer
Scenario: Battery calculation
Given I believe battery_charge is <charge>
When I query belief battery_level
Then I should believe battery_level is <level >

Examples:
charge	level
100	FULL
90	HIGH
...	
24	LOW

Perception Stories capture how the agent responds to percep-
tions. For example, when an agent is assigned a new area to explore,
an acceptance criterion (see Scenario 6) could indicate that the
agent should respond by adding the area to be explored to a queue,
acknowledge the assignment, and then start exploring the area, and
searching for victims.

Scenario 6: New area assignments are queued and relevant
goals started
@perception−plan
Scenario: New assignment
When I receive a new AreaAssignment
Then I add the area to the exploration queue
And I acknowledge the assignment
And I should start ExploreArea
And I should start DetectVictim

4 TESTING FRAMEWORK
In this section we present the testing framework developed to
support our proposal.

Figure 1: Testing Framework overview

4.1 Overview and tools
In order to support this approach we developed a software frame-
work that enables the development team to use these techniques
effectively. The framework integrates and leverages state-of-the-art
testing tools widely used in the industry.

As discussed in Section 2.2, the process of BDD is to capture sto-
ries, write test cases, implement the test cases, then implement the
desired functionality (using the tests to assess the implementation),
and finally refactor the code to improve its design. Our framework
supports the central steps of implementing tests, and using them
to test the system.

An overview of the main components of the framework is pre-
sented in Figure 1. Our framework and process are supported by a
set of professional tools such as an IDE (e.g. SARL’s IDE is based
on Eclipse), build and dependency management tools (e.g. maven),
and other software engineering tools.

User and system stories are written in the Gherkin language (see
Section 2.1). These stories are used to create executable tests (see
Section 4.2), and to this end we integrated the Cucumber and JUnit
frameworks, which are widely-used and supported testing frame-
works for Java. In addition to these frameworks, we use Mockito5 to
isolate particular components and verify interactions. For instance,
verify if a plan calls the appropriate actions.

Once test cases have been created, the production code is (pro-
gressively and iteratively) implemented in SARL [28] following the
approach presented in [29]. Due to its generic and highly extensible
architecture, SARL is able to integrate new concepts and features
quickly. In order to faithfully capture the properties of goals and
plans, we extended SARL to incorporate a goal-reasoning engine.
We intend to contribute this extension to the SARL open source
project6. Features are mapped to agent concepts and then to code,
using this extended version of SARL.

5Mocking framework for Java https://site.mockito.org/.
6https://github.com/sarl/

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1185

https://site.mockito.org/
https://github.com/sarl/

skill ExploreArea extends Goal implements AchievementGoal{
2 uses SearchRescueBeliefs, DroneState

4 def context : boolean {
batteryLevel != BatteryLevel.LOW

6 }
def success : boolean {

8 explorationRate(currentArea) >= 0.95f
}

10 def failure : boolean {
systemFailure

12 }
}

14

Figure 2: SARL implementation of the ExploreArea goal

Figure 2 shows how goals in SARL are implemented, by declaring
them as skills of the agent. Goals can require specific capacities
from the agent that is going to adopt them. This is done by declar-
ing required capacities via the ‘uses’ keyword. For instance, Ex-
ploreArea requires from the agent to have SearchRescueBeliefs and
DroneState beliefs in line 2 in Figure 2. Beliefs definitions are
then brought into the scope which enables to query them directly.
For instance, in line 8 in order to determine if the goal has been
achieved, the goal queries the belief of the exploration rate for the
currentArea. This approach make the code easy to read and simple
to link the requirements specification.

As feature requirements are implemented, they are tested, pro-
ducing an HTML report (see Section 4.3). SARL is interoperable
with Java and its ecosystem, seamlessly integrating with other tools
and APIs such as JUnit and Cucumber.

In order to assess the effectiveness of the test scenarios, we
use mutation testing (see Section 4.4) using PITest. This provides
feedback both in general on the quality of the test suite, but also
specifically on certain areas where additional test cases may be
required.

4.2 Implementing Tests
Following a behaviour-driven approach acceptance criteria are trans-
lated into executable tests to drive the feature development.

To do so, Cucumber requires us to create Step definitions that
will link the feature specification (USS) in Gherkin with executable
tests and assertions. This link is created by annotating methods
with the following annotations:

• @Given indicates the pre-condition of the scenario, it will
configure beliefs with expected values for the scenario;

• @When indicates the trigger of the behaviour, it will fire
the agent’s behaviour using perceptions, message or belief
updates; and

• @Then indicates desired post conditions, it will use assertions
from JUnit or Mockito to verify that the behaviour’s outcome
complies to the specification.

SARL’s object orientation support enables us to define these steps
using the annotation provided by Cucumber’s JVM implementation.

class NewAreaAssignmentTestSteps {
2 @Inject

var agt : GoalTestingAgent
4 var area = new Area(0f, 0f, 10f, 10f, Priority.HIGH)

6 @When("I receive a new AreaAssignment")
def perceive_assignment {

8 this.agt.perceive(new AreaAssignment("Alpha", area))
}

10

@Then("I should start DetectVictim")
12 def post_detect {

verify(this.agt.goals).post(any(DetectVictim))
14 }

...
16 }

Figure 3: Test definition in SARL using Cucumber

Additionally, a new testing framework for SARL agents has been
developed to facilitate the testing of SARL code using JUnit. This
set of extensions allows to mock agents and other agent concepts.

As an example, Figure 3 shows a snippet of the step defini-
tions for Scenario 6 (where a new area is assigned to a drone).
The steps are defined as annotated methods in a class, in this case
NewAreaAssignmentTestSteps. In line 3, a mock agent is created
- GoalTestingAgent is defined by SARL’s testing framework and
offers functionalities to facilitate agent testing (e.g. perceive events,
logging, etc.). Line 4, specifies a value for the area that will be used
during the tests.

As Cucumber reads the scenario specification, it matches the text
with code annotations. So, in scenario 6, the stepWhen I receive a
new AreaAssignment matches with the annotation in line 6, and will
therefore execute perceive_assignment in line 7. In this step, using
SARL’s testing extensions, we trigger the corresponding agent
perception in the production code. The agent will perceive the
AreaAssignment event containing the Area defined in line 4.

Similarly, the step I should start DetectVictim of scenario 6 will
be matched to post_detect in line 11. Essentially, we verify that the
DetectVictim goal is posted using Mockito’s assertions.

Using this same process we can implement the steps in Sce-
nario 2 that define the success condition for goal ExploreArea as
shown in Figure 4. The Given annotation allows us to define the
pre-conditions of the scenario, including the type of goal we are
evaluating (see line 5) and belief values required (e.g. the explo-
ration rate of the area in line 14). Goal success is evaluated during
the triggering step (i.e. When) in line 18. Finally, we assert that the
value obtained is the expected outcome in line 22.

As shown, the mapping between the acceptance criteria specified
in scenario format and the testing code is straightforward, given
the framework and integration.

4.3 Running Tests
As the features are developed iteratively and tests are executed, re-
ports are generated to support the developer. For example, consider

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1186

class ExploreAreaTestSteps {
2 ...

@Given("current_goal is ExploreArea")
4 def current_goal {

this.goal = new ExploreArea
6 this.goal.owner = this.agt

}
8 @Given("I believe current_area_explored

is greater than {int}%")
10 def exploration_is_percent(rate : int) {

val area = new Area(0f, 0f, 10f, 10f, Priority.HIGH)
12 doReturn(area).when(this.agt.beliefs).currentArea

doReturn(rate / 100f)
14 .when(this.agt.beliefs).explorationRate(any(Area))

}
16 @When("I evaluate current_goal success")

def evaluate_goal_success {
18 this.evalResult = this.goal.success

}
20 @Then("goal {word} is {word}")

def evaluation_outcome(cond : String, outcome : String) {
22 assertEquals(Boolean.valueOf(outcome), this.evalResult)

}
24 }

Figure 4: Test step definition for ExploreArea goal

agent Drone {
2 uses Logging, DefaultContextInteractions

uses Goals, PlanSelectionContraints
4 uses SearchRescueBeliefs

6 on Initialize {
info("Drone Initialized")

8 PlowSweep.handles(ExploreArea, new PlowSweep.Context)
RandomWalk.handles(ExploreArea, new RandomWalk.Context)

10 }

12 on AreaAssignment {
addAreaToExplore(occurrence.area)

14 emit(new AreaAssignmentAccepted)
post(new ExploreArea)

16 // post(new DetectVictim) // Commented for illustration purposes.
}

18 }

Figure 5: SARL Drone agent example

the implementation of Scenario 6 (in lines 12-17 of Figure 5). The on
statement declares the agent’s actions to be executed when a given
percept is received. The body has four actions, each one mapping
directly to each of the action defined in the specification.

Testing this code with the framework yields a test report, shown
in Figure 6. The report starts with a summary of the feature’s tests,
followed by the feature under test. In this case, the scenario is failing

Figure 6: Cucumber report - failing feature

as the final step is not implemented yet. The step causing the issue
is highlighted in red, in this case Then I should start DetectVictim.
Immediately below (in the grey box) an explanation of the failing
assertion is displayed. In this case, a Mockito assertion error is
shown detailing that it was expected to receive an invocation of
the post(DetectVictim) action7, but it was not called.

Once the missing step is implemented, successive executions of
the test suite will report the scenario is passing.

4.4 Mutation Testing
The aim of our testing approach is to verify that the feature specifi-
cations are faithfully implemented in the production code, via the
generated test cases. Hence, the strength of the verification is as
strong as the test cases. Therefore, another important aspect of our
approach is to be able to assess the quality of our test suite using
mutation testing.

Mutation testing [12] is a technique frequently used in software
engineering to evaluate the quality of test suites. Inmutation testing,
the production code is modified in small ways, introducing a fault.
This modified version, called amutant, changes the behaviour of the
system slightly. Then the test suite is executed against the mutant
to confirm whether it detects the anomalous behaviour, usually

7post(Goal) is provided by the new SARL goal-oriented agents API and posts new
goals to the agent’s goal-reasoning engine.

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1187

Figure 7: Sample PITest Coverage Report

referred to as killing the mutant. The test suite is then evaluated by
the percentage of mutants they kill.

We chose the PITest mutation testing system, since it provides a
gold standard test coverage for Java and JVM in industry practice.
PITest offers three measurements of test suite quality:

(1) Line coverage - measures the number of lines of code that is
covered by the tests;

(2) Mutation coverage - measures the number of mutants that
were killed out of all the mutants created; and

(3) Test strength - measures the number of mutants that were
killed out of all the mutants created for which there was test
coverage8. In other words, this metric ignores a mutant that
was not killed if the corresponding code was not tested by
the test suite.

Integrating PITest was facilitated by the fact that PITest offers a
Maven plugin to execute mutation testing and coverage reports as
part of the build process, and that SARL also uses Maven to manage
a project’s dependencies and build process.

SARL is JVM based and generates Java code from SARL specifi-
cations. This Java code includes code based on the SARL program
written by the developer, but also internal code that provides SARL
features, and is not under the programmer’s control. We therefore
configured PITest to ignore internal SARL-specific code, and only
mutate Java code that corresponds to SARL code written by the
developer. Although PITest ignores these methods for mutation pur-
poses, it still counts the lines of code when computing the coverage,
which results in lower line coverage results.

Figure 7, shows an example summary report of evaluating a
test suite generated for our illustrative search and rescue system
described earlier. The evaluation of the test suite produced 87% line
coverage; 92% mutation coverage and 95% test strength.

Discovering missing acceptance criteria. One benefit of mutation
testing is that when issues are discovered, the details of the mutants
that failed to be detected by the test suite can guide us in generating
new test cases or refining existing test cases to address the issues.
For example, whilst overall the test suite has high coverage, the
ExploreArea goal had quite low coverage. Looking at the detailed
report for that goal (Figure 8) allows us to understand why these

8If a mutant survived due to lack of coverage, it will not be counted towards this
measurement.

results were low, and how to improve them. Specifically, for line 33,
PITest produced four mutants related to the goal’s success condition
(see Scenario 2). Scenario 2 states that when the Explore Area goal
is evaluated for success, if the area explored is believed to be more
than 95%, then the goal should be deemed to have succeeded. The
surviving mutant highlights that we are missing a story: replacing
the test (> 95%) with just “True” means that the goal is dropped
any time it is evaluated for success. However, the story does not
test for this - it just states that the goal should be deemed successful
in a certain situation, and is missing the converse statement that
the goal should not be deemed successful in any other situations.
This could be addressed by adding a story that indicates that when
the goal is assessed for success, if the area covered is not greater
than 95%, then the goal should not be considered to have succeeded.
Therefore, introducing Scenario 7 covers this situation and kills
the mutant. A similar situation is shown in line 38 for the failure
condition and line 26 for the context condition.

Scenario 7: Additional Scenario for ExploreArea to kill suc-
cess "True" mutant
New Scenario from Mutation: False success
@goal−success
Scenario: Goal success false
Given I believe current_area_exploration_rate is less than 95%
When I evaluate current_goal success
Then goal success is false

This highlights a very important feature of our approach. We
can relate and trace back issues in the system’s behaviour directly
to particular requirement specifications. These specifications can
then be shown and discussed directly with the experts using their
own domain language. Refinements in the requirements can be
implemented iteratively as discussed in the previous sections.

Identifying Ground beliefs. In particular cases, mutations identify
components that are building blocks of the agent system. Let us
consider the mutations for the DroneState belief shown in Figure 9.
Whilst most of them are killed, two are reported as not covered
in lines 32 and 36. They are related to beliefs system_failure and
battery_charge. These beliefs are linked to perceptions of the agent’s
body and not the result of any inference process. We refer to these
beliefs as ground beliefs. So, when the belief value is mutated (e.g.
incorrectly returning a battery charge of 0 when the battery still
has charge), the issue is not that the agent reasoning is incorrect,
but that the sensor reporting battery charge is erroneous. Therefore,
these tests should be done at the "battery driver level" to ensure
hardware measurements are correct. Identifying and understanding
the agent’s ground beliefs is critical to determine the boundaries of
the agent system and key integration points to test.

Acceptable behaviours despite mutation survival. Mutation frame-
works perform several mutation operations on the production code
using heuristics with the objective of creating mutants that will
survive the test suite. Although these heuristics are improving con-
stantly, in certain cases, mutations do not modify the behaviour of
the system. For instance, consider the case in which we want to en-
sure that our drone does not go outside the boundaries of the area. In
the bottom corner, we might achieve this with if (x < 0) then x = 0.
If the mutation changes the condition from 𝑥 < 0 to 𝑥 ≤ 0 yielding

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1188

Figure 8: Mutation results for ExploreArea goal

Figure 9: Mutation results for Drone State belief set

to if (x <= 0) then x = 0, then the overall behaviour of the system
remains the same, despite the code mutation. This is the situa-
tion observed in ExplorationCalulator belief set, when investigated
following the PITest report (Figure 7).

5 CONCLUSION
We have presented an approach for using User and System Stories
for Behaviour-Driven Development. Key contributions are an ex-
tension to USS for representing additional information (e.g. goal
success conditions), and an implemented framework that supports
developers to easily implement and run tests.

By using approaches (e.g. stories, BDD) and tools (e.g. Cucumber)
that have been widely adopted and refined with extensive use, we
can be confident that our approach will be usable and useful. For
instance, the use of stories to capture requirements for BDD is
widely-adopted and well-accepted. Our support for implementing
tests (Section 4.2) is comparable in complexity to using Cucumber
to implement tests for (non-agent-based) systems implemented in
Java, therefore we can be confident that the tool is usable.

A key feature of our approach is that it uses modern industry-
grade development tools. This provides a number of benefits:

(1) It facilitates adoption of AOSE by mainstream software de-
velopers since the tools used are ones that they are likely
to already be familiar with (e.g. Eclipse, Maven, Cucumber,
JUnit, Mockito).

(2) Since these tools are widely-used and mature, they are well-
developed, reliable, and provide a rich set of features. For
example, the SARL IDE is based on the Eclipse project, and
consequently provides developers with familiar and mature
facilities for test execution and step-by-step debugging (see
Figure 10).

(3) These tools also have a large community of users, which
results in good support.

(4) Using standard tools makes it easier to integrate with other
tools. This was illustrated in our ability to integrate PITest by
using Maven. There are also opportunities to integrate other

Figure 10: SARL IDE: Eclipse-based with breakpoints and
debugging tests

tools that support common modern development practices,
such as continuous integration and delivery.

Future work includes adding support for agent-oriented pro-
gramming languages other than SARL, and developing a program
mutation scheme that is specific for SARL. Currently, we mutate
the Java code that SARL generates. However, this means that the
mutation operators are not specific to SARL. In particular, because
it operates on generated Java, PITest is not able to make muta-
tions that are simple in the context of SARL, but more complex in
the generated code. One example of this is changing the order in
which plans assigned to a given goal are considered. There has been
some work on mutation operators for agent-oriented programming
languages that we could build on (e.g. [16, 17, 31, 32]).

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1189

ACKNOWLEDGMENTS
This research is supported by the Commonwealth of Australia as
represented by the Defence Science and Technology Group of the
Department of Defence.

REFERENCES
[1] Yoosef B. Abushark, John Thangarajah, Tim Miller, James Harland, and Michael

Winikoff. 2015. Early Detection of Design Faults Relative to Requirement Specifi-
cations in Agent-Based Models. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey,
May 4-8, 2015. ACM, 1071–1079.

[2] Marina Bagić Babac and Dragan Jevtić. 2014. AgentTest: A Specification Language
for Agent-Based System Testing. Neurocomputing 146 (Dec. 2014), 230–248.
https://doi.org/10.1016/j.neucom.2014.04.060

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, Jon Kern, Brian Marick, Robert C.
Martin, Steve Mallor, Ken Shwaber, and Jeff Sutherland. 2001. The Agile Manifesto.
Technical Report. The Agile Alliance.

[4] Rafael H. Bordini, Jomi Fred Hübner, andMichaelWooldridge. 2007. Programming
multi-agent systems in AgentSpeak using Jason. Wiley.

[5] Michael E. Bratman. 1987. Intentions, Plans, and Practical Reason. Harvard
University Press, Cambridge, MA.

[6] Lars Braubach, Alexander Pokahr, Daniel Moldt, and Winfried Lamersdorf. 2004.
Goal Representation for BDI Agent Systems. In ProgrammingMulti-Agent Systems,
Second International Workshop ProMAS 2004 (Lecture Notes in Computer Science,
Vol. 3346). Springer, 44–65. https://doi.org/10.1007/978-3-540-32260-3_3

[7] Álvaro Carrera, Carlos A. Iglesias, andMercedes Garijo. 2014. Beast Methodology:
An Agile Testing Methodology for Multi-Agent Systems Based on Behaviour
Driven Development. Information Systems Frontiers 16, 2 (April 2014), 169–182.
https://doi.org/10.1007/s10796-013-9438-5

[8] Roberta Coelho, Elder Cirilo, Uira Kulesza, Arndt von Staa, Awais Rashid, and
Carlos Lucena. 2007. JAT: A Test Automation Framework for Multi-Agent Sys-
tems. In 2007 IEEE International Conference on Software Maintenance. IEEE, Paris,
France, 425–434. https://doi.org/10.1109/ICSM.2007.4362655

[9] Roberta Coelho, Uirá Kulesza, Arndt von Staa, and Carlos Lucena. 2006. Unit
Testing in Multi-agent Systems Using Mock Agents and Aspects. In Proceedings
of the 2006 International Workshop on Software Engineering for Large-scale Multi-
agent Systems (SELMAS ’06). ACM, New York, NY, USA, 83–90. https://doi.org/
10.1145/1138063.1138079

[10] Mike Cohn. 2004. User Stories Applied: For Agile Software Development. Addison-
Wesley, Boston.

[11] Mehdi Dastani, M. Birna van Riemsdijk, and Michael Winikoff. 2011. Rich goal
types in agent programming. In 10th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, May 2-6, 2011,
Volume 1-3, Liz Sonenberg, Peter Stone, Kagan Tumer, and Pinar Yolum (Eds.).
IFAAMAS, 405–412.

[12] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (April 1978), 34–41. https:
//doi.org/10.1109/C-M.1978.218136

[13] Simon Duff, James Harland, and John Thangarajah. 2006. On proactivity and
maintenance goals. In 5th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8-12, 2006, Hideyuki
Nakashima, Michael P. Wellman, Gerhard Weiss, and Peter Stone (Eds.). ACM,
1033–1040. https://doi.org/10.1145/1160633.1160817

[14] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. 2001. Model checking early
requirements specifications in Tropos. In Proceedings Fifth IEEE International
Symposium on Requirements Engineering. 174–181. https://doi.org/10.1109/ISRE.
2001.948557

[15] Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani. 2005. Goal-oriented
requirements analysis and reasoning in the Tropos methodology. Engineering
Applications of Artificial Intelligence 18, 2 (2005), 159–171. https://doi.org/10.
1016/j.engappai.2004.11.017

[16] Zhan Huang and Rob Alexander. 2015. Semantic Mutation Testing forMulti-agent
Systems. In Engineering Multi-Agent Systems (Lecture Notes in Computer Science),
Matteo Baldoni, Luciano Baresi, and Mehdi Dastani (Eds.). Springer International
Publishing, Cham, 131–152. https://doi.org/10.1007/978-3-319-26184-3_8

[17] Zhan Huang, Rob Alexander, and John Clark. 2014. Mutation Testing for Jason
Agents. In Engineering Multi-Agent Systems (Lecture Notes in Computer Science),
Fabiano Dalpiaz, Jürgen Dix, and M. Birna van Riemsdijk (Eds.). Springer Interna-
tional Publishing, Cham, 309–327. https://doi.org/10.1007/978-3-319-14484-9_16

[18] F. F. Ingrand, M. P. Georgeff, and A. S. Rao. 1992. An Architecture for real-time
reasoning and system control. IEEE Expert 7, 6 (1992).

[19] Cu D. Nguyen, Anna Perini, Carole Bernon, Juan Pavón, and John Thangarajah.
2009. Testing in Multi-Agent Systems. In Agent-Oriented Software Engineering X
- 10th International Workshop, AOSE 2009, Budapest, Hungary, May 11-12, 2009,

Revised Selected Papers (LNCS, Vol. 6038), Marie-Pierre Gleizes and Jorge J. Gómez-
Sanz (Eds.). Springer, 180–190.

[20] Dan North. 2006. Introducing BDD. https://dannorth.net/introducing-bdd/.
[21] Lin Padgham and Michael Winikoff. 2004. Developing Intelligent Agent Systems:

A Practical Guide. John Wiley and Sons.
[22] PMI. 2017. Pulse of the Profession 2017. Technical Report. Project Management

Institute.
[23] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A

BDI Reasoning Engine. In Multi-Agent Programming: Languages, Platforms and
Applications, Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fal-
lah Seghrouchni (Eds.). Multiagent Systems, Artificial Societies, and Simulated
Organizations, Vol. 15. Springer, 149–174.

[24] Anand S. Rao. 1996. AgentSpeak(L): BDI Agents speak out in a logical computable
language. In Agents Breaking Away: Proceedings of the Seventh EuropeanWorkshop
on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96) (Lecture
Notes in Artificial Intelligence, Vol. 1038), Walter Van de Velde and John Perrame
(Eds.). Springer, 42–55.

[25] Anand S. Rao and Michael P. Georgeff. 1991. Modeling Rational Agents within a
BDI-Architecture. In Proceedings of the 2nd International Conference on Principles
of Knowledge Representation and Reasoning (KR’91), James F. Allen, Richard Fikes,
and Erik Sandewall (Eds.). Morgan Kaufmann, Cambridge, MA, USA, 473–484.

[26] Anand S. Rao and Michael P. Georgeff. 1992. An Abstract Architecture for
Rational Agents. In Proceedings of the 3rd International Conference on Principles of
Knowledge Representation and Reasoning (KR’92), Bernhard Nebel, Charles Rich,
and William R. Swartout (Eds.). Morgan Kaufmann, Cambridge, MA, 439–449.

[27] Anand S. Rao andMichael P. Georgeff. 1995. BDI Agents: From Theory to Practice.
In Conference on Multiagent Systems, Victor R. Lesser and Les Gasser (Eds.). The
MIT Press, 312–319.

[28] Sebastian Rodriguez, Nicolas Gaud, and Stéphane Galland. 2014. SARL: A General-
Purpose Agent-Oriented Programming Language. In The 2014 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, Vol. 3. IEEE Computer
Society Press,Warsaw, Poland, 103–110. https://doi.org/10.1109/WI-IAT.2014.156

[29] Sebastian Rodriguez, John Thangarajah, and Michael Winikoff. 2021. User and
System Stories: An Agile Approach for Managing Requirements in AOSE. In
Proceedings of the 20th International Conference on Autonomous Agents andMultiA-
gent Systems (AAMAS ’21). International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 1064–1072. https://doi.org/10.5555/3461017.
3461136

[30] Sebastian Rodriguez, John Thangarajah, Michael Winikoff, and Dhirendra Singh.
2022. Testing Requirements via User and System Stories in Agent Systems.
In Proceedings of the 21st International Conference on Autonomous Agents and
Multiagent Systems (AAMAS ’22). International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 1119–1127.

[31] Sharmila Savarimuthu and Michael Winikoff. 2013. Mutation operators for
cognitive agent programs. In International conference on Autonomous Agents and
Multi-Agent Systems, AAMAS ’13, Saint Paul, MN, USA, May 6-10, 2013, Maria L.
Gini, Onn Shehory, Takayuki Ito, and Catholijn M. Jonker (Eds.). IFAAMAS,
1137–1138. http://dl.acm.org/citation.cfm?id=2485109

[32] Sharmila Savarimuthu and Michael Winikoff. 2013. Mutation Operators for the
Goal Agent Language. In Engineering Multi-Agent Systems - First International
Workshop, EMAS 2013, St. Paul, MN, USA, May 6-7, 2013, Revised Selected Papers
(LNCS, Vol. 8245). Springer, 255–273.

[33] M. Birna van Riemsdijk, Mehdi Dastani, and Michael Winikoff. 2008. Goals in
agent systems: a unifying framework. In 7th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal, May
12-16, 2008, Volume 2, Lin Padgham, David C. Parkes, Jörg P. Müller, and Simon
Parsons (Eds.). IFAAMAS, 713–720. https://dl.acm.org/citation.cfm?id=1402323

[34] Michael Winikoff. 2005. JACKTM Intelligent Agents: An Industrial Strength
Platform. In Multi-Agent Programming: Languages, Platforms and Applications,
Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni
(Eds.). Multiagent Systems, Artificial Societies, and Simulated Organizations,
Vol. 15. Springer, 175–193.

[35] Michael Winikoff, Lin Padgham, James Harland, and John Thangarajah. 2002.
Declarative & Procedural Goals in Intelligent Agent Systems. In Proceedings of
the Eights International Conference on Principles and Knowledge Representation
and Reasoning (KR-02), Toulouse, France, April 22-25, 2002, Dieter Fensel, Fausto
Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams (Eds.). Morgan
Kaufmann, 470–481.

[36] Nitin Yadav and John Thangarajah. 2016. Checking the Conformance of Require-
ments in Agent Designs Using ATL. In ECAI 2016 - 22nd European Conference
on Artificial Intelligence, 29 August-2 September 2016, The Hague, The Nether-
lands - Including Prestigious Applications of Artificial Intelligence (PAIS 2016)
(Frontiers in Artificial Intelligence and Applications, Vol. 285). IOS Press, 243–251.
https://doi.org/10.3233/978-1-61499-672-9-243

[37] Nitin Yadav, John Thangarajah, and Sebastian Sardiña. 2017. Agent Design Consis-
tency Checking via Planning. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, Carles Sierra (Ed.). ijcai.org, 458–464. https://doi.org/10.24963/ijcai.2017/65

Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1190

https://doi.org/10.1016/j.neucom.2014.04.060
https://doi.org/10.1007/978-3-540-32260-3_3
https://doi.org/10.1007/s10796-013-9438-5
https://doi.org/10.1109/ICSM.2007.4362655
https://doi.org/10.1145/1138063.1138079
https://doi.org/10.1145/1138063.1138079
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/1160633.1160817
https://doi.org/10.1109/ISRE.2001.948557
https://doi.org/10.1109/ISRE.2001.948557
https://doi.org/10.1016/j.engappai.2004.11.017
https://doi.org/10.1016/j.engappai.2004.11.017
https://doi.org/10.1007/978-3-319-26184-3_8
https://doi.org/10.1007/978-3-319-14484-9_16
https://dannorth.net/introducing-bdd/
https://doi.org/10.1109/WI-IAT.2014.156
https://doi.org/10.5555/3461017.3461136
https://doi.org/10.5555/3461017.3461136
http://dl.acm.org/citation.cfm?id=2485109
https://dl.acm.org/citation.cfm?id=1402323
https://doi.org/10.3233/978-1-61499-672-9-243
https://doi.org/10.24963/ijcai.2017/65

	Abstract
	1 Introduction
	2 Background and related work
	2.1 User and System Stories (USS)
	2.2 Behaviour Driven Development
	2.3 Goals and Plans

	3 Extending USS for BDD
	4 Testing Framework
	4.1 Overview and tools
	4.2 Implementing Tests
	4.3 Running Tests
	4.4 Mutation Testing

	5 Conclusion
	Acknowledgments
	References

