Session 3F: Engineering Multiagent Systems

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

ML-MAS: A Hybrid Al Framework for Self-Driving Vehicles

Hilal Al Shukairi

University of Aberdeen
Aberdeen, United Kingdom
hilalss@gmail.com

ABSTRACT

Machine Learning (ML) techniques have been shown to be widely
successful in environments that require processing a large amount
of perception data, such as in fully autonomous self-driving vehi-
cles. Nevertheless, in such a complex domain, ML-only approaches
have several limitations. In this paper, we propose a hybrid Artifi-
cial Intelligence (AI) framework for fully autonomous self-driving
vehicles that uses rule-based agents from symbolic Al to supple-
ment the ML models in their decision-making. Our framework is
evaluated using routes from the CARLA simulation environment,
and has been shown to improve the driving score of the ML models.

KEYWORDS
Hybrid AL BDI agents; deep learning; self-driving vehicles; CARLA

ACM Reference Format:

Hilal Al Shukairi and Rafael C. Cardoso. 2023. ML-MAS: A Hybrid AI Frame-
work for Self-Driving Vehicles. In Proc. of the 22nd International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2023), London,
United Kingdom, May 29 — June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION

Machine Learning (ML) techniques are a critical part of a fully au-
tonomous system that requires a large amount of sensing. Deep
learning in particular has been shown to be very effective in image
processing in the context of autonomous vehicles [13, 22]. The con-
siderable effort and time spent to develop a suitable ML model may
never provide a perfect solution that manages to avoid all critical
scenarios (e.g., collisions, accidents) and to follow all road rules.
There will always be some situations for which the model has not
trained enough or does not have enough accuracy in its prediction
that can lead even the best model to fail [16]. Re-training the model
may not be a valid option due to the amount of time and difficulty
in preparing the training environment for those critical cases, es-
pecially if such situations happen during real world deployments
where it can cause harm to humans. For such complex systems,
verification and validation is usually a requirement. However, due
to the black-box nature of most deep learning techniques, formal
verification is either impractical or unfeasible [17]. Even if critical
parts of the system can be verified, formal verification will not help
in improving the autonomous behaviour. Nevertheless, verification
and validation should still be a part of the pipeline of the complete
system, but for the remainder of this paper we focus on improving
the autonomous behaviour of the vehicle.

An alternative option to improve autonomy in self-driving vehi-
cles is to combine rule-based techniques from symbolic Artificial

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1191

Rafael C. Cardoso

University of Aberdeen
Aberdeen, United Kingdom
rafael.cardoso@abdn.ac.uk

Intelligence (AI) with ML. This allows the system to provide more
deliberate and rational decision-making in difficult scenarios where
ML underperforms. This is known as hybrid Al which has been
researched in the past [7, 12, 26] and has recently seen a resurgence
in Neuro-Symbolic Al [25]. We view Neuro-Symbolic Al as a sub-
category of Hybrid Al, when neural components are intrinsically
connected to rule-based reasoning (e.g., when a rule-based system
feeds into the learning procedure). Therefore, for this paper we
prefer to use the more general term of hybrid Al to describe the com-
bination of learning and cognitive reasoning in decision-making.

The notion of combining deliberative reasoning with learning
has been extensively studied in human decision-making and cogni-
tive theories, as described by the psychologist Daniel Kahneman
in his book “Thinking Fast and Slow” [18]. According to Kahne-
man’s theory, human decisions are made by a cooperation between
“System 1: Thinking fast” and “System2: Thinking slow”. System 1
is used for intuitive, imprecise, fast and unconscious decisions. In
contrast, System 2 is used in more complex situations that require
logical and rational thinking. Kahneman estimates that about 95%
of our thinking is using System 1 to make decisions. When applying
this concept to Hybrid AI we have that System 1 represents the
ML component (unconscious decisions learned by experience) and
System 2 represents the symbolic AI component (cognitive deci-
sions). Humans learn how to drive through training and practice.
The more we drive in a particular route the more we rely on System
1, but any uncommon scenario we encounter (e.g., taking a new
route for the first time, or an incoming vehicle going the wrong
way) will require System 2 to take over. For the remainder of this
paper, we refer to System 1 as the learning system, and System 2 as
the cognitive system.

In this paper, our aims are to explore decision-making using both
a ML system and a rule-based system, and to determine how to
switch control between the two in order to make better decisions.
We use pre-trained ML models as our System 1 and introduce ra-
tional rule-based agents as our System 2. When there is a critical
situation (e.g., incoming collisions or traffic jams and congestion)
that cannot be left for the ML model to decide (due to under-fitting,
over-fitting, or accuracy issues), then we should rely on the cogni-
tive reasoning of the agents. We use CARLA [14] as our open-source
simulation environment, which was developed to support research
in the development, training and testing of autonomous urban
driving systems. System 1 is a pre-trained ML model and System
2 is a cognitive agent based on the Belief-Desire-Intention (BDI)
model [6, 23] programmed in the Jason Multi-Agent System (MAS)
language [5].

At a more theoretical level, we investigate four research ques-
tions from the “Thinking Fast and Slow in AI” [3], which discussed
the theory from “Thinking Fast and Slow” [18] when applied to Al:

Session 3F: Engineering Multiagent Systems

RQ1 How do we model the governance of System 1 and System 2
in an AI?

RQ2 Which factors trigger the switch between the two systems?

RQ3 How should System 2 act once the switch is triggered?

RQ4 When should problems be handed back from System 2 to
System 1?7

2 RELATED WORK

The work in [1] proposes a verification technique for decision-
making of self-driving vehicles that combines design phase and
runtime verification. The decision-making uses a rational agent
based on the BDI model, which perceives the environment, sensor
data and feedback to follow a self-planning path. The decision
is verified by two well-known model checkers: Model Checker
for Multi-Agent Systems (MCMAS) [21], used during the design
phase to check the consistency and stability of the BDI agent logic;
and PRISM [19], a probabilistic model checker used at runtime to
verify the success probability of the decisions in order to help the
rational agent select the best choice. The BDI agent is rather simple,
driving in a parking-lot scenario, not in a complete self-driving
environment such as the ones provided in CARLA. Furthermore,
deep learning is used only as a fusion-sensor input, and not as a
hybrid Al decision-making mechanism.

Hierarchical Adaptable and Transferable Networks (HATN) [27]
is an approach used to generate driving behaviours by mimicking
the human’s cognitive level during driving. This approach proved
to be efficient in challenging scenarios such as roundabouts and
unusual intersections. The hierarchical component of the frame-
work comes from breaking complex scenarios into smaller tasks
that make the learning more efficient. The model architecture is
based on a set of Graph Recurrent Unit (GRU) networks and dense
fully connected neural networks. This approach is useful for the
specific scenarios it targets, but cannot be applied to more general
driving (e.g., CARLA routes).

Despite the recent boon in hybrid and neuro-symbolic Al [2, 24,
28], there has not been many recent works combining ML with
BDI-based agents. Some instances of work done in the past include
the work in [11], which uses a weightless neural network and a
BDI agent to extract landmark information from a map in order to
determine the location of a robot in the map. The virtual neural
sensor partly analyses the image, feeding pre-processed data to
the agent (which is a more simplistic rule-based system rather
than a proper BDI agent) for calculating the estimated location. An
extension of that work can be found in [15], this time with a more
traditional BDI agent containing beliefs and plans. The BDI agent
is combined with Artificial Neural Networks to perform active
video surveillance in two application domains, railway tunnels and
outdoor storage areas. The main architecture remains similar, the
neural network is used to generate pre-processed data from image
detection and then the agent is used to further interpret that data.

3 THE ML-MAS FRAMEWORK

The ML-MAS framework combines the decision-making of pre-
trained ML models (System 1) and BDI agents (System 2) in an
effort to integrate learning and rational reasoning behaviours. Our
framework is applied to the self-driving vehicles domain. In order

1192

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

to be able to evaluate and test our approach in practical scenarios,
we use the CARLA simulation environment [14]. CARLA provides
realistic 3D simulation of urban driving with sensors such as RGB
Cameras, LiDAR, obstacle detectors, etc. Furthermore, it includes
a Python API to interact with the simulation which facilitates its
integration with the ML models and the BDI agents. In addition,
CARLA offers dedicated route evaluation metrics via the Leader-
board library [20]. The library also offers debug functionalities such
as route replays from recorded execution logs. In the traditional
challenge, the goal is to provide full autonomous control of a vehicle
over a series of routes containing other vehicles and pedestrians
while trying to minimise accidents, collisions, and traffic violations
at the same time. The other entities in the simulation are controlled
by a centralised internal traffic manager.

Figure 1 gives an overview of the ML-MAS main components.
CARLA, the pre-trained ML model, and the Leaderboard library are
all used as external black-box resources, i.e., they are not altered in
any way. The pre-trained ML models and the Leaderboard routes
we use are explained in our evaluation section (Section 4). The
main internal components of ML-MAS are the BDI bridge, the
orchestrator, and the BDI agent.

) ML-MAS Framework

v jason
- PR d CeDCE R
\ !)
+] Symbolic Al (BDI)
CARLA | =< BDIBridge || MAS
1

Orchestrator

A

(Python-Java)

Performance Metrics

CARLA Leaderboard Pre-Trained

ML-Model

Figure 1: ML-MAS framework overview.

Traditional if-else rules and other symbolic decision techniques
can result in higher complexity, making the system unmanageable
and hard to maintain over time. BDI agents give our framework the
capability of accomplishing goals in a rational way using the agent’s
know-how in the form of plans (e.g., to avoid front, back, crossing
collisions). Moreover, BDI plans are scalable, extendable, and con-
current, which is important in our application domain because a
rule can be activated while another one is still executing. While this
initial set of rules could be represented with a simpler rule-based
system, it would make future extensions more difficult and costly
(e.g., convoy of autonomous cars). According to recent literature
reviews [4, 8], Jason [5] is one of the most well-know BDI agent
programming languages that is still being actively maintained.

3.1 BDI Bridge

The BDI bridge implements a seamless communication bridge be-
tween the BDI agent and the CARLA API. The architecture of the
BDI bridge is shown in Figure 2. The bridge is based on socket
communication and consists of a client part (in Java-Jason) and
a server (in Python). The former is integrated into the BDI agent
component, and the latter is integrated into the orchestrator that
communicates with CARLA using its API.

Session 3F: Engineering Multiagent Systems

Server (Python)
Thread 3

v
—
Carla to Executor
Buffer

Jason to Server Buffer

JSON Unpack Thread 1

& Interpreter
Thread 2

Executor Public Interface
v port: 60111
—]

JSON Pack

2 TN
> <IN
N

The Orchestrator

Server to Jason Buffer

Client (Java-Jason)
Thread 3

___@._

Beliefs JSON Unpack
Handler & Interpreter

v
—]

S to Jason Buff
erver to Jason Buffer Thread 1

(R —

Thread 2

Public Interface
client connection

Jason to Server Buffer

)(..,

Jason Agents

v
_—
JSON Pack

Figure 2: Bridge connecting the orchestrator and agents.

To improve efficiency, both client and server run in three main
threads: a thread to send the messages, a thread to receive the
messages, and a thread to handle the messages. Each thread works
independently and passes information using a set of buffers. This
design ensures no thread conflicts or reaches a deadlock with other
threads, as only one thread can write to the specific buffer while the
others can only read from it. Moreover, the communication between
the client and the server is done automatically and handles any
disconnecting and reconnecting required, transparent to the parties
integrating it, providing a reliable communication service.

The messages are specified in the well-known JSON format. Both
client and server use a JSON unpacker and interpreter to identify
the message type and decide how to handle each message. Listing 1
shows a control (action) message in JSON format as an example of
a message being sent from the agent to the orchestrator.

{"id": 1,

1 "type": "name": "control"},
2 "data": {

3 "metricsType": 1,

4 "throttle": 0.0,

5 "steer": 0.0,

6 "brake": 0.0,

7 "reverse": false,

8 "repeat": 1

9

}

Listing 1: Example of a control message in JSON format.

The message handler thread behaves differently in the server
and in the client. The server has an executor which processes the
action requested by the message received from Jason. The client
has a dedicated Beliefs Handler that manages the agents’ beliefs
based on the information received from the orchestrator. Note that
the Jason BDI client can be replaced with another BDI client to
make it compatible with other BDI-based languages.

3.2 Orchestrator

The orchestrator implements the required functions to interface
with CARLA and with the Leaderboard (in particular, the Au-
tonomous Class). A configuration file for the orchestrator can be
easily changed to allow it to integrate with any ML model that

1193

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

inherits the same Autonomous Class. The functionality of the or-
chestrator includes loading the ML model, its configuration and
pre-trained weights, and forwarding the data from the required
sensors that are requested by the model. It also ensures the avail-
ability of the sensor data needed for the BDI agent, as well as
pre-processing the data and sending only what is required by the
agent. This acts as a filter which solves the common problem of
flooding the belief base of the agent with too much information
that is not being used. Communication with the BDI agent is done
through the BDI bridge. The orchestrator then waits for an action
from either the ML model or from the BDI agent. For efficiency, if
in a simulation frame there are no data to send to the agent, then it
relies on the action from the ML model only.

Algorithm 1 gives an overview of the function that loads the con-
figured routes and scenarios using the getRoutesAndScenarios()
function (line 1). Frames Per Second (FPS) is locked into 20 frames
per gaming time second (line 2). Then, it loops through each route
ensuring that the simulation environment (loading the town map,
the position of actors, the weather condition, etc.) and the required
systems (loading up the weights in the ML model, connecting with
the BDI agent via the BDI bridge, etc.) are ready and properly con-
figured (lines 5-10). Note the use of game time as well as the system
time. The system time is not used in the evaluation, it is merely
there for informational purposes. The evaluation is designed to
not be affected by computation speed and response time of the
solution or the hardware specification being used to run it. This is
achieved by using Game_time, a game second runs 20 simulation
frames (this is the default value which is used in the competitions)
where with each frame every actor in the simulation is allowed to
act (vehicles, pedestrians, traffic lights, etc.).

For every game time frame, the orchestrator collects the sensor
data (coming from the simulation environment) and call the func-
tion runStep, which will interface with the ML model and the BDI
agent, returning a control message from one of them that is then
sent to the environment for execution (using the eval() function).
The evaluation metrics are stored every time a route concludes.

Algorithm 2 describes the runStep function. Lines 5-7 check if
there are any repeat actions to perform. Repeat is a special property
that the BDI agent can specify when sending a message with an
action. It is used to inform the orchestrator to perform the same
action for a specified number of frames without asking the BDI
agent or the ML model until the repeat is over. This feature is
important because some plans are designed to stop the vehicle from
any speed that they may have, so a brake action has to be repeated
a number of times proportionally to the vehicle speed in order to
achieve the intended goal of the plan.

If there is no BDI action being repeated, then the orchestrator
sends the sensor data to the ML model and receives its control
message back. The sensor data is pre-processed in preparation to
be sent to the BDI agent. If the pre-processed data does not trigger
any BDI plan, then the orchestrator uses the ML control. Otherwise,
if a BDI plan is triggered, then the pre-conditions of the triggered
plan are tested against the set of pre-processed data (and the ML
control as well in some cases). If the pre-conditions are not satisfied,
then the BDI agent returns a noaction. Otherwise, the orchestrator
receives a control message from the BDI agent, which will then
take priority over the ML model control.

Session 3F: Engineering Multiagent Systems

Algorithm 1: Main function to run a scenario.

1 Function main()

2 Route_list « getRoutesAndScenarios()
3 FPS « 20

4 foreach Route € Route_list do

5 Sensors_list < getMLSensors() - getBDISensors()
6 loadWorldMap(Route, Sensors_list)

7 ML_Model «— prepareMLWeights()

8 BDI_Agent < connectBDIBridge()

9 Game_time « 0

10 System_start_time « getCurrentTimelnSec()
while Route_status # finished do
Game_time «— Game_time + 1

for k < 1 to FPS do

Sensors_data < collectData(Sensors_list)

1
12
13
14
15 Control « runStep(Sensors_data)

Metrics <« Metrics - eval (Route, Control)
17 Route_status < status(Route, Metrics)
if Route_status = finished then

L break

18
19

System_time
getCurrentTimeInSec() — System_start_time
store(Metrics, Game_time, System_time)

20

21

Algorithm 2: Orchestrator function to run a step.

1 Function runStep (Sensors_data)
2 Last_control « getLastControl()

3 Repeat_counter « getRepeatCounter()
4 Frame_number <« Frame_number + 1
5 if Repeat_counter > 1 then

6 Repeat_counter < Repeat_counter — 1

7

8 ML _control « getMLControl(Sensors_data)

9 Preprocessed_data < preprocess(Sensors_data)

if Preprocessed_data ¢ BDI_triggers() then
L Repeat_counter « 0

Last_control, Repeat_counter «—
getBDIControl(Preprocessed_data, ML_control)
if Last_control = noaction then

L Repeat_counter « 0

addBDIMetrics(Last_control, Repeat_counter)
// BDI control

return Last_control // Previous BDI control

10
11

12 return ML _control

13

14
15

16 return ML_control

17

18 return Last_control

3.3 Data Pre-Processing

The simulation environment in CARLA comes with a set of sensors
that researchers can use. There are two challenge tracks in the
CARLA Leaderboard. “Sensors Track” allows the use of 6 sensors:

1194

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

GPS, IMU, LiDAR, RADAR, RGB camera, and a speedometer. “Map
Track” adds an additional pseudosensor with information about the
map. Our BDI agent currently only uses information from the Li-
DAR and the speedometer. We also require traffic light information,
which we obtain directly from the CARLA APL

The LiDAR is a rotating ray-casting sensor which provides a
cloud of 3D coordinates (x, y, z) of the points and their intensity
around the vehicle. This sensor’s rotation behaviour gets most of the
object’s points surrounding the vehicle, but it does not guarantee
getting all of them. For example, depending on the FPS and the
configured rotation rate, in some cases only the obstacle points in
the right side are collected but not some of the left-most points, and
vice-versa. Thus, the aforementioned Beliefs Handler is designed to
keep a history of these data to be able to get the knowledge about
the current right and left obstacles at the same time. In contrast, the
speedometer is a simple sensor that provides the vehicle’s current
speed and does not require any further pre-processing.

There is a vast amount of cloud points coming from the Li-
DAR data, containing more than 50,000 points at a time. Therefore,
analysing and pre-processing the data is necessary to generate
useful symbolic data to send to the agent. We apply three pre-
processing steps to the LiDAR cloud point: (i) filter the points by
limiting the distance (X between -5m to 8m, Y between -4m to 4m,
and Z between 0.7m to 2m); (ii) group the remaining points into
six directions front (F), back (B), straight front (SF), straight back
(SB), left (L) and right (R), as shown in Figure 3; and (iii) get the
two closest points (X,Y) in each of the six directions. These three
pre-processing steps compress the 50,000+ LiDAR points into only
12 valuable points.

Furthermore, by observing data from the execution of ML models
in CARLA, we have determined that many of the critical failure
cases occur in traffic light intersections. These situations require
“System 2” to take control in order to devise some rational solution.
The traffic light information is collected from the CARLA API, and
serve as an example of infrastructure-to-car communication.

Figure 3: LIDAR cloud points grouped by direction.

The information about the traffic lights is much more simple,
but some pre-processing steps are still required to maintain useful
symbolic data while at the same not overloading the agent with too

Session 3F: Engineering Multiagent Systems

much information. We perform the following three pre-processing
steps: (i) get the distance to any traffic light that is up to 15 meters in
front of the vehicle (including coordinates of other traffic lights in
the same intersection); (ii) calculate if the vehicle is inside the traffic
light intersection, as shown in Figure 4; and (iii) stop tracking the
traffic light information if the vehicle has exited the intersection.

\ |

X2 = Max(X) X1 =Max(X)
Y2 = Min(Y) Y1 = Max(Y)
Ke
¥+
X3 = Min(X) X4 = Min(X)
Y3 = Min(Y) Y4 = Max(Y)

=* ©

In the traffic light intersection:
Vehicle X Between (Min X and Max X)
&

Vehicle Y Between (Min ¥ and Max Y)

Figure 4: Calculating the traffic light intersection flag. Note
the notation for the axes, CARLA considers the front of the
vehicle as X+ axis, on the right of it is the Y+ axis, and the Z
axis is the vertical axis.

Besides the pre-processed data from the LiDAR and the traffic
lights, as well as the data from the speedometer, basic information
about the current frame and step number are also sent to the agent
in order to help predict the motion of the obstacles. For example,
whether it is moving towards the vehicle or opposite from it, by
comparing the distance difference between the information from
the previous frame and the current one. This is possible because of
the history provided by the Beliefs Handler.

3.4 BDI Agent

Based on the pre-processed data received by the BDI agent, the
Beliefs Handler can add the beliefs listed in Table 1, which are then
used to trigger the relevant plan. Each belief has the Frame number
value that is used to keep track of the history (up to four previous
frames) of the data and also to be able to predict the obstacles
motion by comparing the previous frame to the current frame.
We have identified seven critical situations where System 2 input
is required, based on infractions and collisions of the top-ranking
ML models in the Leaderboard training routes. For each situation,
we implement a plan in the Jason BDI agent. The seven BDI plans
(rules) were obtained via experimentation by observing the training
routes using various ML models. We identified the scenarios where

1195

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Table 1: BDI agent beliefs.

Belief ‘ Description
info(Frame,Speed) Step number and vehicle speed
f(Frame,X,Y,MinX,MinY) Front obstacle detected
b(Frame,X,Y,MinX,MinY) Back obstacle detected
sf(Frame,X,Y,MinX,MinY) Straight front obstacle detected
sb(Frame,X,Y,MinX,MinY) Straight back obstacle detected
r(Frame,X,Y,MinX,MinY) Right obstacle detected
1(Frame,X,Y,MinX,MinY) Left obstacle detected
traffic_light(Frame Type, Colour, | Traffic light in front, or inside
DifX,DifY, Distance,IsInInt) a traffic light intersection
ml_control(Frame,Throttle,Steer, .

Brake, Hand_brake Reverse) Current ML model action

these models were having problems and then created the rules that
would first detect the problem and then attempt to solve it. The
seven plans are as follows.!

Close crossing collision avoidance. The plan triggers when there
are close obstacles on the front, right or left of the vehicle with
less than 2 meters distance in the Y axis. Once triggered the plan
contains an action to break the vehicle to try to avoid the collision.
The Jason plan for this behaviour is shown in Listing 2. The +!
sign represents the addition of a goal, in this case the triggering
event is the addition of the goal frame(F) with F the Leaderboard
step/frame. The commands between : and <- form the context of
the plan (i.e., the precondition of the plan). Finally, the commands
after <— are a sequence of actions to be executed when the plan is
triggered and the context is valid. Figure 5a shows an example of a
nearby cyclist about to cross the road.

1 +!frame(F): f(F,X,_,_,MinY) & MinY < 2.0 & X < 4.5 &
2 info(F,Sp) & Sp > 0.5
3 <- control(2,0.0,0.0,1.0,false,false, (Sp*3)).

// hard break

Listing 2: Jason plan for close crossing collision.

Far crossing collision avoidance. This plan is designed to detect
obstacles in the Y axis distance that are expected to come in front
of the vehicle. This is calculated based on obstacle motion by com-
paring the distance differences between the frames and the current
vehicle speed. Listing 3 shows parts of this plan. Figure 5b has an
example of a fast-moving vehicle in a traffic light intersection that
is successfully detected by this plan.

+!frame(F): f(F,X,Y,_,MinY) & f(F2,_,Y2,_,MinY2) &

1
2 (F-F2) <=2 &Y >0 & Y2 >0 & MinY > 2.0 &
3 X <6 &Y <4 & (MinY2-MinY) > 0.15 &
4
5

ml_control(F,_,St,_,_,_) & St < 0.1 & info(F,Sp)
<- control(1,0.0,0.0,1.0,false,false, (Sp*3)).
// hard break

Listing 3: Jason plan for far crossing collision.

Front collision avoidance. This plan is used to predict the front
obstacles that are getting closer to the vehicle. It observes the front
for obstacles from a distance of 7.9 meters, which is enough that
if an obstacle is detected then it manages to brake at the proper

!Demonstration videos and the code for the experiments are available in https://github.
com/alshukairi/MLMAS-Framework- AAMAS23.

https://github.com/alshukairi/MLMAS-Framework-AAMAS23
https://github.com/alshukairi/MLMAS-Framework-AAMAS23

Session 3F: Engineering Multiagent Systems AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

>

2 /
. MinY distance ¥
- :J — X distance
" aias in X distance

Crossing another vehicle
From left: Y2> Y1
From right: ¥1> V2

Close Crossing Obstacles
Min Y distance is very close <2m

== Distance to the front of the other
vehicle
abs(¥2) <1.5m

Avoid front car collision
X1>X2 ==> the car gets closer

(a) Close crossing avoidance. (b) Far crossing avoidance. (c) Front avoidance.
| e
ei

“Min front X distane

Back Collision Avoidance

The car is too close from the back
or

The car is coming closer from the

back fast, X2 and X1 difference is
high

back X distance
Slow down when existing the traffic

light intersection (until the front {
vision is clear).

(d) Back avoidance. (e) Traffic light green. (f) Exiting intersection.
Figure 5: Visual representations of the BDI agent plans.

e ST e g

2 = no obstacles. This is a simple plan that acts as a wake-up for the
Trafc Jam detected: The I % ML model to start moving the vehicle because the traffic light turns

ML model stops and does

not know what to do to green, as shown in Figure 5e.
. . Reverse ‘

Exiting intersection. This plan is to ensure that the vehicle exits

h% = g the traffic light intersection at a reasonable slow speed to allow it
L slowly'go

. opposite the to avoid any sudden obstacles. An example is shown in Figure 5f.

obstacle

e Catn i) g Traffic jam navigation. The plan detects that the ML model is

solved, and the : : . : . _

ML model W eruty g0 stuck in a 'partlcu'lar place without moving the vehicle fo'r an ex

retakes control | (e straight since tended period of time (60 frames or 3 gaming seconds). This detec-

no obstacles are P .

_ in front tion mechanism also considers other information that distinguishes

| ' it from stopping normally. Once the traffic jam detection is trig-

gered, there are various sub-plans that attempt to move the vehicle

out of it. Some options include: reverse, reverse and turn, go for-
ward, go forward and yaw. After some attempts, usually there is
a small waiting period to check if the ML model is able to retake
control or not. Figure 5f demonstrates a sample of a traffic jam that

time to avoid the incoming vehicle. Figure 5c shows a truck moving was solved by using this plan in five steps.

towards the vehicle, trying to pass to the other lane.
4 EVALUATION

The CARLA Leaderboard evaluation consists of six towns (maps)
with a total of 100 secret routes and 76 public routes. The public
routes are used for training and testing, while the secret routes are
kept hidden and used for the official Leaderboard challenge. Sub-
mitting a solution to the Leaderboard is a lengthy process, and even
just running the 76 public routes locally can take a very long time.
As a shorter alternative, the “Longest6 Benchmark” [10] extends the

Traffic light green. Sometimes the ML model would take too long CARLA Leaderboard with a new set of 36 routes. These routes are
to move the vehicle when the traffic light was green and there were based on the six towns from the Leaderboard, therefore any training

Figure 6: Visual representation of the plan for traffic jams.

Back collision avoidance. This plan attempts to avoid such col-
lision by predicting when a fast-moving vehicle is coming from
the rear side or when there is another vehicle too close to the rear.
Figure 5d has an example of a vehicle coming from the back and
trying to pass to another lane. Thus, our plan moves the vehicle
forward if possible (considering any front obstacles), providing a
safe space for the other vehicle to manoeuvre.

1196

Session 3F: Engineering Multiagent Systems

done on the original 76 public routes will also be useful for this
new set of 36 routes. We use this benchmark for our experiments.

We select the LAV [9] as our pre-trained ML model. Integrating
a new ML model with ML-MAS is a seamless process which can
be done via a configuration file. The LAV model is a deep learning
approach that uses a range of different techniques (e.g., recurrent
neural networks, convolutional neural networks) to build a repre-
sentation of the driving behaviour of not only the vehicle being
driven, but also of other vehicles, all while remaining invariant to
the viewpoint of the controlling vehicle. Note that the LAV model
comes pre-configured with experimentally trained weights. This
is not directly comparable with the final weights that achieved a
(winning) score of 61% in the Leaderboard challenge of 2020; those
weights were not made public at the time of writing this paper.
We first run the LAV pre-trained model by itself in the Longest6
benchmark, and then we run ML-MAS using LAV as the ML model.

The Leaderboard evaluator is designed to be independent of
either the computer specification or the model processing speed.
This is done by using the CARLA game time instead of real system
time. The Leaderboard evaluator is designed to run with a fixed 20
frames per gaming time second. This is synchronised with every
actor in the environment (vehicles, pedestrians, etc.). Our goal in
this paper is to improve the driving score obtained by ML models
in the CARLA Leadearboard challenge, nevertheless, we report
the configuration of the computer used in the experiments for
compatibility purposes: Ubuntu 18.04 operating system, Intel Core
17-6820HK CPU @ 2.70 GHz processor, GeForce GTX 1070 Mobile
graphics card, Nvidia-driver-465, and Cuda 11.3.

4.1 Metrics

The CARLA Leaderboard provides metrics designed to measure
different aspects of driving. The final driving score metric is a mul-
tiplication between two aggregation metrics [20]: route completion
and infraction penalty. Route completion is a percentage of the com-
pleted distance in a route compared to the route’s length. There are
five sub-metrics that negatively impact route completion: off-road
driving, route deviation, agent blocked (the vehicle is stuck for a
period of time), simulation timeout and route timeout. The first is
a percentage reduction over the route completion score, and the
other four cause the route evaluation to stop once their conditions
are met (more details about each condition can be found in [20]).
Infraction penalty starts with a base value of 1.0 (higher values
are better, i.e., less infractions have been committed). This value
is reduced by multiplying it by the coefficient of each of the five
road infractions: collisions with pedestrians (0.5), collisions with
other vehicles (0.6), collisions with static elements / layout (0.65),
running a red light (0.7), and running a stop sign (0.8).
The final driving score is calculated as follows:

dirivingScore = routeCompletionPercentage * infractionPenalty

We propose an additional seven ML-MAS specific metrics, with
each metric representing the contribution percentage of each of the
primary BDI agent plans reported in Section 3.4. The orchestrator
keeps a record of all of these metrics by counting the number of
frames each plan contributes when sending an action (this value
includes the repeat action too). At the end of each route evaluation,
the results are stored using the following formula to calculate the

1197

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

contribution of each plan:

totalPlanContributionFrames

contributionPercentage = * 100

totalFrames

4.2 Results

Figure 7a contains the main Leaderboard scores, driving score, route
completion and infraction penalty. The ML-MAS Framework im-
proved all of the scores, demonstrating that it successfully enhanced
decision-making of the LAV model. Substantial improvements were
obtained to the driving score (increase of 18.1%) and route com-
pletion (increase of 18.7%), as well as a smaller improvement in
the infraction penalty (increase of 8.2%), meaning that ML-MAS
committed less infractions than the LAV-only solution.

The remaining nine Leaderboard metrics results are displayed
in three groups. Group one, in Figure 7b, shows the three collision
penalty results, collision with a pedestrian, with a vehicle, and with
the layout. ML-MAS reduced the collisions per kilometre by more
than half. The most significant reduction gap was in the vehicle
collisions, which decreased from 0.247/km to only 0.044/km. The
total number of collisions per km for the LAV model was 0.394/km
compared to only 0.12/km for ML-MAS.

Group two of the metrics, in Figure 7c, shows a slight improve-
ment in two infractions, the red light and stop sign. There are no
main plans for red lights and/or stop signs in the BDI agent, but they
are considered in some of the subplans, which may have caused
this minor improvement in the metrics. ML-MAS performed more
off-road infractions than the LAV model, 0.01/km more to be precise.
This occurs because the BDI model considers more complex actions
such as reverse and turning opposite to a obstacle, while the ML
models are often using only throttle, steer and brake actions. By
performing the more complex actions, the BDI agent may choose
to commit a minor infraction to avoid a larger one.

In Figure 7d, we have the third group with the route deviation,
route timeout and agent blocked metrics. In the route deviation,
we have a minor increase (0.004/km) in ML-MAS. This follows the
same reasoning from the off-road infractions, the agent will decide
to commit them to avoid worse infractions. ML-MAS successfully
reduces the route timeout and the agent blocked metrics to zero.
The agent blocked score of LAV had a significant impact in their
driving score, which was completely solved by ML-MAS. These
improvements to route timeout and agent blocked metrics had a
very positive effect in the route completion metric for ML-MAS, and
were one of the main reasons for having such a large improvement
in the driving score over the LAV-only solution.

The ML-MAS metrics results are shown in Figure 8. The plan
that was most used to send actions was the Close Crossing Collision
Avoidance, with an average of 2.4% to the total number of actions.
Despite causing the best improvement in the score, the Traffic Jam
Navigation plan is used the least, with 0.3%. The total interference
from the rational agent in the evaluated routes is 8.1%, with the
remaining 91.9% of the actions being sent by the ML model. This
corroborates the expectation that System 1 (LAV) should be acting
for most of the time, and System 2 (BDI agent) should interfere only
a small percentage of the time to provide rational decisions.

To test the generality of our framework, we have also conducted
experiments with a second ML model, the TransFuser model [10].

Session 3F: Engineering Multiagent Systems

0.247

Collisions with
vehicles

Collisions with
pedestrians

Avg. driving
score

Avg. route
completion

Avg. infraction

penalty layout

(a) Main metrics, higher is better.
kilometre, lower is better.

Collisions with

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Red lights

Stop sign Off-road Route Route

Agent
Blocked

(b) Group one metrics, normalised per (c) Group two metrics, normalised per (d) Group three metrics, normalised per
kilometre, lower is better.

kilometre, lower is better.

Figure 7: Leaderboard results for LAV and ML-MAS (with LAV).

Close Crossing
Collision Avoidance

Traffic Light
Slowdown

Back
Collision Avoidance

Traffic Light
Green [Go]

Far Crossing
Collision Avoidance

Front
Collision Avoidance

Traffic jam
interf
interference H Interference_Percentage

0.0 0.5 1.0 15

2.0

2.5

Figure 8: Results of the ML-MAS (with LAV) metrics.

ML-MAS managed to improve the driving score by 3.6% from 44.8%
(TransFuser) to 48.4% (ML-MAS). The route completion was again
improved by a good margin, 85.9% for TransFuser and 98.2% for
ML-MAS. Unfortunately, ML-MAS committed more infractions, ob-
taining a worse infraction penalty score, 48.9% compared to 51.0%
of TransFuser. Given that most plans were made based on observing
executions of the LAV model, this minor improvement using Trans-
Fuser can be further improved by adding new plans for scenarios
that we did not consider before (such as avoiding traffic infractions).

5 DISCUSSION

In this section we discuss the research questions posed at the be-
ginning of the paper and how we solved them in the context of
self-driving vehicles. RQ1 How do we model the governance of System
1and 2 in an AI?

Our orchestrator component provides the governance of System
1 and System 2. Its main function is to orchestrate the decisions
that are being sent from both systems. It also ensures that both
systems receive the required information from the environment
when needed. Governance of the actions being sent is done by
prioritising which action is passed to the environment for execution.
RQ2 Which factors trigger the switch between the two systems?

1198

If one of the seven main plans is triggered and its context is valid,
then control is switched (prioritised) to the rational agent (System
2). Upon completion of the plan, control returns to System 1.

RQ3 How should System 2 act once the switch is triggered?

Whenever System 2 is triggered, the agent evaluates the latest be-
liefs received along with the memorised history of previous frames,
and then it either activates one of plans which will result in an
action being sent or it decides to not perform any action.

RQ4 When should problems be handed back from System 2 to 1?

Control should be handed back once no plans from System 2 are
being executed. This includes the repeat action available in the BDI
agent. For example, in a collision scenario where the vehicle is in
high speed, the agent can send a brake action to be repeated many
times proportional to the vehicle speed, and only after the action
has been repeated the control will be handed back to System 1.

6 CONCLUSION

ML-MAS combines ML and symbolic decision-making. Our re-
sults successfully demonstrate that this combination between a
pre-trained ML model and a BDI agent can have a significant im-
pact in the driving score of autonomous vehicles. Without altering
the ML model in any way, we added seven plans that our rational
agent used to avoid infractions and improve the driving score of
the original ML solution. The results for using different ML models
will depend on the generality and effectiveness of the BDI plans
and the effectiveness of the original model.

For future work, in terms of implementation, we would like to
improve the interfaces of the framework (BDI bridge and orches-
trator) to allow other researchers to easily plug their favourite BDI
language and ML model. From a more theoretical perspective, we
wish to explore communication between the ML model and the
BDI agent, so that the process of selecting an action is a result of a
direct deliberation between both components. Our methodology
for identifying critical situations (i.e., when we need to devise a BDI
plan) was ad-hoc and based on experimentation, to make it more
generalisable we plan to investigate the literature in self-driving
cars to identify more general situations. To make this technique
realisable in the real world, further experiments considering com-
putation speed and response time need to be performed. Finally, in
terms of applications, we firmly believe that similar ideas can be
applied to other domains that can be represented as System 1 and
System 2, such as in the case of robotics (more specifically, search
and rescue and other emergency use of robots).

Session 3F: Engineering Multiagent Systems

REFERENCES

(1]

[2

=

[10]

[11

Mohammed Al-Nuaimi, Sapto Wibowo, Hongyang Qu, Jonathan Aitken, and
Sandor Veres. 2021. Hybrid verification technique for decision-making of self-
driving vehicles. Journal of Sensor and Actuator Networks 10, 3 (2021), 42.

Tarek R. Besold, Artur S. d’Avila Garcez, Sebastian Bader, Howard Bowman,
Pedro M. Domingos, Pascal Hitzler, Kai-Uwe Kiithnberger, Luis C. Lamb, Priscila
Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, and Gerson
Zaverucha. 2021. Neural-Symbolic Learning and Reasoning: A Survey and Inter-
pretation. In Neuro-Symbolic Artificial Intelligence: The State of the Art, Pascal
Hitzler and Md. Kamruzzaman Sarker (Eds.). Frontiers in Artificial Intelligence
and Applications, Vol. 342. IOS Press, 1-51. https://doi.org/10.3233/FAIA210348
Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner,
Nick Linck, Andreas Loreggia, Keerthiram Murgesan, Nicholas Mattei, Francesca
Rossi, and Biplav Srivastava. 2021. Thinking Fast and Slow in Al Proceedings
of the AAAI Conference on Artificial Intelligence 35, 17 (May 2021), 15042-15046.
https://doi.org/10.1609/aaai.v35i17.17765

Rafael H. Bordini, Amal El Fallah Seghrouchni, Koen V. Hindriks, Brian Logan, and
Alessandro Ricci. 2020. Agent programming in the cognitive era. Auton. Agents
Multi Agent Syst. 34, 2 (2020), 37. https://doi.org/10.1007/s10458-020-09453-y
Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hiibner. 2007. Programming
Multi-Agent Systems in AgentSpeak using Jason. John Wiley & Sons, Chichester,
UK.

M. E. Bratman. 1987. Intentions, Plans, and Practical Reason. Harvard University
Press.

Rodney A. Brooks. 1991. Intelligence without representation. Artificial Intelligence
47,1 (1991), 139-159. https://doi.org/10.1016/0004-3702(91)90053-M

Rafael C. Cardoso and Angelo Ferrando. 2021. A Review of Agent-Based Pro-
gramming for Multi-Agent Systems. Computers 10, 2 (Jan 2021), 16. https:
//doi.org/10.3390/computers10020016

Dian Chen and Philipp Krahenbiihl. 2022. Learning from All Vehicles. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
17201-17210. https://doi.org/10.1109/CVPR52688.2022.01671

Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and
Andreas Geiger. 2022. TransFuser: Imitation with Transformer-Based Sensor
Fusion for Autonomous Driving. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2022), 1-18. https://doi.org/10.1109/TPAMI.2022.3200245
Paolo Coraggio and Massimo De Gregorio. 2007. A Neurosymbolic Hybrid
Approach for Landmark Recognition and Robot Localization. In Proceedings of the
2nd International Conference on Advances in Brain, Vision and Artificial Intelligence
(Naples, Italy) (BVAI'07). Springer-Verlag, Berlin, Heidelberg, 566-575.

[12] J.M. Corchado and J. Aiken. 2002. Hybrid artificial intelligence methods in

=
&

[14]

oceanographic forecast models. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C (Applications and Reviews) 32, 4 (2002), 307-313. https:
//doi.org/10.1109/TSMCC.2002.806072

Mike Daily, Swarup Medasani, Reinhold Behringer, and Mohan Trivedi. 2017.
Self-Driving Cars. Computer 50, 12 (2017), 18-23. https://doi.org/10.1109/MC.
2017.4451204

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning. 1-16.

1199

[15

[16

(17

(18

[19

[20

[21

[22

[25

[26

[27

]

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Massimo DE GREGORIO. 2008. An Intelligent Active Video Surveillance System
Based on the Integration of Virtual Neural Sensors and BDI Agents. IEICE
Transactions on Information and Systems E91.D, 7 (2008), 1914-1921. https:
//doi.org/10.1093/ietisy/e91-d.7.1914

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. 2020.
A survey of deep learning techniques for autonomous driving. Journal
of Field Robotics 37, 3 (2020), 362-386. https://doi.org/10.1002/rob.21918
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21918

Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun,
Emese Thamo, Min Wu, and Xinping Yi. 2020. A Survey of Safety and Trust-
worthiness of Deep Neural Networks: Verification, Testing, Adversarial Attack
and Defence, and Interpretability. Computer Science Review 37 (2020), 100270.
http://www.sciencedirect.com/science/article/pii/S1574013719302527

Daniel Kahneman. 2012. Thinking, Fast and Slow. Penguin Books, Harlow,
England.

Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verifi-
cation of Probabilistic Real-Time Systems. In Computer Aided Verification, Ganesh
Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 585-591.

CARLA Leaderboard. 2022. CARLA Autonomous Driving Leaderboard. https:
//leaderboard.carla.org/. [Online; accessed 25-June-2022].

Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2009. MCMAS: A
Model Checker for the Verification of Multi-Agent Systems, In MCMAS: A Model
Checker for the Verification of Multi-Agent Systems. International Journal on
Software Tools for Technology Transfer 5643, 682-688. https://doi.org/10.1007/978-
3-642-02658-4_55

Niccolo Piazzesi, Massimo Hong, and Andrea Ceccarelli. 2021. Attack and Fault
Injection in Self-driving Agents on the Carla Simulator — Experience Report.
In Computer Safety, Reliability, and Security, Ibrahim Habli, Mark Sujan, and
Friedemann Bitsch (Eds.). Springer International Publishing, Cham, 210-225.
A. S. Rao and M. Georgeff. 1995. BDI Agents: From Theory to Practice. In
Proceedings of the first International Conference on Multi-Agent Systems. San
Francisco, USA, 312-319.

Md. Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and Pascal Hitzler. 2021.
Neuro-symbolic artificial intelligence. AI Commun. 34, 3 (2021), 197-209. https:
//doi.org/10.3233/AIC-210084

Zachary Susskind, Bryce Arden, Lizy K. John, Patrick Stockton, and Eugene B.
John. 2021. Neuro-Symbolic Al: An Emerging Class of AI Workloads and their
Characterization. https://doi.org/10.48550/ARXIV.2109.06133

Ray Tsaih, Yenshan Hsu, and Charles C. Lai. 1998. Forecasting S&P 500 stock
index futures with a hybrid Al system. Decision Support Systems 23, 2 (1998),
161-174. https://doi.org/10.1016/S0167-9236(98)00028-1

Letian Wang, Yeping Hu, Liting Sun, Wei Zhan, Masayoshi Tomizuka, and
Changliu Liu. 2021. Hierarchical adaptable and transferable networks (HATN) for
driving behavior prediction. In NeurIPS 2021, Machine Learning for Autonomous
Driving Workshop.

Nanning Zheng, Shaoyi Du, Jianji Wang, He Zhang, Wenting Cui, Zijian Kang,
Tao Yang, Bin Lou, Yuting Chi, Hong Long, Mei Ma, Qi Yuan, Shupei Zhang,
Dong Zhang, Feng Ye, and Jingmin Xin. 2020. Predicting COVID-19 in China
Using Hybrid AI Model. IEEE Transactions on Cybernetics 50, 7 (2020), 2891-2904.
https://doi.org/10.1109/TCYB.2020.2990162

https://doi.org/10.3233/FAIA210348
https://doi.org/10.1609/aaai.v35i17.17765
https://doi.org/10.1007/s10458-020-09453-y
https://doi.org/10.1016/0004-3702(91)90053-M
https://doi.org/10.3390/computers10020016
https://doi.org/10.3390/computers10020016
https://doi.org/10.1109/CVPR52688.2022.01671
https://doi.org/10.1109/TPAMI.2022.3200245
https://doi.org/10.1109/TSMCC.2002.806072
https://doi.org/10.1109/TSMCC.2002.806072
https://doi.org/10.1109/MC.2017.4451204
https://doi.org/10.1109/MC.2017.4451204
https://doi.org/10.1093/ietisy/e91-d.7.1914
https://doi.org/10.1093/ietisy/e91-d.7.1914
https://doi.org/10.1002/rob.21918
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21918
http://www.sciencedirect.com/science/article/pii/S1574013719302527
https://leaderboard.carla.org/
https://leaderboard.carla.org/
https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.1007/978-3-642-02658-4_55
https://doi.org/10.3233/AIC-210084
https://doi.org/10.3233/AIC-210084
https://doi.org/10.48550/ARXIV.2109.06133
https://doi.org/10.1016/S0167-9236(98)00028-1
https://doi.org/10.1109/TCYB.2020.2990162

	Abstract
	1 Introduction
	2 Related Work
	3 The ML-MAS Framework
	3.1 BDI Bridge
	3.2 Orchestrator
	3.3 Data Pre-Processing
	3.4 BDI Agent

	4 Evaluation
	4.1 Metrics
	4.2 Results

	5 Discussion
	6 Conclusion
	References

