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ABSTRACT
Offline reinforcement learning (RL) aims to learn a policy from a
fixed dataset, without further interactions with the environment.
However, offline datasets are often very noisy, which consist of large
quantities of sub-optimal or task-agnostic trajectories. Therefore,
it is very challenging for offline RL to learn an optimal policy from
such datasets. To address this, we use reward machines (RM) to
encode human knowledge about the task and refine datasets for
offline RL. Specifically, we define the event-ordered RM to label
offline datasets with RM states. Then, we further use the labeled
datasets to generate refined datasets, which is smaller but better for
offline RL. By using the RM, we can decompose a long-horizon task
into easier sub-tasks, inform the agent about their current stage
along task completion, and guide the offline learning process. In
addition, we generate counterfactual experiences by RM to guide
agent to complete each sub-task. Experimental results in the D4RL
benchmark confirm that our method achieves better performance
in long-horizon manipulation tasks with sub-optimal datasets.
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1 INTRODUCTION
Reinforcement learning (RL), especially when combines with deep
neural networks, has achieved great success in various applications,
ranging from games to robotics. However, applying RL to real-world
scenarios is still challenging because exploration and interaction
with real-world environment is often costly or risky. For example, a
self-driving car learning in real world requires human supervision
and safety checks, which may be dangerous or time-consuming.
In such settings, it is desirable to learn from previously collected
data. Offline RL aims to address the problem of learning effective
policies entirely from offline datasets, without online interaction.
To date, several offline RL methods [6, 10–12, 14, 27, 29] have been
proposed and successfully tested in many domains.
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Unfortunately, offline RL is generally more challenging than
its online counterpart and its performance heavily depends on
the quality of datasets. Firstly, the long-horizon task, which is a
common challenge in RL, becomes even more difficult in offline
settings. This is because the agent is not allowed to explore fur-
ther. Secondly, there are often many sub-optimal or task-agnostic
trajectories in offline datasets. This is because the demonstrations
from human experts are very costly and offline datasets are often
generated by some poor behavior policies. In offline RL, the quality
of the datasets is critical for learning. To date, most of the offline RL
methods [10, 11] still fail to learn a good policy from low-quality
datasets. It is worth noting that the datasets can be very large but
not necessarily high-quality in many real-world applications.

Motivated by mining and metal refinement, the datasets should
be able to be refined with some carefully designed processes using
human knowledge. Intuitively, this will make the datasets smaller
and more suitable for offline RL. Indeed, decomposing a long-
horizon task into a series of easier sub-tasks is a key capability
of our human beings. Moreover, people also tend to focus on experi-
ences that are useful for the specific task. For example, we perform
the task of opening a door in two stages, i.e., 1) reaching to the door
handle first and 2) then pulling the door. We are also very sensitive
to tell which experiences are relevant to door opening. Now, the
key question is how such human knowledge can be effectively used
to refine the datasets of offline RL.

In this paper, we use reward machine (RM) to encode task-specific
human knowledge. Specifically, RM is a finite-state machine used
to define task dependent on high-level events [8]. In more details,
it encodes high-level knowledge into its RM states to expose the
structure of the reward function. Furthermore, RM allows the agent
to decompose a long-horizon task into several stages and learn
sets of policies for each stage of the whole task. With high-level
knowledge encoded in RM, we can distinguish experiences that are
useful for the task from low-quality offline datasets. Besides, RM is
very intuitive for us to build as long as we can define the high-level
events of a given task.

With the advantage of RM, we propose a novel approach to
refine the original datasets in order to generate smaller but better
datasets for offline RL. Specifically, we first introduce a special
type of RM that can encode the history of high-level events in a
trajectory. Then, we build this RMwith human knowledge about the
task and use it to label trajectories in the datasets. Giving this, we
split them into sub-trajectories according to the labeled RM states.
With the sub-trajectories, we compute the best order of high-level
events of the task and select sub-trajectories aligned with the order.
Furthermore, we relabel datasets with counterfactual experiences
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by RM to make better use of the selected trajectories. Intuitively,
this is very similar to the mineral processing, where the crude ores
are broken into small pieces and then separate the valuable minerals
from the waste rock. Using the refined dataset, we train a policy
with state-of-the-art offline RL methods with RM states to complete
the whole task. Finally, we conduct our experiments in the common
offline RL benchmark — D4RL[5]. Experimental results show our
method achieves better performance than baselines on all the tasks.
Additionally, we illustrate that our method can generate smaller
but better datasets for offline RL.

Our main contributions are summarized as follows: 1) we use
RM to encode human knowledge and propose a method to refine
the datasets for offline RL and 2) we show the effectiveness of our
method on the challenging tasks in the D4RL benchmark. To the
best of our knowledge, we are the first to use RM to refine the
datasets and demonstrate that “less is more” for offline RL.

2 BACKGROUND
2.1 Offline Reinforcement Learning
The reinforcement learning (RL) problem is formulated in the con-
text of a Markov decision process (MDP), defined as a tupleM =

⟨𝑆,𝐴, 𝑟, 𝑝,𝛾⟩, where 𝑆 is a state space, 𝐴 is an action space, 𝑟 :
𝑆 × 𝐴 × 𝑆 → R is a reward function, 𝑝 (𝑠′ |𝑠, 𝑎) is the transition
probability distribution, and 𝛾 ∈ (0, 1] is a discount factor. At every
time step 𝑡 , the agent observes the current state 𝑠𝑡 ∈ 𝑆 and executes
an action 𝑎𝑡 ∈ 𝐴 following a policy 𝜋 (𝑎𝑡 |𝑠𝑡 ), then transitions to a
new state 𝑠𝑡+1 ∼ 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) and receives a reward 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1).
The goal of RL is to learn an optimal policy 𝜋∗ maximizing the
expected sum of discounted future rewards by trial-and-error [24].

In contrast to online RL, offline RL trains policy on previously
collected data without any additional interaction with the environ-
ment. Given a fixed dataset 𝐷 = {(𝑠, 𝑎, 𝑟, 𝑠′)}, offline RL minimizes
the Bellman error derived from the action-value Bellman equation:

𝐿(𝜃 ) = E(𝑠,𝑎,𝑟,𝑠′ )∼𝐷 [(𝑟 + 𝛾 max
𝑎′

𝑄
𝜃
(𝑠′, 𝑎′) −𝑄𝜃 (𝑠, 𝑎))2] (1)

where𝑄𝜃 is a parameterized Q-function,𝑄
𝜃
is a target network, and

the policy is defined as 𝜋 (𝑠) = argmax𝑎 𝑄𝜃 (𝑠, 𝑎). However, since
some state-action pairs (𝑠′, 𝑎′) are often not in𝐷 , out-of-distribution
(OOD) actions 𝑎′ can produce erroneous values for𝑄

𝜃
(𝑠′, 𝑎′) in the

above objective, leading to overestimation as the policy is defined
to maximize the (estimated) Q-value.

There are manymethods proposed to avoid OOD actions. Among
them, implicit Q-learning (IQL) [10], which is the leading method
for offline RL, solves this issue by estimating the maximum 𝑄-
value over actions that are in the support of the data distribution.
Formally, they use a value function 𝑉𝜓 as the target, such that:

𝐿(𝜃 ) = E(𝑠,𝑎,𝑟,𝑠′ )∼𝐷 [(𝑟 + 𝛾𝑉𝜓 (𝑠′) −𝑄𝜃 (𝑠, 𝑎))2] (2)

and 𝑉𝜓 approximates an expectile only with respect to the action
distribution, leading to the following loss:

𝐿(𝜓 ) = E(𝑠,𝑎)∼𝐷 [𝐿𝜏2 (𝑄𝜃
(𝑠, 𝑎) −𝑉𝜓 (𝑠))] (3)

where 𝐿𝜏2 (𝑢) = |𝜏 − ⊮(𝑢 < 0) |𝑢2 and 𝜏 is a hyper-parameter. Then,
it extracts the policy 𝜋𝜙 using advantage weighted regression [16]:

𝐿(𝜙) = E(𝑠,𝑎)∼𝐷 [exp(𝛽 (𝑄𝜃
(𝑠, 𝑎) −𝑉𝜓 (𝑠))) log𝜋𝜙 (𝑎 |𝑠)] (4)

where 𝛽 ≥ 0 is an inverse temperature.

2.2 Reward Machines
A reward machine (RM) is a tuple R = ⟨𝑈 ,𝑢𝐼 , 𝐹 , Σ, 𝛿𝑢 , 𝛿𝑟 ⟩, where
𝑈 is a finite set of states, 𝑢𝐼 ∈ 𝑈 is an initial state, 𝐹 is a finite set
of terminal states (where 𝐹 ⊆ 𝑈 ), Σ is a finite set of environment
events, 𝛿𝑢 : 𝑈 ×Σ→ 𝑈 is the state-transition function, and 𝛿𝑟 : 𝑈 ×
𝑈 → R is the reward transition function. RM is initially introduced
by [8]. Here, we adapt the RM’s definition slightly to better suit the
offline RL setting, which is similar to [15].

When paired with a MDP, the RM uses a labeling function
𝐿 : 𝑆 × 𝐴 × 𝑆 → 2Σ to map from a MDP transition (𝑠, 𝑎, 𝑠′) to
a set of environment events. If the agent executes action 𝑎𝑡 to tran-
sition from state 𝑠𝑡 to 𝑠𝑡+1 in the MDP, then the labeling function 𝐿

outputs a set of environments events that happens in MDP transi-
tion (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), allowing it to capture scenarios in which multiple
events occur concurrently. In such a scenario, the events are passed
as a sequence to the RM in no particular order [15].

3 MAIN METHOD
In this section, we propose our method, the framework of which is
shown in Figure 1. The basic idea is to decompose the long-horizon
task into a sequence of easier events by reward machines. To this
end, we first introduce a new type of RM that can capture the order
of event history. Then, we use this RM to label the trajectories in the
offline dataset with RM states. After that, we split the trajectories
into sub-trajectories according to the transition of RM state and
properly group them. According to the result of grouping, the best
order of the events is generated to complete the task. Given this, sub-
trajectories consistent with the order are selected to form the new
dataset. Additionally, the counterfactual experiences are generated
to relabel the new dataset. Finally, the newly generated dataset is
used to learn a policy using offline method (i.e., IQL).

Here, we assume that a set of high-level events that describe
the long-horizon task is defined as prior knowledge. Specifically,
for a given task 𝐸 and a properly defined environments events
Σ = {𝑒𝑖 }𝑛𝑖=1, the task 𝐸 is completed if and only if all of the events
in Σ occur. Such events can be naturally obtained for many tasks.
For example, in the Franka Kitchen domain [7], the whole task may
be to: 1) open the microwave, 2) place a kettle on the burner, 3) turn
the overhead light on, and 4) open the sliding cabinet door. In this
case, Σ can be defined as {𝑒𝑖 }4𝑖=1, where 𝑒1 means “microwave is
opened”, 𝑒2 means “kettle is on the burner”, 𝑒3 means “light is turned
on” and 𝑒4 means “sliding cabinet door is opened”. The whole task
𝐸 is completed in a trajectory if and only if all of events Σ = {𝑒𝑖 }4𝑖=1
occur, which means the four sub-tasks are all completed.

In practice, a feature detector Φ : 𝑆 → 2Σ that maps the state 𝑠
into a set of events is commonly used to detect the events in Σ [3].
For instance, in the Franka Kitchen domain, Φ(𝑠) = {𝑒1, 𝑒3} means
that in state 𝑠 , 𝑒1 and 𝑒3 have occurred. Note that sensors must
be deployed to detect whether microwave is opened (𝑒1) or light
is turned on (𝑒3). Hence, the implementation of feature detectors
depends on the specific domains.
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Figure 1: The basic framework of our method.

3.1 Event-Ordered Reward Machines
In many tasks, the order of events is critical for learning a policy.
In the original RM, the labeling function only maps a transition
to a set of events, without considering their occurrence order. To
capture the order of event history in a trajectory, we extend the
original RM to event-ordered RM defined as follows.

Definition 3.1. Given a set of events Σ = {𝑒𝑖 }𝑛𝑖=1, event-ordered
RM is defined as a tuple R𝑒𝑜 = ⟨𝑈 ,𝑢𝐼 , 𝐹 , Σ

′, 𝛿𝑢 , 𝛿𝑟 ⟩, where:
• 𝑈 is a finite set of states and 𝑢 ∈ 𝑈 is a 𝑛-dimension vector
𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛), where 𝑢𝑡 ∈ Σ′, 1 ≤ 𝑡 ≤ 𝑛 is an occurred
event. For ∀1 ≤ 𝑡 ≤ 𝑛, if 𝑢𝑡 = 𝑒0, then all of its successors
𝑢𝑡
′
= 𝑒0, 𝑡 ≤ 𝑡 ′ ≤ 𝑛; if 𝑢𝑡 ≠ 𝑒0, then all of its predecessors

𝑢𝑡
′
≠ 𝑒0, 1 ≤ 𝑡 ′ ≤ 𝑡 , and any two predecessors 𝑢𝑡1 ≠ 𝑢𝑡2 , 1 ≤

𝑡1 ≠ 𝑡2 ≤ 𝑡 are different.
• 𝑢𝐼 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) is the initial state, where none of the
events occur, i.e., 𝑢𝑡 = 𝑒0, 1 ≤ 𝑡 ≤ 𝑛.
• 𝐹 is the set of terminal states. A state𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) ∈ 𝐹
if and only if all events occurred, i.e., 𝑢𝑡 ≠ 𝑒0, 1 ≤ 𝑡 ≤ 𝑛.
• Σ′ = Σ ∪ {𝑒0} is the set of events, where 𝑒0 represents none
of events in Σ occur.
• 𝛿𝑢 is the transition function and 𝛿𝑟 is the reward function.

The transition function 𝛿𝑢 : 𝑈 × Σ′ → 𝑈 is defined as follows.
Given a state 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) ∈ 𝑈 and a event 𝑒 ∈ Σ, we have:

(1) if no event occurs, i.e., 𝑒 = 𝑒0, then the next state 𝑢′ transits
to its current state 𝑢, i.e., 𝑢′ = 𝛿𝑢 (𝑢, 𝑒) = 𝑢.

(2) if some event occurs, i.e., 𝑒 = 𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑛, then:
(a) if this event occurred before, i.e., ∃1 ≤ 𝑡 ≤ 𝑛,𝑢𝑡 = 𝑒𝑖 , then

the next state remains the same, i.e., 𝑢′ = 𝛿𝑢 (𝑢, 𝑒) = 𝑢.
(b) if this event is a new event, i.e., ∀1 ≤ 𝑡 ≤ 𝑛,𝑢𝑡 ≠ 𝑒𝑖 ,

then it transits to a new state 𝑢′, which is a copy of 𝑢
except that the 𝑘-th element of 𝑢′ is set to 𝑒 . Here, 𝑘 =

Figure 2: Example of RM with 𝑛 = 3 and Σ = {𝑒1, 𝑒2, 𝑒3}.

min1≤𝑘≤𝑛{𝑢𝑘 = 𝑒0} is the first element of 𝑢 that equals
to 𝑒0.

The reward function 𝛿𝑟 : 𝑈 ×𝑈 → R is defined as:

𝛿𝑟 (𝑢,𝑢′) =
{
0, 𝑢 ≠ 𝑢′

−1, others

Note that the states of RM model the completion of the events
in Σ and their occurred order. Figure 2 shows a graphical represen-
tation of event-ordered RM where Σ = {𝑒𝑖 }𝑛𝑖=1, 𝑛 = 3. As shown,
every node in the graph is a state of the machine. Among them, the
node labeled with “start” (𝑒0, 𝑒0, 𝑒0) is the initial state and the yel-
low nodes are the terminal states. The initial state 𝑢𝐼 = (𝑒0, 𝑒0, 𝑒0)
means that none of events in Σ occurs. The state 𝑢 = (𝑒2, 𝑒1, 𝑒0)
means that events 𝑒2, 𝑒1 have occurred in that order and 𝑒3 has

Session 4A: Reinfocement and Immitation Learning
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1241



Figure 3: Trajectory labeling in Example 3.1

not occurred yet. Notice that (𝑒1, 𝑒2, 𝑒0) is different from (𝑒2, 𝑒1, 𝑒0).
Though they both complete the {𝑒1, 𝑒2}, they represent different
orders of occurrence of {𝑒1, 𝑒2}. The terminal states mean that all
of the events 𝑒 ∈ Σ have occurred. The different states represent
different orders of occurrence of Σ.

Here, edges labeled by 𝑒 ∈ Σ′ = Σ ∪ {𝑒0} between 𝑢,𝑢′ repre-
sent the transition 𝛿𝑢 (𝑢, 𝑒) = 𝑢′. For easy visualization, self-loop
transitions are not shown in the graph. Take state 𝑢 = (𝑒1, 𝑒0, 𝑒0)
for example. If 𝑒 = 𝑒0, which means nothing occurs, we have
𝑢′ = 𝛿𝑢 (𝑢, 𝑒0) = 𝑢. If 𝑒 = 𝑒1, which means event 𝑒1 occur, we
also have 𝑢′ = 𝛿𝑢 (𝑢, 𝑒1) = 𝑢. This is because the event 𝑒1 has oc-
curred before and the state does not transit for 𝑒1 occurring in the
second time. If 𝑒 = 𝑒2 or 𝑒 = 𝑒3, the RM state transits to (𝑒1, 𝑒2, 𝑒0)
or (𝑒1, 𝑒3, 𝑒0) respectively, which means a new event occurs.

With this RM, we can have access to history information of a
state, which is important for understanding and dealing with a
trajectory in the offline dataset. Later we will show how to use this
RM to label and refine offline datasets.

3.2 Labeling Offline Datasets with RM States
With event-ordered RM introduced above, we can label the of-
fline dataset by the RM states. Specifically, given a set of events
Σ and a feature detector Φ : 𝑠 → 2Σ, our goal is to la-
bel a trajectory {(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)}𝑇−1𝑡=0 to the one with RM states
{(𝑠𝑡 , 𝑢𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑢𝑡+1)}𝑇−1𝑡=0 , where 𝑇 is the length of the trajectory.
In the original RM [8], a labeling function 𝐿 : 𝑆 × 𝐴 × 𝑆 → 2Σ is
defined to indicate what occurred in a transition (𝑠, 𝑎, 𝑠′). However,
it is difficult to directly define such a labeling function in complex
tasks. For example, in the Franka Kitchen domain, the robot arm
has 9-DoF, and it is hard to know what the robot is doing given
only a transition. As aforementioned, we address this problem by a
feature detector [3].

Algorithm 1 shows the main process of labeling a trajectory with
RM states. The first state of the trajectory 𝑠0 is labeled with 𝑢𝐼 (line
1). Then, we get the set of events 𝜙𝑡 and 𝜙𝑡+1 that 𝑠𝑡 and 𝑠𝑡+1 have
completed by feature detector Φ (line 3). Let 𝑝𝑡 be the set of events
that are in 𝜙𝑡+1 but not in 𝜙𝑡 (line 4), which represents the set of
events occurred in transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), and all events in 𝑝𝑡 are
passed to 𝛿𝑢 to get the next RM state (line 7).

Example 3.1. Consider the RM in Figure 2 and a trajectory with
length 𝑇 = 200. Assuming that the trajectory completes the event
𝑒2 at step 𝑡 = 50, cancels the 𝑒2 at step 𝑡 = 60, completes 𝑒2 again
at step 𝑡 = 70 and completes 𝑒3 at step 𝑡 = 120. No events occur
after step 𝑡 = 120. This is a typical sub-optimal trajectory (In the
Franka Kitchen domain, the robot may open the microwave, close
the microwave, and open the microwave again).

Algorithm 1: Labeling a Trajectory with RM States
Input: event-ordered RM R𝑒𝑜 = ⟨𝑈 ,𝑢𝐼 , 𝐹 , Σ

′, 𝛿𝑢 , 𝛿𝑟 ⟩, feature
detector Φ, and trajectory {(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)}𝑇−1𝑡=0 .

1 𝜏 ← ∅, 𝑢0 ← 𝑢𝐼 ; // Initialization.

2 for 𝑡 ← 0 to 𝑇 − 1 do
// Get events of states 𝑠𝑡 , 𝑠𝑡+1 by detector Φ.

3 𝜙𝑡 ← Φ(𝑠𝑡 ), 𝜙𝑡+1 ← Φ(𝑠𝑡+1);
// Get new events in transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1).

4 𝑝𝑡 ← 𝜙𝑡+1 − 𝜙𝑡 = {𝑒 |𝑒 ∈ 𝜙𝑡+1 ∧ 𝑒 ∉ 𝜙𝑡 };
5 𝑢𝑡+1 ← 𝑢𝑡 ; // Copy the current RM state.

6 foreach 𝑒 in 𝑝𝑡 do
// Update the next RM state with event 𝑒.

7 𝑢𝑡+1 = 𝛿𝑢 (𝑢𝑡+1, 𝑒);
8 𝜏 ← 𝜏 ∪ {(𝑠𝑡 , 𝑢𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑢𝑡+1)};
9 return 𝜏 ; // A labeled trajectory with RM states.

As shown in Figure 3, the feature detector has the outputs:𝜙𝑡 = ∅
at steps 0 ≤ 𝑡 ≤ 50 and 61 ≤ 𝑡 ≤ 70, 𝜙𝑡 = {𝑒2} at steps 51 ≤ 𝑡 ≤ 60
and 71 ≤ 𝑡 ≤ 120, and 𝜙𝑡 = {𝑒2, 𝑒3} at steps 121 ≤ 𝑡 ≤ 200. Then,
the events that happen in transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) will be 𝑝𝑡 = {𝑒2}
at steps 𝑡 = 50, 70, 𝑝𝑡 = {𝑒3} at step 𝑡 = 120 and 𝑝𝑡 = ∅ for other
steps. Finally, according to the transition function 𝛿𝑢 , the RM states
will be 𝑢𝑡 = (𝑒0, 𝑒0, 𝑒0) at steps 0 ≤ 𝑡 ≤ 50, 𝑢𝑡 = (𝑒2, 𝑒0, 𝑒0) at steps
51 ≤ 𝑡 ≤ 120 and 𝑢𝑡 = (𝑒2, 𝑒3, 𝑒0) at steps 121 ≤ 𝑡 ≤ 200.

3.3 Splitting and Grouping Trajectories
After the offline dataset has been labeled with RM states, we can
split the trajectories into sub-trajectories that complete one of the
events. We define event transitions as the transitions where its
RM states are different. In other words, a new event occurs in an
event transition. Specifically, a transition (𝑠,𝑢, 𝑎, 𝑠′, 𝑢′) that satisfies
𝑢 ≠ 𝑢′ is a event transition. Given this, a whole trajectory can be
split by these event transitions into sub-trajectories. In more details,
we split all trajectories T into T R = {T𝑢,𝑢′ }, where 𝑢,𝑢′ ∈ 𝑈 and
𝑢 ≠ 𝑢′. Here, T𝑢,𝑢′ is the set of sub-trajectories that end with an
event transition (𝑠,𝑢, 𝑎, 𝑠′, 𝑢′) and start from the first transition of a
trajectory or the next transition of previous event transition. Notice
that sub-trajectories that do not end with an event transition are
abandoned. These sub-trajectories that do not trigger any event are
considered less informative than those in T R for the task.

Example 3.2. Following the trajectory in Example 3.1, the event
transitions are {(𝑠𝑡 , 𝑢𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑢𝑡+1)} with 𝑡 = 50, 120, when the
events 𝑒2,𝑒3 first occur in the trajectory. Hence, the trajectory will
be split into 3 sub-trajectories as: 𝜏1 = 𝜏0:50, 𝜏2 = 𝜏51:120, 𝜏3 =

𝜏121:200. Here, 𝜏𝑡1:𝑡2 = {(𝑠𝑡 , 𝑢𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑢𝑡+1)}𝑡2𝑡=𝑡1 . After that, 𝜏1 will
be added to the set T (𝑒0,𝑒0,𝑒0 ),(𝑒2,𝑒0,𝑒0 ) , 𝜏2 will be added to the set
T (𝑒2,𝑒0,𝑒0 ),(𝑒2,𝑒3,𝑒0 ) , and 𝜏3 will be abandoned.

Since we have split the trajectories, the sub-trajectories can then
be grouped by the event they end with and start from. Let 𝑙 : 𝑈 →
Σ′ be a function that maps from a RM state into the latest event that
occurs. For example, 𝑙 ((𝑒2, 𝑒1, 𝑒0)) = 𝑒1. In particular, 𝑙 (𝑢𝐼 ) = 𝑒0.
All the sub-trajectories are grouped into {T 𝑒𝑖→𝑒 𝑗 |𝑒𝑖 ∈ Σ′, 𝑒 𝑗 ∈ Σ},
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where T 𝑒𝑖→𝑒 𝑗 is defined as:

T 𝑒𝑖→𝑒 𝑗 =
⋃
{T𝑢,𝑢′ |𝑙 (𝑢) = 𝑒𝑖 , 𝑙 (𝑢′) = 𝑒 𝑗 } (5)

For example, in the RM shown in Figure 2, the set T 𝑒1→𝑒2 is the
union of sets T (𝑒1,𝑒0,𝑒0 ),(𝑒1,𝑒2,𝑒0 ) and T (𝑒3,𝑒1,𝑒0 ),(𝑒3,𝑒1,𝑒2 ) .

The sub-trajectories in the same group T 𝑒→𝑒′ are similar. All
of them are ended with the occurrence of event 𝑒′ and start after
the occurrence of event 𝑒 (𝑒 ≠ 𝑒0) or from the initial state of envi-
ronment (𝑒 = 𝑒0). For instance, sub-trajectory 𝜏2 in Example 3.2 is
grouped into T 𝑒2→𝑒3 , which means that 𝜏2 completes the event 𝑒3
at the end (𝑡 = 120) and its start transition (𝑡 = 51 is just the next
transition of 𝜏1’s end (𝑡 = 50), when the event 𝑒2 occurs.

3.4 Refining Datasets with Reward Machines
3.4.1 Ordering Events by Trajectory Numbers. Now, we have the
sub-trajectories grouped by the events Σ = {𝑒𝑖 }𝑛𝑖=1. We need to de-
termine the order of the events. For some tasks, in order to complete
a task, the events must occur in some special order. For example,
the robot must open the door of a microwave before putting foods
in it. In this case, we can eliminate the orders violating the re-
quirements. If the tasks are indifferent of the event orders, we still
need to decide one order for the events. Intuitively, this will make
the policy training easier. Eventually, the agent will converge to
a policy learning from the dataset, which completes the task in
some order. Therefore, the event order is determined by the dataset.
Given an order (𝑒1, 𝑒2, . . . , 𝑒𝑛), we define the score of the order as∏𝑛

𝑖=1 |T 𝑒𝑖−1→𝑒𝑖 |, where 𝑒0 = 𝑒0 and |T | denotes the size of set T .
For example, in the RM shown in Figure 2, the score of the order
(𝑒3, 𝑒1, 𝑒2) is |T 𝑒0→𝑒3 | × |T 𝑒3→𝑒1 | × |T 𝑒1→𝑒2 |. Intuitively, the score
reflects how many trajectories that can be used to training the pol-
icy. Here, we select the order with highest score as the best order
used in the next step.

3.4.2 Splicing Sub-trajectories with Ordered Events. Here, we use
the best order (𝑒1, 𝑒2, . . . , 𝑒𝑛) to splice the sub-trajectories and gen-
erate a new dataset as follow:

𝐷 =

𝑛⋃
𝑖=1
T 𝑒𝑖−1→𝑒𝑖 (6)

where 𝑒0 = 𝑒0. Specifically, the new dataset is the union of the
sets of sub-trajectories grouped by the events in the best order. For
example, given the best order (𝑒3, 𝑒1, 𝑒2), the new dataset generated
by (𝑒3, 𝑒1, 𝑒2) is 𝐷 = T 𝑒0→𝑒3 ∪ T 𝑒3→𝑒1 ∪ T 𝑒1→𝑒2 . Since every
trajectory in𝐷 associates with an event, this dataset is more suitable
for offline RL because the events offer a guidance for completing
the task. In contrast, the original dataset may contain many noisy
and sub-optimal trajectories.

For sub-trajectories in the same group, we prefer the ones with
shorter length because they can do the task more quickly. For exam-
ple, in group T 𝑒2→𝑒3 , the trajectory 𝜏𝐴 of length 30 is better than
the trajectory 𝜏𝐵 of length 50, since the event 𝑒3 can be completed
in 30 steps from 𝑒2 in 𝜏𝐴 , and 𝜏𝐵 will need more steps.

In more details, for every group, we sort the trajectories from the
short one to the long one by its length, and the top 𝛼 trajectories
are selected for splicing, where 0 < 𝛼 ≤ 1 is a hyper-parameter. For
example, if 𝛼 = 0.5, the top 50% trajectories will be chosen. With
fewer trajectories, the quality of the new dataset is improved.

Algorithm 2: Relabeling with Counterfactual Experiences
Input: event-ordered RM R𝑒𝑜 = ⟨𝑈 ,𝑢𝐼 , 𝐹 , Σ

′, 𝛿𝑢 , 𝛿𝑟 ⟩, feature
detector Φ, the best event order (𝑒1, 𝑒2, . . . , 𝑒𝑛), and
the new dataset 𝐷 =

⋃𝑛
𝑖=1 T 𝑒𝑖−1→𝑒𝑖 where 𝑒0 = 𝑒0.

1 𝐷𝐶 ← ∅, 𝑢𝐶 ← 𝑢𝐼 ; // Initialization.

2 for 𝑖 ← 1 to 𝑛 do // Each event in the best order.
3 T𝐶 ← ∅;
4 𝑢′

𝐶
← 𝛿𝑢 (𝑢𝐶 , 𝑒𝑖 ); // Get next RM state.

5 T ← T 𝑒𝑖−1→𝑒𝑖 ; // Get set of sub-trajectories.

6 foreach 𝜏 ∈ T do /* 𝜏 = {(𝑠𝑡 , 𝑢𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑢𝑡+1)}𝑇−1𝑡=0
denotes a sub-trajectory of length 𝑇 = |𝜏 |. */

7 𝜏𝐶 ← ∅;
8 for 𝑡 ← 0 to 𝑇 − 1 do /* Relabel each

transition of 𝜏 with RM states 𝑢𝐶 , 𝑢
′
𝐶
. */

9 if 𝑡 = 𝑇 − 1 then // Last transition.
10 𝜏𝐶 ← 𝜏𝐶 ∪ {(𝑠𝑡 , 𝑢𝐶 , 𝑎𝑡 , 𝑠𝑡+1, 𝑢′𝐶 )};
11 else
12 𝜏𝐶 ← 𝜏𝐶 ∪ {(𝑠𝑡 , 𝑢𝐶 , 𝑎𝑡 , 𝑠𝑡+1, 𝑢𝐶 )};

13 T𝐶 ← T𝐶 ∪ 𝜏𝐶 ;
14 𝐷𝐶 ← 𝐷𝐶 ∪ T𝐶 ;
15 𝑢𝐶 ← 𝑢′

𝐶
; // Advance to next RM state.

16 return 𝐷𝐶 ; // Counterfactual trajectories.

3.4.3 Relabeling Datasets with Counterfactual Experiences. After
grouping, the trajectories T 𝑒→𝑒′ may be labeled with different RM
states. For example, in the RM shown in Figure 2, the set T 𝑒1→𝑒2

is the union of sets T (𝑒1,𝑒0,𝑒0 ),(𝑒1,𝑒2,𝑒0 ) and T (𝑒3,𝑒1,𝑒0 ),(𝑒3,𝑒1,𝑒2 ) . As-
suming that the best order is (𝑒1, 𝑒2, 𝑒3) = (𝑒3, 𝑒1, 𝑒2), the agent will
learn a policy to complete the task following the order. Specifically,
the order of RM states will be (𝑢0, 𝑢1, 𝑢2, 𝑢3), where 𝑢0 = 𝑢𝐼 =

(𝑒0, 𝑒0, 𝑒0), 𝑢1 = (𝑒3, 𝑒0, 𝑒0), 𝑢2 = (𝑒3, 𝑒1, 𝑒0) and 𝑢3 = (𝑒3, 𝑒1, 𝑒2).
After agent complete 𝑒3, 𝑒1 in order, the RM state will be 𝑢2, and
it needs to complete 𝑒2. The agent learns the policy of complet-
ing 𝑒2 from trajectories set T 𝑒1→𝑒2 during the training. How-
ever, it can only do this from the sub-set T (𝑒3,𝑒1,𝑒0 ),(𝑒3,𝑒1,𝑒2 ) , not
from T (𝑒1,𝑒0,𝑒0 ),(𝑒1,𝑒2,𝑒0 ) when completing 𝑒2. This is because its
current RM state is 𝑢2 = (𝑒3, 𝑒1, 𝑒0) ≠ (𝑒1, 𝑒0, 𝑒0). In this case,
T (𝑒1,𝑒0,𝑒0 ),(𝑒1,𝑒2,𝑒0 ) is not beneficial. Especially, ifT (𝑒3,𝑒1,𝑒0 ),(𝑒3,𝑒1,𝑒2 )
is empty, the agent cannot learn the policy of 𝑒2.

To make use of all trajectories in T 𝑒→𝑒′ , it is necessary to relabel
the ones mentioned above and generate counterfactual trajecto-
ries, inspired by previous work on RM [8] [9]. For example, in
T 𝑒1→𝑒2 , if all trajectories are labeled with 𝑢2, agent can benefit
from all trajectories in T 𝑒1→𝑒2 , though some of them may come
from T (𝑒1,𝑒0,𝑒0 ),(𝑒1,𝑒2,𝑒0 ) . Hence, we generate counterfactual trajec-
tories for groups selected according to the order of events.

The main process of generating counterfactual trajectories in
the best event order is outlined in Algorithm 2. Given the best
event order (𝑒1, 𝑒2, . . . , 𝑒𝑛) and the newly generated dataset 𝐷 , we
augment the dataset by relabeling the RM states with the ones
according to the best event order. Example 3.3 illustrates how we
generate the counterfactual trajectories.
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(a) kitchen (b) door (c) relocate

Figure 4: Simulated environments used in our experiments.

Example 3.3. Assuming that the best event order is (𝑒1, 𝑒2, 𝑒3) =
(𝑒1, 𝑒2, 𝑒3) in the RM shown in Figure 2. Starting with 𝑢0 = 𝑢𝐼 ,
the corresponding order of RM states is (𝑢0, 𝑢1, 𝑢2, 𝑢3) where 𝑢1 =
(𝑒1, 𝑒0, 𝑒0), 𝑢2 = (𝑒1, 𝑒2, 𝑒0) and 𝑢3 = (𝑒1, 𝑒2, 𝑒3). According to lines
1, 4 and 15 of Algorithm 2, 𝑢𝐶 and 𝑢′

𝐶
will be 𝑢𝑖−1 and 𝑢𝑖 at 𝑖-th

loop in line 2, where 𝑖 = 1, 2, 3. In the 𝑖-th loop, the set of trajec-
tories T 𝑒𝑖−1→𝑒𝑖 are chosen (line 5), and all trajectories in the set
will be relabeled with 𝑢𝐶 = 𝑢𝑖−1 and 𝑢′

𝐶
= 𝑢𝑖 to generate coun-

terfactual trajectories. For example, consider the trajectory 𝜏2 in
Example 3.2, which belongs to the set T (𝑒2,𝑒0,𝑒0 ),(𝑒2,𝑒3,𝑒0 ) . Since
T (𝑒2,𝑒0,𝑒0 ),(𝑒2,𝑒3,𝑒0 ) ⊆ T 𝑒2→𝑒3 , and 𝑒2 = 𝑒2, 𝑒3 = 𝑒3, it will be cho-
sen at 𝑖 = 3. 𝑢𝐶 = 𝑢2 and 𝑢′𝐶 = 𝑢3 at 𝑖 = 3. The original RM state of
𝜏2 is 𝑢𝑡 = (𝑒2, 𝑒0, 𝑒0), 0 ≤ 𝑡 ≤ 𝑇 − 1 and 𝑢𝑇 = (𝑒2, 𝑒3, 𝑒0). When 𝜏2
is chosen in line 6, it will replace (𝑒2, 𝑒0, 𝑒0) with 𝑢2 and (𝑒2, 𝑒3, 𝑒0)
with 𝑢3 in lines 8-12.

3.5 Learning Policy with Refined Datasets
Given the refined datasets generated by our method, we can gen-
erally use any offline RL methods to learn the policy. In our ex-
periments, we use IQL [10], which is currently the leading offline
RL algorithm. In our implementation, we concatenate the environ-
ment state and the corresponding RM states as the input states.
During evaluation stage, the feature detector Φ is used to retrieve
the events. Specifically, given the state 𝑠 and RM state 𝑢, the agent
gets the next state 𝑠′ by taking action 𝑎. Then the events from the
transition are computed by 𝑝 = Φ(𝑠′) −Φ(𝑠) and all the events in 𝑝

are passed into the RM to obtain the next RM state 𝑢′.
To avoid overfitting with small datasets, we apply weight decay

to regularize the policy and Q-value networks. Specifically, the loss
functions in Equations 2 and 4 are simply converted to:

𝐿(𝜃 ) = E(𝑠,𝑎,𝑟,𝑠′ )∼𝐷
[
(𝑟 + 𝛾𝑉𝜓 (𝑠′) −𝑄𝜃 (𝑠, 𝑎))2

]
+ 𝜆𝑄 | |𝜃 | |2 (7)

𝐿(𝜙) = E(𝑠,𝑎)∼𝐷
[
exp(𝛽 (𝑄

𝜃
(𝑠, 𝑎) −𝑉𝜓 (𝑠))) log𝜋𝜙 (𝑎 |𝑠)

]
+ 𝜆𝜋 | |𝜙 | |2

(8)
where 𝜆𝑄 and 𝜆𝜋 are the hyper-parameters.

4 EXPERIMENTS
In this section, we empirically evaluate of our method in two bench-
mark domains: 1) the Franka Kitchen domain [7] and 2) the Adroit
domain [20], whose simulated environments are shown in Figure 4.
Specifically, we test our method on the D4RL benchmark [5]. The
datasets are sub-optimal and task-agnostic, which are challenging
and commonly used in offline RL. Additionally, we analyze how
main procedures of our method refine the datasets.

Table 1: The average reward for all the tested datasets and
methods (Best values in bold).

Domains Datasets BC BCQ IQL CQL Ours

Kitchen kitchen-partial-v0 1.31 0.46 1.60 0.92 3.24
kitchen-mixed-v0 1.61 0.62 1.68 0.53 3.03

Adroit

door-human-v0 -20.4 -54.8 74.8 75.8 439.5
door-cloned-v0 -56.1 -57.5 20.1 -56.5 415.9

relocate-human-v0 184.2 -25.1 288.6 78.1 633.3
relocate-cloned-v0 -51.6 -56.0 -52.4 -30.1 492.4

We compare our method with the following baselines: Behavior
Cloning (BC), BCQ [6], CQL [12] and IQL [10]. For the baselines,
we use the authors’ open-sourced implementation with the recom-
mended hyper-parameters reported in their papers. We train the
policy for 0.5M gradient steps. The policy is evaluated every 2000
steps over 10 episodes. We use the average reward from the original
environments in every episode to report the performance of each
method. Results are averaged over three random seeds.

4.1 Franka Kitchen Domain
4.1.1 Settings. The Franka Kitchen domain involves controlling
a 9-DoF Franka robot in a kitchen environment to manipulate
multiple objects (e.g., microwave, kettle, etc.). It is a multi-task
environment. An example task is to complete the following sub-
tasks: 1) open the microwave, 2) slide the cabinet door, 3) place the
kettle on the top burner, and 4) turn the overhead light on. The
events for building the RM can be easily defined as the completion
of every aforementioned sub-task.

We test on twoD4RL datasets: 1) kitchen-partial-v0 and 2) kitchen-
mixed-v0. Both of them consist of undirected data, where the robot
performs sub-tasks that are not necessarily related to the goal
task. In kitchen-partial-v0 dataset, most of the trajectories are sub-
optimal and less than 3% of them complete the whole task. In
kitchen-mixed-v0 dataset, none of the trajectories complete the
whole task [5], which is more challenging for the agent to learn.

In the dataset, states from the environment are 60-dimensional,
which consist of a 9-dimensional vector that describes the 9-DoF
robot’s joint velocities, a 21-dimensional vector that represents the
poses of objects, and the remain for a fixed goal related to the task
of the environment. The original environment will give the agent a
reward of +1 when any sub-task is completed for the first time and
every task consists of four sub-tasks.

4.1.2 Results. As shown in Figures 5a and 5b and Table 1, our
method outperforms all the baselines by a large margin. In fact,
only our method is able to successfully complete the whole task. It
can be observed that our method can complete the whole task in a
particular order, while the others failed. For example, in the kitchen-
partial-v0, the agent with our method first opened the microwave,
then placed the kettle, turned the light on, and finally slid the cabinet
door. With other methods, the agent tended to place the kettle
first, since the kettle is closer to the initial position of the robot.
Unfortunately, there are no trajectories opening the microwave
after placing the kettle in the dataset. As a result, the agent with
other methods could not open the microwave later and therefore
failed to complete the whole task. In the kitchen-mixed-v0, though
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there are no trajectories complete the whole task, our method is
still able to complete 3 sub-tasks at least and sometimes complete
the whole task. These results show that our method with dataset
refinement and counterfactual reasoning is beneficial for offline RL.

4.2 Adroit Domain
4.2.1 Settings. The Adroit domain involves controlling a 24-DoF
simulated hand tasked with opening a door or picking up and
moving a ball. We test on two datasets: 1) human: 25 demonstration
trajectories from a human, 2) cloned: trajectories collected by an
imitation policy trained on the demonstrations.

For the door task, the agent needs to open the door. To build
the RM, we define the set of events as 𝑒1: 𝑑 < 0.1, 𝑒2: 𝜃 > 0.2, 𝑒3:
𝜃 > 1.0 and 𝑒4: 𝜃 > 1.35, where 𝑑 is the distance between the palm
and the door handle and 𝜃 is the opening angle of the door. Each
episode lasts 200 time steps.

For the relocate task, the agent needs to pick up a ball and place it
to the target position. To build the RM, we define the set of events as
𝑒1: 𝑑1 < 0.1, 𝑒2: 𝑑2 < 0.1 and 𝑒3: 𝑑2 < 0.05 where 𝑑1 is the distance
between the palm and the ball and 𝑑2 is the distance between the
ball and the target. The initial position of the ball and target is
random and each episode lasts 600 time steps.

4.2.2 Results. As shown in Figure 5 and Table 1, our method out-
performs all the baselines. In the cloned dataset, while most of the
baselines failed to reach the door or ball, our method successfully
completed the whole task. Most of the trajectories in the cloned
dataset are task-agnostic and noisy, which makes other methods
difficult to learn a policy to complete the task. In our method, the
noisy trajectories are removed during trajectories splitting with RM
states. This can significantly improve the performance. Figures 5c
and 5e show that our method can complete task faster than the oth-
ers. Although all of the trajectories in the human dataset complete
the whole task, our method only select the shorter trajectories to
learn the policy. These results show that our method can generate
trajectories of higher quality, which is useful for offline RL.

4.3 Analysis on Main Procedures
Here, we analyze how each procedure of our method affects the
size of the datasets, which is measured by the number of transitions
in datasets. In our method, there are three procedures that will
reduce the size of the datasets. Table 2 show the size of the datasets
after each procedure for all the test domains. Note that the original
dataset consists of sub-optimal and task-agnostic trajectories.

4.3.1 Splitting and Grouping. In this procedure, we will split all
trajectories into sub-trajectories. Note that sub-trajectories that
do not occur any event will be abandoned. Intuitively, those aban-
doned sub-trajectories are task-agnostic and noisy for policy learn-
ing. As shown in Table 2, this procedure significantly reduces the
door-cloned and relocate-cloned datasets, which abandon more than
60% transitions in the original datasets. We observed that most
of the abandoned trajectories do not even reach the door or the
ball, which behave randomly and will have negative impact on
the performance of offline RL. For the two kitchen datasets, many
trajectories complete only one or two of the sub-tasks. Here, sub-
trajectories completing irrelevant sub-tasks are abandoned. It can

be seen that this procedure can remove noisy transitions that are
task-agnostic. This make the datasets more focusing on the task.

4.3.2 Splicing with Ordered Events. In this procedure, we will select
sub-trajectories that are in the best order extracted from datasets.
Note that trajectories that are out of order are abandoned. This
procedure affects the two kitchen datasets at most. Though all tra-
jectories after splitting complete the required sub-tasks, some of
them are not useful for policy learning. For example, by following
the best order for kitchen-partial, the agent should open the mi-
crowave in the beginning. However, some trajectories place the
kettle, turn the light on or slide the cabinet first. Those tasks should
be completed after opening the microwave according to the best
order. In the datasets, none of trajectories open the microwave after
completing other sub-tasks and all trajectories with opening the
microwave start from the initial position. Hence, the agent may
fail to learn a policy to complete the whole task if it does not open
the microwave first. Since the door and relocate have only a single
event order, they are not affected by this procedure.

4.3.3 Selecting Shorter Trajectories. In this procedure, we will se-
lect the shorter trajectories in a group, which is controlled by a
hyper-parameter 𝛼 . In our experiments, we set 𝛼 = 0.5 for kitchen-
partial and the two door datasets, 𝛼 = 0.9 for kitchen-mixed and
𝛼 = 1 for the two relocate datasets. Although all trajectories in
the group are useful for completing the task, some of them are
sub-optimal. For example, in the door datasets, some of them pull
the door very slowly. By removing them, we can make the agent
learn a policy of opening door more quickly. Thus, this procedure
can further optimize the datasets.

In summary, our results in Tables 1 and 2 show that our methods
can achieve higher performance on smaller datasets (i.e., less is
more), which confirm the effectiveness of our method.

5 RELATEDWORK
5.1 Offline Reinforcement Learning
Offline RL aims to address the problem of learning effective policies
entirely from previously collected data collected by some behavior
policies, without online interaction [6, 13]. The main challenge is
the overestimation of value function of OOD actions, which leads
to performance degrade [6]. To address this problem, methods like
BCQ [6], BEAR [11] and BRAC [27] constrain the learned policy to
the behavior policy used to collect the dataset. Other methods [12,
29] constrain the learned policy by making conservative estimates
of value functions of OOD actions, for example, CQL [12] enforces a
regularization constraint on the critic loss to penalize value function
of OOD actions. A fewmethods avoid the problem by taking a single
step of policy evaluation and policy improvement [2, 10], which
never query value function of OOD actions. In practice, IQL has
shown to be one of the most successful methods on D4RL [19].

Another line of work tries to make better use of datasets. For in-
stance, S4RL [23] uses data augmentations to improve the function
approximation for Q-learning algorithms in offline RL. Methods
like [1, 17, 18, 22] extract skills from offline datasets to accelerate
offline [1, 22] or online [17, 18] RL to complete the task. In contrast
to these works, we focus on refining dataset with prior knowledge
to improve the performance of offline RL methods.
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(b) kitchen-mixed-v0

0 100000 200000 300000 400000 500000
Train Steps

0

100

200

300

400

500

600

Ep
iso

de
 R

ew
ar

d

ours
BC
BCQ
IQL
CQL

(c) door-human-v0
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(d) door-cloned-v0
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(e) relocate-human-v0
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(f) relocate-cloned-v0

Figure 5: The learning curve of our method and the baselines in the Franka Kitchen and Adroit (door and relocate) domains.

Table 2: The number of transitions in all the tested datasets after each procedure.

Procedures kitchen-partial kitchen-mixed door-human door-cloned relocate-human relocate-cloned
Original Dataset 136345 136345 6704 995643 9917 996242
Splitting Traj. 98690 83792 5001 372086 7211 364207
Ordered Events 50114 49855 5001 372086 7211 364207
Shorter Traj. 22682 44298 2261 167397 7211 364207

5.2 Reward Machines
RM is a finite-state machine that encodes reward functions for
MDPs [8]. RM is initially introduced in [8], in which Q-learning
with RMs (QRM) was proposed. QRM is an algorithm that learns a
set of Q-functions for all RM states and share experiences with all
RM states. Later [9] proposed counterfactual experiences for RMs
(CRM), which is another version of QRM that learns one Q-function
which take RM states as one of the inputs and is more suitable when
combining with deep networks. In contrast to them, we instead
generate counterfactual experiences by replacing the RM states
with particular ones, which is more suitable for offline RL.

Additionally, RM has been used for solving problems in robotics
[3, 4, 21], multi-agent systems [15], lifelong RL and partial observ-
ability [25]. Some approaches [25, 26, 28] try to learn RMs from
experience. Unlike these existing methods, we model human knowl-
edge with a RM and show the benefits of RM for offline RL.

6 CONCLUSIONS
In this paper, we proposed a data refinement method to learn a
policy for long-horizon tasks with sub-optimal and task-agnostic
offline datasets. Using the RM, we label and split the trajectories
and get the best order of the events of the task. Given the order,
we select trajectories and generate counterfactual experiences. By
doing so, offline RL methods can learn better policy from the re-
fined datasets than the original ones. Our experiments on the D4RL
benchmark demonstrate the efficiency of our method, which learn
a good policy from relatively low-quality datasets. We show how
the RMs can improve the performance of offline RL by decompos-
ing the task and reduce the noise. In the future, we plan to extend
our method to make better use of the datasets. For instance, the
abandoned sub-trajectories in the grouping and splicing processes
can be reused. This will be useful for domains where only small
datasets are available or the process of data collection is costly.
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