
Learning to Coordinate from Offline Datasets with
Uncoordinated Behavior Policies

Jinming Ma
School of Computer Science and Technology,
University of Science and Technology of China,

Hefei, Anhui, China
jinmingm@mail.ustc.edu.cn

Feng Wu
School of Computer Science and Technology,
University of Science and Technology of China,

Hefei, Anhui, China
wufeng02@ustc.edu.cn

ABSTRACT
In offline multi-agent reinforcement learning (RL), multiple agents
must learn to coordinate from previously collected datasets. Like
the single-agent case, we must handle the distribution shift issue
from the datasets. Most importantly, we also need to deal with
possible miscoordination in the datasets, collected by some unco-
ordinated behavior policies. To address this, we propose a novel
offline multi-agent RL method using counterfactual sample-average
approximation with subteam masking. Specifically, we compute
the best-response policy for each agent using sample-average ap-
proximation. For the miscoordination issue, we use counterfactual
mechanism and subteam masking to reason about the agents’ con-
tributions to the team. Based on this, each agent learns to coor-
dinate from the uncoordinated datasets. Empirically, we evaluate
our method in two benchmark domains: a continuous multi-agent
MuJoCo control domain, and a challenging cooperation environ-
ment Starcraft II domain. Our experimental results confirm that
our approach can achieve significantly better performance than
several state-of-the-art methods. The source code is available at:
https://github.com/JinmingM/CAST-BCQ.

KEYWORDS
Multi-agent Reinforcement Learning; Offline Reinforcement Learn-
ing; Deep Reinforcement Learning
ACM Reference Format:
JinmingMa and FengWu. 2023. Learning to Coordinate fromOfflineDatasets
with Uncoordinated Behavior Policies. In Proc. of the 22nd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023),
London, United Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Offline reinforcement learning (RL) has shown great potential in
applying RL to real-world tasks because it can learn from a pre-
collected dataset. To date, most offline RL algorithms focus on the
single-agent setting [1, 9, 15, 16, 27]. However, many sequential
decision-making problems in real-world scenarios involve multiple
agents, such as multi-robot control [2, 4, 31], traffic signal control
[20, 30], and power grids [3]. Offline RL is appealing for these
domains especially when interaction with the environment is costly
or risky. Currently, the work for offline multi-agent RL (MARL)
is sparse because the action space grows exponentially with the

Feng Wu is the corresponding author.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

number of agents. This will make the key challenge of offline RL —
the distribution shift issue — more difficult to tackle, which leads
to extrapolation error [9] in value estimation. Recently, several
efforts [12, 34] have been made to extend offline RL to multi-agent
scenarios. They mainly focus on reducing the extrapolation error
introduced by the large action space.

It is generally believed that the extrapolation error is incurred by
the divergence between the distributions of the learned policy and
the dataset collected by behavior policy. Under the offline setting,
the error cannot be corrected by interacting with the environment.
Therefore, the quality of the dataset is critical for the performance
of the learned policy. In practice, the dataset is collected by running
some behavior policies in the environment. In multi-agent settings,
it is highly likely that the behavior policies are uncoordinated when
collecting datasets. This may be because the original systems act
independently. For example, in traffic signal control, each intersec-
tion is controlled independently by traditional methods. This may
be also because collecting coordinated datasets is expensive. For ex-
ample, in multiplayer online battle arena games, datasets collected
from professional teams playing the games are costly. A large num-
ber of datasets are generated by uncoordinated amateur players.
Therefore, the behavior policies are usually uncoordinated. As a
result, the datasets generated by uncoordinated behavior policies
are often of poor quality. Generally, multi-agent coordination is a
hard problem that we want to solve by the offline MARL algorithms.
As shown later in the experiments, existing approaches [12, 34]
failed to address this specific challenge for offline MARL, incurred
by uncoordinated behavior policies.

Against this background, we propose a novel offline multi-agent
RL called Counterfactual Sample-Average Approximation with Sub-
teamMasking, which can effectively learn coordinated policies with
a given dataset collected by uncoordinated behavior policies. Here,
we model the multi-agent coordination problem as a Dec-POMDP.
Then, we optimize the best-response policy for each agent condi-
tioned on the other agents’ policies. Note that the Dec-POMDP can
be viewed as a single-agent POMDP from the perspective of each
agent if the other agents’ policy is fixed. Since the other agents’
policies are unknown, we maintain a distribution over them. From
this distribution, we sample a set of the other agents’ policies. Then,
we leverage sample-average approximation [14] and BCQ [9] to
learn the agent’s policy. We address the potential miscoordination
issue, inherited from uncoordinated behavior policies, by reason-
ing the agents’ contribution to the whole team. Specifically, we
rely on the counterfactual technique for reasoning the individual
contribution of each agent and the subteam masking method for
the inter-dependency among the agents. By doing so, each agent

Session 4A: Reinfocement and Immitation Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1258

learns to coordinate with the others given datasets generated by
uncoordinated behavior policies.

In the experiments, we evaluate our method on two common
multi-agent tasks, where multi-agent MuJoCo [22] is a continuous
control domain with tight coordination and StarCraft II [24] is a
competitive and cooperative with many agents. Our experimental
results show that our method achieved effective coordination and
significantly outperformed several state-of-the-art offline RL base-
lines in all the tested problem instances. Moreover, our ablations
confirm the effectiveness of the proposed counterfactual SAA and
subteam masking methods for handling uncoordinated datasets.

2 BACKGROUND
2.1 Offline Reinforcement Learning
In RL, the agent learns a policy by interacting with the environ-
ment. The underlying model can be formulated as aMarkov decision
process (MDP) ⟨S,A,P,R, 𝛾⟩, with the state space S , the action
space A and the transition function P(𝑠′ |𝑠, 𝑎) : 𝑆 ×𝐴 × 𝑆 → [0, 1].
At each time step, the agent performs action 𝑎 ∈ A under state
𝑠 ∈ S, and receives a reward 𝑟 = R(𝑠, 𝑎). The goal of solving the
MDP is to find an optimal policy for the agent that maximizes the
expectation of the sum of rewards discounted by 𝛾 ∈ (0, 1]. In the
context of offline RL, the agent needs to learn a policy from a fixed
dataset collected by some behavior policy 𝛽 , which contains a set
of transitions ⟨𝑠, 𝑎, 𝑠′, 𝑟 ⟩.

The main challenge for offline RL is the extrapolation error, which
is mainly caused by generalization error in the approximate value
function of out-of-distribution (OOD) actions [9, 15]. To minimize
the extrapolation error, typical offline RL methods constrain the
learned policy away from OOD actions and regularize the learned
policy to be close to the behavior policy. For instance, BCQ [9]
optimizes policy 𝜋 by sampling 𝑛 actions from the behavior policy
𝛽 and then chooses the one with the highest 𝑄-value as:

𝜋 (𝑠) = argmax𝑎 𝑗 𝑄 (𝑠, 𝑎 𝑗 + 𝜉 (𝑠, 𝑎 𝑗 ,Φ)),
s.t. {𝑎 𝑗 ∼ 𝐺𝑤 (𝑠)}𝑛𝑗=1 .

(1)

where 𝜉 (𝑠, 𝑎 𝑗 ,Φ) is the perturbation model to adjust 𝑎 𝑗 in the range
[−Φ,Φ] to increase the diversity of seen actions and 𝐺𝑤 (𝑠) is the
generative model trained to model the behavior policy. Another
common idea is to train the 𝑄-function pessimistic to OOD actions.
For example, CQL [16] penalizes the 𝑄-function at states in the
dataset for actions not observed in the dataset 𝐷 .

To date, most of the previous research on offline RL have been
successfully conducted in single-agent scenarios [17]. Since many
real-world applications require multiple agents to work together, it
is natural to extend offline RL to multi-agent scenarios.

2.2 Offline Multi-Agent RL
We can extend the MDP to the multi-agent setting as a decentralized
partially observable Markov decision process (Dec-POMDP) with 𝑁

agents, defined as a tuple ⟨S,A,P,O,R, 𝛾⟩, where 𝑠 ∈ S denotes
the true state of the environment. Each agent 𝑖 chooses an action
𝑎𝑖 ∈ A𝑖 at each time step, forming a joint action vector a = [𝑎𝑖]𝑁𝑖=1.
Different from the MDP, the next state follows the transition func-
tion P(𝑠′, o|𝑠,𝑎𝑎𝑎) : S × A𝑁 × S → [0, 1]. Meanwhile, each agent 𝑖

receives an local (partial) observation 𝑜𝑖 ∈ O𝑖 and a reward 𝑟 based
on the shared reward function R : 𝑆 ×A𝑁 → R. The goal is to find
a set of optimal policies 𝝅 = {𝜋1, ..., 𝜋𝑁 }, where aim to maximize
the total discounted return

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡 with the discount factor 𝛾 .
In offline multi-agent setting, agents learn their policy from

a pre-collected dataset generated by some joint behavior policy.
A simple idea is to treat the whole problem as a joint MDP and
apply single-agent offline RL directly to learn a joint policy. Un-
fortunately, the joint policy cannot be executed in a decentralized
manner. Furthermore, the OOD issue becomes more severe because
the action space grows exponentially with the number of agents
[23]. To tackle this, ICQ-MA [34] proposes to estimate the target
value following the SARSA-like approach and decompose the value
function by QMIX [23]. Specifically, it constrains the value estimate
based only on seen state-action pairs in the dataset. Therefore, the
performance largely depends on the dataset quality.

Another straightforward approach for decentralized execution
is to apply single-agent offline RL to each agent and independently
learn a set of policies, one for each agent. However, this will not
work for multi-agent problems requiring coordination among the
agents. Along this track, MABCQ [12] proposes to re-weight the
offline transition dynamics by increasing the transition with high
value and normalizing the biased transition dynamics. However,
this method considers the underlying problem as a multi-agent
MDP (MMDP) and each agent’s policy is based on the state of the
environment, which is not suited for the Dec-POMDP. As observed
in our experiments, existing methods fail to learn good policies, es-
pecially for datasets generated by uncoordinated behavior policies.
Next, we will illustrate the challenge of learning to coordinate from
uncoordinated datasets in the following motivation example.

2.3 Motivation and Challenge
To illustrate the challenges, we design a simple and cooperative
problem. As shown in Figure 1 (a), a robot needs to complete the
navigation task in the 4 × 6 grid world, from the start position (i.e.,
the yellow box) in the lower left corner to the target position (i.e.,
the red box) in the upper right corner. Meanwhile, it must avoid
being out of the grid’s boundaries (i.e., falling off a cliff).

The robot is controlled by two agents: agent 1 controls the move-
ment in the 𝑥-direction, and agent 2 controls the movement in the
𝑦-direction. Specifically, their actions include forward, backward
and stay. For instance, at position (x, y), both agents 1 and 2 per-
form the forward action, the robot will move to the position (x+1,

G

S

(𝑎) (𝑏)

Figure 1: Multi-agent navigation in the 4×6 grid world. (a)
The environment. (b) The learning curve.

Session 4A: Reinfocement and Immitation Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1259

y+1). At each time step, agents receive their position and then per-
form their respective actions. The agents must cooperate with each
other and receive the shared reward: +10 points for reaching the
target location, −10 points for falling off the cliff, and −1 point for
step cost. When they reach the goal, fall off a cliff or run out of time
with a maximum of 30 steps, the environment will be reset.

We tested state-of-the-art offline RL algorithms, i.e., BCQ [9] and
ICQ[34]. To apply them to the multi-agent scenarios, we indepen-
dently train each agent 𝑖 with BCQ or ICQ, called I-BCQ or I-ICQ
respectively. For data collection, we used random behavior policies
and stored 100 trajectories as the dataset.

As shown in Figure 1 (b), both I-BCQ and I-ICQ failed to learn an
effective policy even in such a sample domain, because they cannot
accurately estimate the values of their actions conditioned on the
other agents’ policies. For example, at position (4, 4), agent 1 should
choose the forward action. However, if agent 2 also performs the
forward action in the dataset, the robot will fall off the cliff and
gets a penalty. As a result, agent 1 may fail to estimate the correct
value of the forward action from uncoordinated experiences.

To summarize, one of the key challenges in offline MARL is
that: how to accurately estimate the Q-value conditioned on the other
agents’ policies, with a dataset collected by uncoordinated behavior
policies. Motivated by this, we propose a new approach to solve this
critical challenge, as described next.

3 MAIN METHOD
We consider the following learning problem for agent 𝑖:

𝜋𝑖 (𝑜𝑖) = argmax𝑎𝑖 𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ;𝜋−𝑖),
s.t. {𝑎𝑖 ∼ 𝐺𝑤𝑖 (𝑜𝑖)}.

(2)

where 𝜋𝑖 is agent 𝑖’s policy, 𝜋−𝑖 is the other agents’ policy and
𝐺𝑤𝑖 (𝑜𝑖) is the generative model that generates the action distribu-
tion according to the local observation. Note that the other agents
become parts of the environment if their policy 𝜋−𝑖 is fixed. In this
case, the Dec-POMDP can be viewed as a single-agent POMDP
from the perspective of agent 𝑖 .

Similar to BCQ [9], we can maintain a generative model to ap-
proximate the action distribution in the dataset. Specifically, for
agent 𝑖 , we use a conditional variational auto-encoder (VAE) [13]:
𝐺𝑤𝑖 = {𝐸𝑤𝑖

1
, 𝐷𝑤𝑖

2
}, which generates the action distribution accord-

ing to the observation. The VAE can be trained by the following
loss to maintain the batch-constraint:

L(𝑤𝑖) = argmin
𝑤𝑖

(𝑎𝑖 − 𝑎𝑖)2 + 𝐷𝐾𝐿 (N (𝜇, 𝜎) | |N (0, 1)) (3)

where (𝑜𝑖 , 𝑎𝑖) ∈ 𝐵𝑖 ,𝑎𝑖 = 𝐷𝑤𝑖
2
(𝑜𝑖 , 𝑧 ∼ N(𝜇, 𝜎)), and 𝜇, 𝜎 = 𝐸𝑤𝑖

1
(𝑜𝑖 , 𝑎𝑖)

are the mean and variance of the random latent vector 𝑧.
Intuitively, if 𝜋−𝑖 is known and stationary, we can simply learn

agent 𝑖’s policy. For instance, if 𝜋−𝑖 is the behavior policy of the
dataset, it is equivalent to running BCQ independently for agent
𝑖 . Additionally, if 𝜋−𝑖 is a joint policy learned by BCQ from the
dataset, it can be viewed as learning a local policy 𝜋𝑖 to fit the joint
one. This is similar to ICQ-MA, where the results depend on the
joint policy learned by the centralized critic. Ideally, if 𝜋−𝑖 is the
optimal policy of the other agents, we can learn the 𝜋𝑖 will be the
optimal policy for agent 𝑖 . Unfortunately, the optimal policy of the

other agents is hidden. Nevertheless, it is stationary and determined
by the datasets in offline settings.

Therefore, we propose to approximate it by maintaining a dis-
tribution over the other agents’ policies. Indeed, the distribution
considered here is inspired by the multi-agent belief state: 𝑏𝑖 ∈
Δ(𝑆 × Π−𝑖), which is a distribution over the state space and the
other agents’ policies. This has been widely used for solving Dec-
POMDPs, which first generate a set of multi-agent belief states
and then optimize the policy for one agent at a time [21]. In what
follows, we will give more details on applying this to offline MARL.

3.1 Counterfactual Sample-Average
Approximation

Let Π̂−𝑖 denote the distribution over the other agents’ policy. Note
that we want to optimize 𝜋𝑖 conditioned on 𝜋−𝑖 , which is a random
element with the distribution Π̂−𝑖 . The learning problem in Eq.
2 can be solved using the Sample-Average Approximation (SAA)
technique [14] as follow:

𝜋𝑖 (𝑜𝑖) = argmax𝑎𝑖
1
𝑀

𝑀∑︁
𝑚=1

𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ;𝜋𝑚−𝑖),

s.t. {𝑎𝑖 ∼ 𝐺𝑤𝑖 (𝑜𝑖)} and {𝜋𝑚−𝑖 ∼ Π̂−𝑖 }.
(4)

In SAA, we sample 𝜋1−𝑖 , 𝜋
2
−𝑖 , · · · , 𝜋

𝑀
−𝑖 with the distribution Π̂−𝑖 , and

optimize their average value. Intuitively, if Π̂−𝑖 is proportional to
the optimal distribution and𝑀 → ∞, 𝜋𝑖 will eventually converge
to the optimal policy of agent 𝑖 .

To coordinate with the other agents, the maximized items in Eq.
4 must represent agent 𝑖’s contribution to the whole team since
agent 𝑖 shares the same reward with all the other agents in Dec-
POMDPs. To capture this, we borrow ideas from the counterfactual
mechanism [5, 18] and use a counterfactual baseline. Then, the
learning problem in Eq. 4 can be rewritten as follow:

max𝑎𝑖
1
𝑀

𝑀∑︁
𝑚=1

[𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ;𝜋𝑚−𝑖) −𝑄𝑖 (𝑜𝑖 , 𝑎𝑑𝑖 ;𝜋
𝑚
−𝑖)],

s.t. {𝑎𝑖 ∼ 𝐺𝑤𝑖 (𝑜𝑖)} and {𝜋𝑚−𝑖 ∼ Π̂−𝑖 }.
(5)

where 𝑎𝑑
𝑖
is the default action for agent 𝑖 . This counterfactual base-

line is useful because the shaped difference reward will encourage
agent 𝑖 to take the best-response conditioned on others’ joint pol-
icy. Now, the next step is to maintain a distribution over the other
agents’ policy and sample from it.

3.2 Policy Sampling with Subteam Masking
Although the optimal policy for the other agents is unknown, we
can approximate it with the joint policy since all the agents’ ob-
servations are available during the centralized training process.
This is very similar to the centralized critic of ICQ-MA. Specif-
ically, we consider the Dec-POMDP as a joint MDP with joint
actions and observations. We merge the datasets of all agents
as the joint dataset B = [𝐵𝑖]𝑁𝑖=1, which contains the transitions
⟨o,𝑎𝑎𝑎, 𝑟, o’⟩ = ⟨[𝑜𝑖]𝑁𝑖=1, [𝑎𝑖]

𝑁
𝑖=1, 𝑟 , [𝑜

′
𝑖
]𝑁
𝑖=1⟩. Given this, we learn the

joint value function 𝑄 (o,𝑎𝑎𝑎;𝜙) by minimizing the following loss:

L(𝜙) = E
(o,𝑎𝑎𝑎,o′)∼B

[𝑟 + 𝛾 max
a′∼𝜋𝜋𝜋 (o′)

𝑄 (o′,𝑎𝑎𝑎′;𝜙−) −𝑄 (o,𝑎𝑎𝑎;𝜙)]2 (6)

Session 4A: Reinfocement and Immitation Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1260

Dataset

 𝑜௜

Encoder

 𝑜௜z

Decoder

 𝑎෤௜

 𝑎௜

VAE Loss

Variational Auto-encoder 𝑮𝒘𝒊

 𝒐

TD Loss

Learning Joint Network 𝑸ሺ𝒐, 𝒂ሻ

 𝒂

𝑸ሺ𝒐, 𝒂ሻ

 𝒐′

Variational Auto-
encoder 𝑮𝒘𝒊

 𝒂′

𝑸ሺ𝒐′, 𝒂′ሻ

Joint
Network

Joint
Network

 𝑜௜

MSE Loss

Learning Individual Network 𝑄෨௜ሺ𝑜௜, 𝑎௜ሻ

 𝑎௜

 𝑄෨௜ሺ𝑜௜, 𝑎௜ሻ

Agent i
Subteam
Masking

 𝑜ି௜

 𝑮𝒘𝒊

 𝒂ෝି௜
Joint

Network

Counterfactual SAA
𝑸 𝒐 , ሺ𝑎௜, 𝒂ෝି௜ ሻ െ 𝑸 𝒐 , ሺ𝑎௜

ௗ, 𝒂ෝି௜ ሻ

∆𝒊

Figure 2: The basic framework of our method. From left to right, we show the training processes of the VAE model, joint value
network and individual value network. The losses of VAE, TD and MSE are given by Equations 3, 6 and 9 respectively.

where 𝜋𝜋𝜋 is the joint policy, 𝜙 are the parameters of the joint Q-
function, and 𝜙− are the previous ones.

To avoid selecting OOD actions, we need to constrain the joint
policy 𝜋𝜋𝜋 in the dataset B. Specifically, we use a population with 𝑁

individuals VAEs: [𝐺𝑤𝑖]𝑁𝑖=1, one for each agent. Then, a set of can-
didate joint actions are generated by sampling from the VAEs and
selecting the joint actions with the highest joint values according
to the estimation of the joint value function.

Now, we have learned a joint policy 𝜋𝜋𝜋 . If the other agents follow
the joint policy 𝜋−𝑖 except agent 𝑖 , we have:

𝑄𝑖 (𝑜𝑖 , 𝑎𝑖 ;𝜋−𝑖) ≈ 𝑄 (o,𝑎𝑎𝑎;𝜙) (7)

where 𝑜𝑖 ∈ o, 𝑎𝑖 ∈ 𝑎𝑎𝑎 and 𝑎−𝑖 = 𝜋−𝑖 (𝑜−𝑖). Note that following the
joint policy is only possible in centralized training. Here, we use it
to approximate the other agents’ policy and learn a best-response
to fit it. In addition, the best-response can be measured by the
𝑄 (o,𝑎𝑎𝑎;𝜙) in centralized training.

As aforementioned, we aim to address the issue introduced by
datasets collected by uncoordinated behavior policies. Inspired by
the Shapley value [25], we split the other agents except 𝑖 into a set
of subteams 𝑆𝑇 (𝑖). For example, given a team of 3 agents {1, 2, 3},
𝑆𝑇 (1) = {∅, {2}, {3}, {2, 3}}. Now, we can sample a subteam: 𝑠𝑡 ∼
𝑆𝑇 (𝑖) and mask the actions of the agents in the subteam 𝑠𝑡 with the
default actions. The agents that are not in the subteam 𝑠𝑡 follow
the joint policy 𝜋𝜋𝜋 . Note that all the other agents follow the joint
policy if 𝑠𝑡 = ∅. By doing so, we maintain a distribution over the
other agents’ policies. The sampling of 𝜋−𝑖 ∼ Π̂−𝑖 can be done by:
first sampling a subteam 𝑠𝑡 ∼ 𝑆𝑇 (𝑖) and masking the actions of the
agents in the subteam 𝑠𝑡 with the default actions.

For datasets generated by uncoordinated behavior policies, there
are possible miscoordinations in the joint policy. In the cases of

miscoordination, it is critical to reason the agents’ contributions
and this cannot be done without considering the complex inter-
dependency among the agents. By masking the actions of the agents
in a subteam, we get a feedback about their contributions to the
whole team. Then, we leverage the counterfactual sample-average
approximation with the subteam masking to compute the agent 𝑖′𝑠
contributions to the whole team with the joint value function:

Δ𝑖 =
1
𝑀

𝑀∑︁
𝑚=1

[𝑄 (o, (𝑎𝑖 , 𝑎𝑚−𝑖)) −𝑄 (o, (𝑎𝑑𝑖 , 𝑎
𝑚
−𝑖))] (8)

where𝑀 represents the times of sampling and 𝑎𝑚−𝑖 denote the other
agents’ actions sampled in𝑚-th time. Given the individual contri-
butions of agent 𝑖 , we train the value network 𝑄̃𝑖 to approximate it
by minimizing the loss:

L(𝜃𝑖) = E(𝑜𝑖 ,𝑎𝑖)∼𝐵𝑖
[
(𝑄̃𝑖 (𝑜𝑖 , 𝑎𝑖 ;𝜃𝑖) − Δ𝑖)2

]
(9)

where 𝜃𝑖 denotes the parameters of the 𝑄̃𝑖 .
In addition, if some transitions are missing in the joint dataset

B, the estimation of the agents’ contributions is inaccurate. To
handle this, we borrow ideas from the clipped double Q-learning [8].
Specifically, we modify the joint values as a combination of the two
joint Q-functions {𝑄 (·;𝜙1), 𝑄 (·;𝜙2)}, with different initialization
and a higher weight on the minimum one:

𝑄 (o,𝑎𝑎𝑎) = 𝜆 min
𝑘=1,2

𝑄 (o,𝑎𝑎𝑎;𝜙𝑘) + (1 − 𝜆) max
𝑘=1,2

𝑄 (o,𝑎𝑎𝑎;𝜙𝑘) (10)

where 𝜆 ∈ [0, 1] is the coefficient to control over how heavily un-
certainty is penalized. Intuitively, if the necessary transitions are in
B, the two joint-value functions should be well trained and equal to
each other. If some transitions are missing, theminimum joint-value
function is favorable with higher weight to reduce overestimations.

Session 4A: Reinfocement and Immitation Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1261

Algorithm 1 Offline Multi-Agent Reinforcement Learning

Input: Datasets [𝐵𝑖]𝑁𝑖=0, training step 𝑇 , the agents number 𝑁 ,
number of sampled actions n.
Initialization: The joint value networks 𝑄 (·;𝜙1), 𝑄 (·;𝜙2) with
random parameters, and the target 𝜙 ′1, 𝜙 ′2 = 𝜙1, 𝜙2; The indi-
vidual network 𝑄̃𝑖 (·;𝜃𝑖) of agent 𝑖 , the individual VAEs 𝐺𝑤𝑖 =

{𝐸𝑤𝑖
1
, 𝐷𝑤𝑖

2
} with random parameters for 𝑖 ∈ [1, 𝑁].

1: Merge the joint dataset B = [𝐵𝑖]𝑁𝑖=1.
2: for 𝑡 = 0 to 𝑇 do
3: Sample mini-batch transitions ⟨o,𝑎𝑎𝑎, 𝑟, o′⟩ from B
4: Train VAEs according to Eq. 3
5: Sample 𝑛 joint actions:

𝑎𝑎𝑎 = [𝑎 𝑗
𝑖
]𝑁
𝑖=1,

{
𝑎
𝑗
𝑖
∼ 𝐺𝑤𝑖 (𝑜𝑖)

}𝑛
𝑗=1

.

6: Set target value 𝑦 = 𝑟 + 𝛾 max𝑎𝑎𝑎 𝑄 (o′,𝑎𝑎𝑎;𝜙−)
7: Update the joint value network according to Eq. 6
8: for each agent 𝑖 = 1 to 𝑁 do
9: Sample𝑀 subteams from 𝑆𝑇 (𝑖)
10: Masking the agents’ actions in the subteams
11: Update 𝜃𝑖 according to Eq. 9
12: end for
13: Update the target networks: 𝜙 ′1 = 𝜙1, 𝜙 ′2 = 𝜙2

14: end for

3.3 Implementation Details
The main procedures are outlined in Algorithm 1, and the frame-
work of our method is shown as Figure 2. Specifically, we first con-
sider the Dec-POMDP as a joint MDP. Given this, we use the VAE
𝐺𝑤𝑖 to model the action distribution of agent 𝑖 , which is constraint
in the dataset. The VAE is capable of sampling the action given
the observation 𝑜𝑖 . We can learn the VAE by the VAE loss (Lines
3-4), which contains the reconstruction loss and KL-divergence
term according to the distribution of the latent vectors. Then, we
learn the joint Q-function 𝑄 (o,𝑎𝑎𝑎) (Lines 5-7). In the target value,
we generate a set of candidate joint actions by sampling from the
population VAEs and selecting the joint actions with the highest
joint values according to the estimation of the joint value function.
With the target value, we train the joint value network𝑄 (o,𝑎𝑎𝑎) with
the TD loss function as shown in Eq. 6.

Next, we learn the individual value network 𝑄̃𝑖 with the coun-
terfactual sample-average approximation with subteam masking.
In lines (9-10), we sample𝑀 subteams and mask the actions of the
agents in the subteams. By doing so, we maintain a set of candidate
policies for the other agents, which can be used in the counter-
factual SAA. Finally, we optimize each agent 𝑖’s policy given the
sampled policies of the other agents (Line 11). Note that we set
the default actions as 0 in the subteam masking. Same as the Shap-
ley Value, we estimated the agent 𝑖′ contributions by masking the
actions of the agents in a subteam with the default actions. The
default action for agent 𝑖 should be equivalent to a team without the
presence of agent 𝑖 . In practice, we set the default actions as a vector
0 in the Multi-Agent MuJoCo, which means the default actions do
not change the velocity and position of the motors controlled by
the agent. We set the default actions as 𝑛𝑜𝑜𝑝 in the StarCraft II,
which means that the agent takes no action.

Figure 3: Illustration of Policy Distribution

3.4 Discussion
To better understand our work, we illustrate the ideal of policy
distribution in Figure 3. Given a dataset, we can learn a joint policy
by treating the Dec-POMDP as a big POMDP. However, the decen-
tralized optimal policy of the Dec-POMDP is not necessarily very
close to the joint policy. This mainly depends on how tight the co-
ordination is in the domain. For example, if there is no coordination
required and the agents can act independently, the decentralized
optimal policy will be equal to the joint policy. If the dataset is col-
lected by some uncoordinated behavior policies, it is highly likely
that the joint policy is far away from the optimal policy because
the dataset may contain very few coordination experiences. In this
case, learning some decentralized policies to fit the joint policy will
not perform well. In this paper, we maintain a distribution over
the other agents’ policies. This is done by sampling a subteam and
masking their actions to create a population of policies around the
joint policy. Hopefully, the optimal policy is within or near this pop-
ulation so it can be sampled. Based on this, each agent’s policy can
be optimized accordingly. This can also improve the generalization
of each agent’s policy.

4 EXPERIMENTS
We empirically evaluate our method on two multi-agent domains:
1) multi-agent MuJoCo 1 that is a continuous control problem with
tight coordination, and 2) StarCraft II micromanagement 2 that
is a challenging discrete control benchmark with complex tasks.
Note that they are challenging multi-agent problems widely used
in the multi-agent RL literature. In particular, multi-agent MuJoCo
represents multi-agent robot control where interaction with the
physical world is expensive and risky. Both of them require learning
from offline datasets collected by some behavior policies. Finally,
we conduct ablation studies on the multi-agent MuJoCo to better
understand the benefit of our key techniques.

4.1 Multi-Agent MuJoCo
To test tight coordination and challenging tasks, we adopt the
multi-agent MuJoCo environments [22], which extend the high-
dimensionalMuJoCo locomotion tasks tomulti-agent settings. Specif-
ically, several agents independently control one or more joints of a
robot simulated by MuJoCo. Hence, each agent’s observation space
1https://github.com/schroederdewitt/multiagent$_$mujoco
2https://github.com/oxwhirl/smac

Session 4A: Reinfocement and Immitation Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1262

https://github.com/schroederdewitt/multiagent$_$mujoco
https://github.com/oxwhirl/smac

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Training Steps(1e4)

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Re
wa

rd

Halfcheetah-2x3

Ours ICQ-MA MABCQ I-BCQ BCQ

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Training Steps(1e4)

200

400

600

800

1000

1200

1400

1600

Av
er

ag
e

Re
wa

rd

Walker2d-2x3

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Training Steps(1e4)

500

1000

1500

2000

2500

3000

Av
er

ag
e

Re
wa

rd

Hopper-3x1

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Training Steps(1e4)

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Re
wa

rd

Halfcheetah-6x1

Figure 4: Performance of our method and the baselines in multi-agent MuJoCo domains: HalfCheetah, Walker, Hopper. The
brackets indicate (number of agents × controled joints per agent). The learning curves are plotted based the mean and standard
deviation of three runs with difference random seeds.

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Training Steps(1e5)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e

Re
tu

rn
s

3s_vs_3z

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Training Steps(1e5)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e

Re
tu

rn
s

MMM

Ours ICQ-MA MABCQ I-BCQ Behavior

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Training Steps(1e5)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Av
er

ag
e

Re
tu

rn
s

2s3z

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Training Steps(1e5)

0

2

4

6

8

10

12

14

16

Av
er

ag
e

Re
tu

rn
s

10m_vs_11m

Figure 5: Performance in StarCraft II with the offline datasets. The learning curves are also plotted based the mean and standard
deviation of three runs with different random seeds.

and action space in multi-agent MuJoCo are specified by the local
observations or actions of the motors controllable by that agent. All
multi-agent MuJoCo environments are configured according to the
default configuration of multi-agent MuJoCo, where each agent can
also observe both the velocity and position of its own body parts.
Apart from that, the tasks themselves are identical to the original
MuJoCo tasks. Therefore, the rewards are given in the same way as
the original MuJoCo tasks and shared for all agents in multi-agent
MuJoCo. At each time step, they get their own observations on
those joints controlled by them and receive a reward based on the
robot’s performance on the tasks.

Datasets. For each domain, we first ran SAC [10] to obtain two
behavior policies: 1) the medium-policy is recorded in the middle of
the training process, and 2) the expert-policy is the final policy. Then,
we followed the common procedure of offline RL and collected each
dataset 𝐵𝑖 by running the environment with agent 𝑖 and the others
choosing either the medium-policy or expert-policy. For example,
agent 1 follows the medium-policy or expert-policy, while agent
2 follows the medium-policy or expert-policy. Each combination
produced equally one-fourth of the trajectories. Totally, each dataset
𝐵𝑖 for agent 𝑖 contains 1000 trajectories with the length of 1000, i.e.
106 of the overall transitions. Note that different from the dataset in
D4RL [6] generated by a trained SAC agent, we used uncoordinated
datasets generated by the mixed-levels policy of multiple agents.

Baselines. We compare our approach with the following meth-
ods: 1) BCQ [9]: applying centralized BCQ directly to multi-agent

and learning joint policies; 2) I-BCQ: independent BCQ where each
agent 𝑖 is trained independently on the dataset 𝐵𝑖 with BCQ; 3)
MABCQ [12]: multi-agent BCQ where re-weights the offline tran-
sition dynamics by increasing the transition with high-value and
normalizing the biased transition dynamics; 4) ICQ-MA [34]: the
leading offline multi-agent RL method that decomposes the joint
policy using QMIX. Note that both the joint BCQ and MABCQ
require the joint observations of all agents for execution.

Results. As shown in Figure 4, our method substantially outper-
formed all the compared baselines in all the tested tasks, in terms
of convergence speed, learning stability, and policy quality. BCQ
does not get good performance because the centralized methods
have difficulty handling the uncoordinated. Single-agent offline
RL methods (i.e., BCQ) failed to learn an effective policy because
they are not able to deal with the multi-agent issues. Surprisingly,
ICQ-MA also performed poorly in our tests. Because ICQ-MA is
based on only trusting seen state-action pairs in the dataset and
heavily relies on the quality of the datasets, which shows poor per-
formance in the uncoordinated datasets. In particular, the Walker
and Hopper domains require very tightly coupled coordination,
otherwise, the task will terminate immediately. Here, even MABCQ
does not achieve good results due to the mismatch of agents’ behav-
ior policies in the dataset. Those baselines do not perform well in
the uncoordinated datasets, due to they do not know who should be
blamed for the failure of the tasks. Against this issue, our method
applies counterfactual sample-average approximation to learn each

Session 4A: Reinfocement and Immitation Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1263

agent’s local value function and marginalize the influence of the
other agents, which can effectively learn the coordinate policies
with a given dataset collected by uncoordinated behavior policies.
The evaluation performance of all the methods is summarized in
Table 2. As shown, our method significantly outperforms baseline
methods in the uncoordinated datasets, and most of the coordi-
nation datasets split from D4RL. In the ablation studies, we will
analyze the effect of different quality of the datasets (uncoordinated
vs coordination) on all the methods in more detail.

4.2 StarCraft II
The StarCraft II micromanagement tasks [24], which involve com-
bat between two armies of units, were proposed to study decentral-
ized multi-agent control. In the tasks, a group of learning agents
control the allied team to beat the enemy team, controlled by built-
in hand-crafted heuristics. Specifically, at each time step, each agent
receives local observations within its field of view. Then, they per-
form their respective actions that are integrated into the joint ac-
tion, which is called macro-actions in the game. Meanwhile, the
agents receive an identical joint reward from the environment (
i.e., 10 points for killing each opponent, and 200 points for killing
all opponents). In addition, the cumulative return in an episode is
normalized to [0, 20].

Datasets.We conducted our experiments in fourmaps: 3 Stalkers
vs 3 Zealots (3d vs 3z), 1 Medivac & 2 Marauders & 7 Marines
(MMM), 2 Stalkers & 3 Zealots (2s3z) and 10 Marines vs 11 Marines
(10m vs 11m). In more detail, we use the datasets in [34], which
contains 3000 non-expert or multi-source trajectories.

Baselines. We compared our approach against the following
methods: 1) I-BCQ [9]: independent BCQmethods; 2)MABCQ [12]:
multi-agent BCQ where re-weights the offline transition dynamics
by increasing the transition with high-value and normalizing the
biased transition dynamics.; 3) ICQ-MA [34]: the leading offline
multi-agent RL method that decomposes the joint policy using
QMIX. Here, we did not test joint BCQ because this domain is not
designed for centralized control.

Results. As shown in Figure 5, our method outperformed all the
compared methods and achieves good results in all the maps. As
expected, single-agent offline RL methods (I-BCQ) fail to learn a
policy that successfully defeats the enemy. The multi-agent offline
RL approaches (MABCQ) also performed poorly due to the lack of

Table 1: Comparison of test win rates (%) in StarCraft II mi-
cromanagement tasks. The test win rates is the percentage
of these test episodes in which the method defeats all enemy
units within the limit time. (best values are in bold)

Map I-BCQ MABCQ ICQ-MA Ours

3s vs 3z 58 6 83 81
MMM 4 0 89 93
2s3z 8 1 61 71

10m vs 11m 0 0 21 33

0 2500 5000 7500 10000 12500 15000 17500 20000
TrainSteps

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Re
wa

rd

Ours
Ours w/o ST
Ours w/o CD
Ours w/o CASS

(a) HalfCheetah (2×3)

0 2500 5000 7500 10000 12500 15000 17500 20000
TrainSteps

200

400

600

800

1000

1200

1400

1600

Av
er

ag
e

Re
wa

rd

Ours
Ours w/o ST
Ours w/o CD
Ours w/o CASS

(b) Walker2d (2×3)

Figure 6: Ablation experiments on the key components of
our method in the multi-agent MuJoCo domains.

cooperation mechanism which is important for the StarCraft do-
main. ICQ-MA and ours achieved satisfactory performance thanks
to their respective cooperation mechanisms. Among them, our
method achieves better performance. The test win rates of all the
methods in the four maps are summarized in Table 1. In evaluation,
our method outperforms all baselines and achieves state-of-the-art
performance in most of the maps.

4.3 Ablation Studies
We investigate the effect of each component in our method and the
quality of the datasets with ablation experiments.

4.3.1 Counterfactual SAA with Subteam Masking. We conducted
ablation studies of our methods to test the effectiveness of coun-
terfactual SAA (CSAA). As shown in Figure 6, the method without
CSAA (Ours w/o CSAA) performs significantly worse, which con-
firms the usefulness of our method. In addition, our method without
subteam masking (Ours w/o ST) also works well in the multi-agent
MuJoCo domains. This is not surprising because the two agents
in these domains contribute more or less equally to the overall
tasks. The advantage of the proposed method becomes apparent
in the Walker domain, where each leg has different contributions
to the walking pace. Since our method takes more comprehensive

Session 4A: Reinfocement and Immitation Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1264

Table 2: Comparison average score of different quality of the datasets. Themulti-agentMuJoCo datasets represent uncoordinated
datasets and are generated by mixed levels of agents, such as agent 1 following the medium-level policy and agent 2 following
the expert-level policy. The multi-agent variation of the D4RL datasets represent coordinated datasets. (best values are in bold).

Dataset Behavior Policy Environment BCQ I-BCQ MABCQ ICQ-MA Ours

Multi-Agent MuJoCo Medium-Expert
HalfCheetah-2x3 2465.1 2401.4 2613.6 1648.6 2937.1

Hopper-3x1 408.2 402.8 1364.3 923.2 3077.9
Walker2d-2x3 590.5 245.6 986.5 253.1 1589.9

D4RL (Multi-Agent Variation) Medium-Medium
HalfCheetah-2x3 4296.1 4466.5 4341.0 4313.7 4496.8

Hopper-3x1 1026.5 922.5 927.7 984.3 2309.6
Walker2d-2x3 1148.5 383.6 539.3 242.0 1080.8

D4RL (Multi-Agent Variation) Expert-Expert
HalfCheetah-2x3 10848.9 5669.3 10561.6 8480.0 11580.1

Hopper-3x1 3624.4 1403.6 2544.2 2870.0 2428.4
Walker2d-2x3 3298.8 834.4 2921.5 910.8 3902.5

consideration of the individual contributions of each agent in the
entire team, it achieves better performance and stability.

4.3.2 Clipped Double Q-learning. We investigate the effect of the
clipped double Q-learning [8] in our method. As shown in Figure 6,
without it (Ours w/o CD), the overall performance dropped sharply,
especially in the Walker2d environment. As aforementioned, this
method reduces the overestimation bias and implicitly penalizes
uncertainty due to missing transitions. This is reflected empirically
that our method benefits substantially from this overestimation
reduction technique.

4.3.3 Quality of Datasets. As aforementioned, the tested baselines
do not perform well in the uncoordinated datasets. Here, we per-
form a further study on those methods with varying data qual-
ity. Specifically, we split the D4RL datasets3 to create the multi-
agent counterpart. In more detail, the action from the single-agent
datasets in D4RL is split into several individual actions correspond-
ing to the controlled joints. For example, the action space inHalfChee-
tah is a 6-dimensional vector, which is split into two 3-dimensional
vectors for HalfCheetah-2x3. As shown in Table 2, splitting the
action from D4RL datasets will generate easier datasets for offline
MARL because the agents’ behavior policies are coordinated and
consistent. As we can see from the table, our method outperformed
all the baselines for the uncoordinated datasets (Multi-Agent Mu-
JoCo), even better than the centralized approach (BCQ). For the
coordination datasets (D4RL), our method achieved the best perfor-
mance compared to the decentralized baselines.

5 RELATEDWORK
5.1 Offline Reinforcement Learning
Offline RL can broadly be categorized as: policy-constraint methods
and conservative methods. The basic idea of policy-constraint meth-
ods is to constrain the learned policy to be close to the behavior
policy. It can be implemented via an explicit action constraint [7, 9],
using an implicit regularization [15, 32], or adding an uncertainty
weight to the policy improvement objective [33, 36]. The basic idea
3https://github.com/rail-berkeley/d4rl

of conservative methods is to learn a lower-bound or conservative
Q-function for OOD actions [11, 16, 35]. For example, CQL [16]
adds a regularizer to penalize the Q-function of OOD actions and
encourage Q-function for state-action in the dataset to be large.

5.2 Multi-Agent Reinforcement Learning
To date, most multi-agent RL are online methods requiring agents
to interact with the environment. For value-based methods, VDN
[28] and QMIX [23] factor the joint Q-function into individual
Q-function via a simple summation or monotonic mixing func-
tion respectively. For representational limitation, QTRAN [26] and
QPLEX [29] learn an unrestricted joint Q-function to obtain a richer
class of Q-functions. For the policy-based methods, MADDPG [19]
proposes to use a single centralized critic and decentralized actor
for each agent. COMA [5] and Shapley-COMA [18] employ central-
ized critic to generate a counterfactual advantage baseline to guide
the learning of local policies. Generally, it is nontrivial to apply
online multi-agent RL to offline settings, which is trained with only
the pre-collected dataset.

6 CONCLUSION
In this paper, we propose an offline multi-agent RL that effectively
learns coordinated policies with datasets collected by uncoordinated
behavior policies. Specifically, we treat the Dec-POMDP as a single-
agent POMDP from the perspective of each agent and learn the
best-response policy given a distribution over the other agents’
policies. In more detail, we use the counterfactual sample-average
approximation to reason the agent’s contribution to the whole
team considering the complex interdependency among the agents,
and maintain the policy distribution by masking the other agents’
policies. The experimental results show that our method could
learn to coordinate with the others with datasets collected from
uncoordinated behavior policies, and outperforms several state-
of-the-art methods in the multi-agent MuJoCo and the StarCraft
II micromanagement tasks. In the future, we plan to extend our
framework to more complex multi-agent systems, e.g., partially
observable Markov games, where the agents are self-interested.

Session 4A: Reinfocement and Immitation Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1265

https://github.com/rail-berkeley/d4rl

ACKNOWLEDGMENTS
This work was supported in part by the Major Research Plan
of the National Natural Science Foundation of China (Grant No.
92048301) and Anhui Provincial Natural Science Foundation (Grant
No. 2208085MF172).

REFERENCES
[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. 2020. An opti-

mistic perspective on offline reinforcement learning. In International Conference
on Machine Learning. PMLR, 104–114.

[2] Christopher Amato. 2018. Decision-Making Under Uncertainty in Multi-Agent
and Multi-Robot Systems: Planning and Learning.. In IJCAI. 5662–5666.

[3] Duncan S Callaway and Ian A Hiskens. 2010. Achieving controllability of electric
loads. Proc. IEEE 99, 1 (2010), 184–199.

[4] Shaofei Chen, Feng Wu, Lincheng Shen, Jing Chen, and Sarvapali D. Ramchurn.
2015. Multi-Agent Patrolling under Uncertainty and Threats. Public Library of
Science (PLOS ONE) 10(6) (2015), e0130154. https://doi.org/10.1371/journal.pone.
0130154

[5] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-
mon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 32.

[6] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. 2020.
D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219 (2020).

[7] Scott Fujimoto and Shixiang Shane Gu. 2021. A minimalist approach to offline
reinforcement learning. Advances in Neural Information Processing Systems 34
(2021).

[8] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function ap-
proximation error in actor-critic methods. In International conference on machine
learning. PMLR, 1587–1596.

[9] Scott Fujimoto, David Meger, and Doina Precup. 2019. Off-policy deep rein-
forcement learning without exploration. In International Conference on Machine
Learning. PMLR, 2052–2062.

[10] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning. PMLR, 1861–
1870.

[11] Qiang He, Xinwen Hou, and Yu Liu. 2022. Popo: Pessimistic offline policy
optimization. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 4008–4012.

[12] Jiechuan Jiang and Zongqing Lu. 2021. Offline decentralized multi-agent rein-
forcement learning. arXiv preprint arXiv:2108.01832 (2021).

[13] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[14] Anton J Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. 2002. The
sample average approximation method for stochastic discrete optimization. SIAM
Journal on Optimization 12, 2 (2002), 479–502.

[15] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. 2019.
Stabilizing off-policy q-learning via bootstrapping error reduction. Advances in
Neural Information Processing Systems 32 (2019).

[16] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conserva-
tive q-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems 33 (2020), 1179–1191.

[17] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline rein-
forcement learning: Tutorial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643 (2020).

[18] Jiahui Li, Kun Kuang, BaoxiangWang, Furui Liu, Long Chen, FeiWu, and Jun Xiao.
2021. Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &

Data Mining. 934–942.
[19] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor

Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. Advances in neural information processing systems 30 (2017).

[20] Jinming Ma and Feng Wu. 2020. Feudal Multi-Agent Deep Reinforcement Learn-
ing for Traffic Signal Control. In Proceedings of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020). Auckland, New
Zealand, 816–824.

[21] Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy Marsella.
2003. Taming decentralized POMDPs: Towards efficient policy computation for
multiagent settings. In IJCAI, Vol. 3. Citeseer, 705–711.

[22] Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kami-
enny, Philip Torr, Wendelin Böhmer, and Shimon Whiteson. 2021. Facmac: Fac-
tored multi-agent centralised policy gradients. Advances in Neural Information
Processing Systems 34 (2021).

[23] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In International Conference
on Machine Learning. PMLR, 4295–4304.

[24] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Far-
quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr,
Jakob Foerster, and ShimonWhiteson. 2019. The StarCraft Multi-Agent Challenge.
CoRR abs/1902.04043 (2019).

[25] Lloyd S Shapley. 1953. A value for n-person games, Contributions to the Theory
of Games, 2, 307–317.

[26] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung
Yi. 2019. Qtran: Learning to factorize with transformation for cooperative multi-
agent reinforcement learning. In International Conference on Machine Learning.
PMLR, 5887–5896.

[27] Haoyuan Sun and Feng Wu. 2023. Less Is More: Refining Datasets for Offline
Reinforcement Learning with Reward Machines. In Proceedings of the 22nd In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS
2023). London, United Kingdom.

[28] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296 (2017).

[29] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. [n.d.].
QPLEX: Duplex Dueling Multi-Agent Q-Learning. ([n. d.]).

[30] Marco A Wiering. 2000. Multi-agent reinforcement learning for traffic light con-
trol. In Machine Learning: Proceedings of the Seventeenth International Conference
(ICML’2000). 1151–1158.

[31] Feng Wu, Sarvapali D. Ramchurn, and Xiaoping Chen. 2016. Coordinating
Human-UAV Teams in Disaster Response. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016). New York, USA, 524–530.

[32] Yifan Wu, George Tucker, and Ofir Nachum. 2019. Behavior regularized offline
reinforcement learning. arXiv preprint arXiv:1911.11361 (2019).

[33] Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan
Salakhutdinov, and Hanlin Goh. 2021. Uncertainty weighted actor-critic for
offline reinforcement learning. arXiv preprint arXiv:2105.08140 (2021).

[34] Yiqin Yang, Xiaoteng Ma, Li Chenghao, Zewu Zheng, Qiyuan Zhang, Gao Huang,
Jun Yang, and Qianchuan Zhao. 2021. Believe what you see: Implicit constraint
approach for offline multi-agent reinforcement learning. Advances in Neural
Information Processing Systems 34 (2021).

[35] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and
Chelsea Finn. 2021. Combo: Conservative offlinemodel-based policy optimization.
Advances in Neural Information Processing Systems 34 (2021).

[36] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey
Levine, Chelsea Finn, and Tengyu Ma. 2020. Mopo: Model-based offline policy
optimization. Advances in Neural Information Processing Systems 33 (2020), 14129–
14142.

Session 4A: Reinfocement and Immitation Learning

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1266

https://doi.org/10.1371/journal.pone.0130154
https://doi.org/10.1371/journal.pone.0130154

	Abstract
	1 Introduction
	2 Background
	2.1 Offline Reinforcement Learning
	2.2 Offline Multi-Agent RL
	2.3 Motivation and Challenge

	3 Main Method
	3.1 Counterfactual Sample-Average Approximation
	3.2 Policy Sampling with Subteam Masking
	3.3 Implementation Details
	3.4 Discussion

	4 Experiments
	4.1 Multi-Agent MuJoCo
	4.2 StarCraft II
	4.3 Ablation Studies

	5 Related Work
	5.1 Offline Reinforcement Learning
	5.2 Multi-Agent Reinforcement Learning

	6 Conclusion
	Acknowledgments
	References

