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ABSTRACT
Imitation learning aims to mimic the behavior of experts without
explicit reward signals. Passive imitation learning methods which
use static expert datasets typically suffer from compounding error,
low sample efficiency, and high hyper-parameter sensitivity. In
contrast, active imitation learning methods solicit expert interven-
tions to address the limitations. However, recent active imitation
learning methods are designed based on human intuitions or em-
pirical experience without theoretical guarantee. In this paper, we
propose a novel active imitation learning framework based on a
teacher-student interaction model, in which the teacher’s goal is
to identify the best teaching behavior and actively affect the stu-
dent’s learning process. By solving the optimization objective of
this framework, we propose a practical implementation, naming it
AdapMen. Theoretical analysis shows that AdapMen can improve
the error bound and avoid compounding error under mild condi-
tions. Experiments on the MetaDrive benchmark and Atari 2600
games validate our theoretical analysis and show that our method
achieves near-expert performance with much less expert involve-
ment and total sampling steps than previous methods. The code is
available at https://github.com/liuxhym/AdapMen.

KEYWORDS
Reinforcement Learning; Imitation Learning; Human in the Loop
ACM Reference Format:
Xu-Hui Liu, Feng Xu, Xinyu Zhang, Tianyuan Liu, Shengyi Jiang, Ruifeng
Chen, Zongzhang Zhang, Yang Yu. 2023. How To Guide Your Learner:
Imitation Learning with Active Adaptive Expert Involvement. In Proc.of the
22nd International Conference on Autonomous Agents and Multiagent Systems

∗Equal Contribution †Corresponding Author.

Proc.of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

(AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023, IFAAMAS,
9 pages.

1 INTRODUCTION
Imitation Learning (IL) [9, 33, 35] aims to learn a policy from expert
demonstrations with no explicit task-relevant knowledge like re-
ward and transition. IL has achieved huge success in a variety of do-
mains, including games [35] and recommendation systems [4, 36].

The traditional IL method Behavior Cloning (BC) [33] imitates
expert behaviors via supervised learning. Although BC works fine
in simple environments, it requires a lot of data and small er-
rors compound quickly when the learned policy deviates from
the states in the expert dataset. This issue can be formalized by the
sub-optimality bound of the learned policy, which is Õ(𝜖𝑏𝐻2) for
BC [33], where 𝜖𝑏 is the optimization error, 𝐻 is the horizon of the
Markov Decision Processes (MDPs) and Õ means the constant and
log terms are omitted. The quadratic dependency on 𝐻 is known
as the compounding error issue.

To tackle the compounding error issue, Apprenticeship Learning
(AL) [1, 10] and Adversarial Imitation Learning (AIL) [6, 9, 16, 17]
algorithms introduce interactions with environment. They first
infer a reward function from expert demonstrations, then learn a
corresponding policy by Reinforcement Learning (RL). The sub-
optimality bound is then reduced to Õ(𝜖𝑔𝐻 ) [39], where 𝜖𝑔 is the
optimization error of AL and AIL. From another perspective, DAg-
ger [35] attributes the compounding error issue to the difference
between the train distribution and test distribution. Thus, DAgger
queries the expert for action labels corresponding to each state
visited by the learner [35].

Despite the reduction of the order of𝐻 , the complicated optimiza-
tion process of AL and AIL leads to even worse sample complexity
than BC [40]. Additionally, these algorithms are highly sensitive to
hyper-parameters and are hard to converge in practice [43]. DAgger
also relies on an additional assumption that the learner can recover
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Figure 1: Framework of AdapMen

from mistakes made by itself to a certain extent, which is known
as the `-recoverability condition on the MDPs. [31] proves that
DAgger has a better theoretical guarantee than BC under such an
assumption while [32] shows a negative result for general cases.
Moreover, the assumption is satisfied only when any sub-optimal
action leads to little performance degradation, which can be im-
practical, e.g., in risk-sensitive environments [31, 32]. Some recent
methods [11, 15, 21, 24, 42] modify DAgger so that they only solicit
expert interventions based on certain criteria. Though these meth-
ods achieve certain empirical success, there were no theoretical
understanding of these methods and their design of intervention
criteria is totally intuitive, hindering further algorithmic design.

To address the issues in previous methods, we study the IL prob-
lems from a new perspective. From experience, sometimes experts
are not the best teachers. For example, many legendary players end
up with controversial coaching careers. Experts advance disciplines,
while teachers advance learners. Inspired by the idea of machine
teaching [30, 44] , we formulate the IL process as a teacher-student
framework. In this framework, the teacher decides what to teach
and how to impart knowledge rather than simply correcting the
student. With more attentive help from the teacher, the student
agent can learn faster.

We formalize this intuition by introducing an optimization prob-
lem on minimizing the value loss of the learned policy. By solving
the optimization problem in the framework, we obtain a novel
imitation learning method Active adaptive expert involveMent
(AdapMen), where a teacher actively involves in the learner’s in-
teraction with the environment and adjusts its teaching behavior
accordingly. The overall interaction structure is illustrated in Fig. 1,
where the criterion and the expert is together viewed as the teacher.
At each time step, a criterion calculated from expert actions judges
whether to take the learner’s action or ask the expert to take over
control.

The sub-optimality and sample complexity bounds of AdapMen
and other typical IL methods are listed in Tab. 1. Under mild condi-
tions, AdapMen achieves no compounding error with much lower
sample complexity than previous methods. To validate our theories,
we also experimentally verify the validity of the assumption and
demonstrate the power of AdapMen in several tasks.

Sub-
optimality

Sample
Complexity

BC Õ(𝜖𝑏𝐻2) Õ( |S |𝐻 2

𝜖 )

AIL Õ(𝜖𝑔𝐻 ) Õ( |S |𝐻 2

𝜖2
)

DAgger Õ(`𝜖𝑏𝐻 ) Õ( ` |S |𝐻
𝜖 )

AdapMen Õ(𝜖𝑏𝐻 ) Õ( |S |𝐻
𝜖 )

Table 1: Theoretical Guarantee of IL Methods. Õ means the
log term of 𝐻 is omitted.

2 RELATEDWORK
Imitation Learning. The most traditional approach to imitation
learning is Behavioral Cloning (BC) [2, 5, 33], where a classifier
or regressor is trained to fit the behaviors of the expert. This sim-
ple form of IL suffers from high compounding error because of
covariate shifts. By allowing the learner agent to further inter-
act with the environment, Apprenticeship Learning (AL) [1, 10]
infers a reward function from expert demonstrations by Inverse
Reinforcement Learning (IRL) [27] and learns a policy with Rein-
forcement Learning (RL) using the recovered reward function. In
this way, the learner can correct its behavior on unseen states to mit-
igate the compounding error issue. Recently, based on Generative
Adversarial Network (GAN) [7], Adversarial Imitation Learning
(AIL) [9, 16, 17] performs state-action distribution matching in
an adversarial manner and has a stronger empirical performance
than AL. Since AL and AIL have access to environment transitions,
they are classified as known-transition methods. Notwithstanding
the compounding error issue, this type of method is highly sen-
sitive to hyper-parameters and hard to converge in practice [43].
Different from the known-transition methods, DAgger-style algo-
rithms [34, 35, 38] address the covariate shift by querying the expert
online. Without the min-max optimization in known-transition
methods, DAgger-style algorithms tend to be more stable. How-
ever, these algorithms can only avoid compounding error under
the `-recoverability assumption, which is often not satisfied in
risk-sensitive environments [31, 32]. Our method AdapMen is free
from the `-recoverability assumption and the hyper-parameters
are automatically tuned.

Human-in-the-loop.Many works focus on incorporating hu-
man interventions in the training loop of RL or IL paradigms. DAg-
ger [35] can be seen as one of the human-in-the-loop methods if the
expert is a human. DAgger requires experts to provide action labels
without being fully in control of the system, which can introduce
safety concerns and is very likely to degrade the quality of the
collected labels due to the loss of direct feedback. To address this
challenge, a list of learning from intervention approaches have been
proposed to empower humans to intervene and guide the learner
agent to safe states. "Human-Gated" approaches [15, 21, 37] require
humans to determine when the agent needs help and when to cede
control, which is unreliable because of the high randomness of hu-
man behavior. In contrast, “Agent-Gated” approaches [11, 12, 24, 42]
allow the learner agent to actively seek human interventions based
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on certain criteria including the novelty or the risk of the visited
states. However, all of the criteria are heuristic without theoret-
ical guarantees and the hyper-parameters are hard to tune. Our
method AdapMen can actively involve in the interaction process
and adaptively adjust its intervention probability.

3 BACKGROUND
Consider an MDP task denoted by 𝑀 = (S,A,P, 𝐻, 𝑟, 𝜌), where
S is the state space, A is the action space, P : S × A → S is the
transition function,𝐻 is the planning horizon, 𝑟 : S×A → R is the
reward function, and 𝜌 is the distribution of initial states. Without
loss of generality, we assume 𝑟 (𝑠, 𝑎) ∈ [0, 1]. A policy is defined
as 𝜋 (· | 𝑠), which outputs an action distribution. To facilitate later
analysis, we introduce the state-action distribution at time step 𝑡
as follows:
𝑑𝜋
ℎ
(𝑠, 𝑎) =
Pr (𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎 |𝑠1 ∼ 𝜌, 𝑎𝑡 ∼ 𝜋 (𝑠𝑡 ), 𝑠𝑡+1 ∼ P(·|𝑠𝑡 , 𝑎𝑡 ), 𝑡 ∈ [ℎ]) ,

where [ℎ] = {1, 2, . . . , ℎ}. We define 𝑑𝜋 = 1
𝐻

∑𝐻
ℎ=1 𝑑

𝜋
ℎ
, which is the

average distribution of states if we follow policy 𝜋 for 𝐻 steps.
In imitation learning, the reward function of a task is not ac-

cessible. Instead, the learner agent has access to an expert with
policy 𝜋∗, and the goal is to recover the policy 𝜋∗ by learning from
labeled training data, e.g., state-action pairs generated by an expert
agent. Following [39] and [32], we assume the expert policy is de-
terministic in the theoretical analysis, while it can be stochastic in
practice.

To measure the quality of a learner policy, we define the policy
value as

𝐽 (𝜋) = E
[

𝐻∑︁
ℎ=1

𝑟 (𝑠ℎ, 𝑎ℎ) |𝑠1 ∼ 𝜌 ;

𝑎ℎ ∼ 𝜋 (·|𝑠ℎ), 𝑠ℎ+1 ∼ P(·|𝑠ℎ, 𝑎ℎ),∀ℎ ∈ [𝐻 ]
]
.

This is the cumulative return for the learner agent in the task
demonstrated by the expert. Accordingly, the quality of imitation
learning is measured by the sub-optimality gap: 𝐽 (𝜋∗) − 𝐽 (𝜋). We
also introduce the Q-function at time step ℎ:

𝑄𝜋
ℎ
(𝑠, 𝑎) = E

[
𝐻∑︁
𝑡=ℎ

𝑟 (𝑠𝑡 , 𝑎𝑡 ) |𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎;

𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ), 𝑠𝑡+1 ∼ P(·|𝑠𝑡 , 𝑎𝑡 ),∀𝑡 ∈ {ℎ + 1, . . . , 𝐻 }
]
.

For brevity, we use 𝑄𝜋1
ℎ
(𝑠, 𝜋2) as a shorthand of E𝑎∼𝜋2𝑄

𝜋1
ℎ
(𝑠, 𝑎).

Then, we have 𝐽 (𝜋) = E𝑠∼𝜌𝑄𝜋
𝐻
(𝑠, 𝜋) and 𝐽 (𝜋∗) = E𝑠∼𝜌𝑄𝜋∗

𝐻
(𝑠, 𝜋∗).

4 TEACHER-STUDENT INTERACTION MODEL
Given the inspiration that experts may not be the best teachers, we
construct a teaching policy for the agent. In the learning process, the
agent aims to mimic the teacher policy instead of the expert policy.
This intuition can be formulated as the following optimization
problem:

min
𝜋 ′

𝐽 (𝜋∗) − 𝐽 (𝜋𝜋 ′ ) s.t. E𝑠∼𝛽 ℓ (𝑠, 𝜋𝜋 ′ , 𝜋 ′) ≤ 𝜖𝑏 , (1)

where 𝜋 ′ is the teaching policy, 𝜋𝜋 ′ is the corresponding learned
student policy, 𝛽 is the data distribution of the buffer that stores
intervened samples, ℓ (𝑠, 𝜋𝜋 ′ , 𝜋 ′) is the 0-1 loss, i.e., ℓ (𝑠, 𝜋𝜋 ′ , 𝜋 ′) = 0
if 𝜋𝜋 ′ (·|𝑠) = 𝜋 ′ (·|𝑠) and ℓ (𝑠, 𝜋𝜋 ′ , 𝜋 ′) = 1 otherwise, and 𝜖𝑏 is the
upper bound of the optimization loss. Intuitively, we aim to find a
policy 𝜋 ′ that generates data to not only correct the learner when it
deviates from the desired behavior, but also helps it learn as quickly
as possible.

Denote 𝜋 as the policy before the policy optimization process, i.e.,
𝜋𝜋 ′ is optimized from 𝜋 . Because it is useless to store the data coin-
ciding with the agent policy, a natural choice for the distribution
of buffer is

𝛽 (𝑠) = 1
𝐻𝛿

𝐻∑︁
ℎ=1
I(𝜋 (·|𝑠) ≠ 𝜋 ′ (·|𝑠))𝑑𝜋

′

ℎ
(𝑠) . (2)

That is, we only save the samples when 𝜋 and 𝜋 ′ behave differently.
𝛿 is the normalization factor for the distribution of the buffer, i.e.,

𝛿 =
∑︁
𝑠

1
𝐻

𝐻∑︁
ℎ=1
I(𝜋 ′ (·|𝑠) ≠ 𝜋 (·|𝑠))𝑑𝜋

′

ℎ
(𝑠) = E𝑠∼𝑑𝜋 ′ I(𝜋 ′ (·|𝑠) ≠ 𝜋 (·|𝑠)) .

(3)
Before solving this optimization problem,we introduce Lemma 4.1

for better understanding of the derivation.

Lemma 4.1 (Policy Difference Lemma [14]). For any policies 𝜋1
and 𝜋2,

𝐽 (𝜋1) − 𝐽 (𝜋2) =
𝐻∑︁
ℎ=1
E
𝑠∼𝑑𝜋1

ℎ

[𝑄𝜋2
ℎ
(𝑠, 𝜋1) −𝑄𝜋2

ℎ
(𝑠, 𝜋2)] .

With this lemma, we rewrite the optimization objective as

𝐽 (𝜋∗) − 𝐽 (𝜋𝜋 ′ ) = 𝐽 (𝜋∗) − 𝐽 (𝜋 ′) + 𝐽 (𝜋 ′) − 𝐽 (𝜋𝜋 ′ )

(𝑎)
=

𝐻∑︁
ℎ=1
E
𝑠∼𝑑𝜋 ′

ℎ

[𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) −𝑄𝜋∗

ℎ
(𝑠, 𝜋 ′)]

+
𝐻∑︁
ℎ=1
E
𝑠∼𝑑𝜋 ′

ℎ

[𝑄𝜋𝜋 ′
ℎ

(𝑠, 𝜋 ′) −𝑄𝜋𝜋 ′
ℎ

(𝑠, 𝜋𝜋 ′ )] .

(4)

(a) is derived from Lemma 4.1. The minimization of the first term
implies the teaching policy 𝜋 ′ should be similar to the expert policy
𝜋∗, while the minimization of the second term implies 𝜋 ′ should
be close to 𝜋𝜋 ′ . Note that we cannot determine 𝜋 ′ simply from 𝜋𝜋 ′

since 𝜋𝜋 ′ is learned from 𝜋 ′. However, 𝜋 ′ can be close to 𝜋𝜋 ′ if
we assume 𝜋𝜋 ′ (·|𝑠) = 𝜋 (·|𝑠) if 𝜋 (·|𝑠) = 𝜋 ′ (·|𝑠). The assumption is
straightforward because 𝜋 (·|𝑠) = 𝜋 ′ (·|𝑠) implies we do not need
to do optimization on state 𝑠 , thus 𝜋𝜋 ′ stays unchanged on this
state. Therefore, the overall optimization leads to a trade-off of 𝜋 ′
between 𝜋∗ and 𝜋 .

To decompose the objective into a more tractable one, we assume
𝑄𝜋
ℎ
can be upper-bounded by Δ, then

𝐻∑︁
ℎ=1
E
𝑠∼𝑑𝜋 ′

ℎ

[𝑄𝜋𝜋 ′
ℎ

(𝑠, 𝜋 ′) −𝑄𝜋𝜋 ′
ℎ

(𝑠, 𝜋𝜋 ′ )]

≤ Δ
𝐻∑︁
ℎ=1
E
𝑠∼𝑑𝜋 ′

ℎ

I(𝜋 ′ (·|𝑠) ≠ 𝜋𝜋 ′ (·|𝑠)) .

(5)
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In this way, the problem is transformed to increasing the probabil-
ity that 𝜋 ′ equals 𝜋𝜋 ′ and reducing the value degradation between
𝜋 ′ and 𝜋∗ simultaneously.

Applying the constraint in (1) to the right-hand side of Eq. (5)
with the mentioned Δ, we have

Δ
𝐻∑︁
ℎ=1
E
𝑠∼𝑑𝜋 ′

ℎ

I(𝜋 ′ (·|𝑠) ≠ 𝜋𝜋 ′ (·|𝑠)) (6)

(𝑏 )
≤ Δ

𝐻∑︁
ℎ=1
E
𝑠∼𝑑𝜋 ′

ℎ

I(𝜋 ′ (·|𝑠) ≠ 𝜋 (·|𝑠))I(𝜋 ′ (·|𝑠) ≠ 𝜋𝜋 ′ (·|𝑠)) (7)

(𝑐 )
= Δ𝐻𝛿 E𝑠∼𝛽 I(𝜋 ′ (·|𝑠) ≠ 𝜋𝜋 ′ (·|𝑠))

(𝑑 )
≤ Δ𝐻𝛿𝜖𝑏 (8)

(𝑒 )
= Δ𝜖𝑏

𝐻∑︁
ℎ=1
E
𝑠∼𝑑𝜋 ′

ℎ

I(𝜋 ′ (·|𝑠) ≠ 𝜋 (·|𝑠)), (9)

where (b) uses the fact that 𝜋 ′ (·|𝑠) ≠ 𝜋𝜋 ′ (·|𝑠) implies 𝜋 ′ (·|𝑠) =

𝜋𝜋 ′ (·|𝑠), (c) is derived from the definition of 𝛽 in Eq. (2), (d) uses
the condition E𝑠∼𝛽 ℓ (𝑠, 𝜋𝜋 ′ , 𝜋 ′) ≤ 𝜖𝑏 , and (e) is derived from the
definition of 𝛿 in Eq. (3).

The first term of Eq. (4) can be rewritten as

𝐻∑︁
ℎ=1
E
𝑠∼𝑑𝜋 ′

ℎ

[𝑄𝜋∗

ℎ
(𝑠, 𝜋 ′) −𝑄𝜋∗

ℎ
(𝑠, 𝜋∗)] (10)

=

𝐻∑︁
ℎ=1
E
𝑠∼𝑑𝜋 ′

ℎ

[𝑄𝜋∗

ℎ
(𝑠, 𝜋 ′) −𝑄𝜋∗

ℎ
(𝑠, 𝜋∗)]I(𝜋 ′ (·|𝑠) ≠ 𝜋∗ (·|𝑠)) . (11)

The added I(𝜋 ′ (·|𝑠) ≠ 𝜋∗ (·|𝑠)) does not contribute to this term,
because 𝑄𝜋∗

ℎ
(𝑠, 𝜋 ′) − 𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) = 0 when 𝜋 ′ (·|𝑠) = 𝜋∗ (·|𝑠). The

total value loss is composed of Eq. (9) and Eq. (11). Fixing the
distribution 𝑑𝜋

′
, Eq. (9) equals 0 if 𝜋 ′ (·|𝑠) = 𝜋 (·|𝑠) and Eq. (11)

equals 0 if 𝜋 ′ (·|𝑠) = 𝜋∗ (·|𝑠). Thus, the agent will suffer from a
𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) − 𝑄𝜋∗

ℎ
(𝑠, 𝜋 ′) value loss if 𝜋 ′ (·|𝑠) = 𝜋 (·|𝑠), and suffer

from a Δ𝜖𝑏 value loss if 𝜋 ′ (·|𝑠) = 𝜋∗ (·|𝑠). In this way, proper choice
of 𝜋 ′ is

𝜋 ′ (·|𝑠) =
{
𝜋∗ (·|𝑠) if 𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) −𝑄𝜋∗

ℎ
(𝑠, 𝜋) ≥ Δ𝜖𝑏 ,

𝜋 (·|𝑠) otherwise.
(12)

The resultant 𝜋 ′ switches between the expert policy and the
learner policy according to whether𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) −𝑄𝜋∗

ℎ
(𝑠, 𝜋) exceeds

the threshold. In other words, the expert intervenes the interaction
when deemed necessary according to the 𝑄-value difference.

In the teacher-student interaction model, the intervention mode
of the teacher is somewhat similar to DAgger-based active learning
methods [11, 15, 24, 42]. The good performance achieved by them
can be explained in the way that their intervention strategies make
the expert a better teacher.

Note that Eq. (12) does not tell us how to design 𝜋 ′ as Δ is
not available. However, it exposes the mode of a good teacher: let
the expert intervenes in the interaction according to the value of
𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) −𝑄𝜋∗

ℎ
(𝑠, 𝜋) and a threshold. Denote the threshold as 𝑝 ,

the remaining work is to analyze the influence of 𝑝 and figure out
a proper 𝑝 .

5 ANALYSIS
In this section, we analyze the theoretical properties of the inter-
vention mode in both infinite and finite sample cases, and compare
it with previous IL approaches.

First, we derive the sub-optimality bound for the teacher-student
interaction model in the infinite sample case. The result is shown in
the following theorem, whose proof can be found in Appendix ??.

Theorem 5.1. Let 𝜋 be a policy such that E𝑠∼𝛽 [ℓ (𝑠, 𝜋, 𝜋 ′)] ≤ 𝜖𝑏 ,
then 𝐽 (𝜋∗) − 𝐽 (𝜋) ≤ 𝑝𝐻 + 𝛿𝜖𝑏𝐻2, where 𝛿 = E𝑠∼𝑑𝜋 ′ I(𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) −

𝑄𝜋∗

ℎ
(𝑠, 𝜋) > 𝑝).

Remark 1. It seems O(𝐻2), the term in the BC method, also ap-
pears in this sub-optimality bound. However, 𝛿 can be small if 𝑝
is properly chosen and may even nullify the effect of O(𝐻2). The
definition of 𝛿 implies it decreases as 𝑝 increases, while the first
term 𝑝𝐻 increases as 𝑝 increases. Therefore, 𝑝 provides a trade-off
between the two terms. Intuitively, the first term is the error in-
duced by neglecting some erroneous actions, while the second term
is caused by optimization error.
Remark 2. BC is a special case of our method. When 𝑝 equals 0,
𝛿 equals 1. In this case, the expert takes over the entire training
process, which is exactly the paradigm of BC. Replacing 𝑝 with 0
and 𝛿 with 1, the bound becomes 𝜖𝑏𝐻2, which is the sub-optimality
bound of BC, as shown in Appendix ??. Therefore, BC is the upper
bound of sub-optimality in our framework.
Remark 3. Suppose 𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) −𝑄𝜋∗

ℎ
(𝑠, 𝜋) follows a distribution

𝑃 , then 𝑝 equals the 𝛿 quantile of 𝑃 . If 𝑃 is concentrated, in other
words, 𝑃 has strong tail decay, then a little increase in 𝑝 leads to
a large drop of 𝛿 , and the error bound can be improved to a great
extent.

When 𝑃 belongs to the Sub-Exponential distribution class, which
includes many common distributions, e.g., Gaussian distribution,
exponential distribution and Bernoulli distribution, we have

Corollary 5.2. If distribution 𝑃 belongs to O(𝜖𝑏 )-Sub-Exponential
distribution class with expectation O(𝜖𝑏 ), let 𝑝 = Ω(𝜖𝑏 log𝐻 ), then
𝐽 (𝜋∗) − 𝐽 (𝜋) = Õ(𝜖𝑏𝐻 ), where Õ omits the constant and log term.

The proof is given in Appendix ??. For brevity, we use 𝐷𝑄 to
denote 𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) −𝑄𝜋∗

ℎ
(𝑠, 𝜋) for the remaining of this paper. This

corollary implies our method can avoid compounding error under
a mild assumption on the distribution of 𝐷𝑄 . In Sec. 7, we show
that the distribution 𝑃 in actual tasks satisfies this assumption.

We then derive the sub-optimality bound in the finite sample
case. Let {𝜋𝑖 }𝑁𝑖=1 be the sequence of policies generated by our
method in𝑁 iterationswith a fixed 𝑝 , and𝛿𝑖 = E

𝑠∼𝑑 �̂� ′
𝑖
I(𝑄𝜋∗

ℎ
(𝑠, 𝜋∗)−

𝑄𝜋∗

ℎ
(𝑠, 𝜋𝑖 ) > 𝑝), then we obtain the following theorem.

Theorem 5.3. Let 𝜋 = 1
𝑁

∑
𝑖 𝜋𝑖 , then 𝐽 (𝜋∗) − E[𝐽 (𝜋)] ≲ 𝑝𝐻 +

𝛿
|S |𝐻 2

𝑁
, where 𝛿 = 1

𝑁

∑
𝑖 𝛿𝑖 and ≲ omits the constant and the log

term.
If the condition of Corollary 5.2 is satisfied for all 𝑁 iterations, the

bound can be improved as 𝐽 (𝜋∗) − E[𝐽 (𝜋)] ≲ |S |𝐻
𝑁

.

The bound of sample complexity can be derived from this theo-
rem. Let value loss be 𝜖 , then 𝑁 = Õ( 𝛿 |S |𝐻 2

𝜖−𝑝𝐻 ). Under the condition
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of Corollary 5.2, the sample complexity is Õ( |S |𝐻
𝜖 ). This shows our

method can also avoid the quadratic term of 𝐻 in the sample com-
plexity. In contrast, AL and AIL methods suffer from such a term
in complexity even if the compounding error in the sub-optimality
bound is avoided.

6 PRACTICAL IMPLEMENTATION
In this section, we design a practical algorithm based on the analysis
in Sec. 4 and 5. The key idea is to find a proper value of the threshold
𝑝 and a surrogate of 𝑄𝜋∗

ℎ
when 𝑄𝜋∗

ℎ
is not available.

To facilitate our derivation, we first introduce the definition of
TV divergence and KL divergence.

Definition 6.1. Let 𝑃 and 𝑄 be two distributions over a sample
space S , then the TV divergence between 𝑃 and 𝑄 , 𝐷TV (𝑃,𝑄), is
defined as

𝐷TV (𝑃,𝑄) =
1
2

∫
|𝑃 (𝑠) −𝑄 (𝑠) |𝑑𝑠.

The KL divergence between 𝑃 and 𝑄 , 𝐷KL (𝑃,𝑄), is defined as

𝐷KL (𝑃,𝑄) =
∫

𝑃 (𝑠) log 𝑃 (𝑠)
𝑄 (𝑠)𝑑𝑠.

6.1 The choice of 𝑝
According to Corollary 5.2, the sub-optimality bound is small when
the assumption on 𝑃 , i.e., 𝑝 = Ω(𝜖𝑏𝐻 ), is satisfied. However, letting
𝑝 = Ω(𝜖𝑏𝐻 ) is inappropriate because it cannot generalize to other
distribution classes and the constant in Ω is difficult to determine.

To avoid the drawbacks of Corollary 5.2, we choose 𝑝 according
to Theorem 5.1. Remember that 𝑝 provides a trade-off between the
first term and the second term of the sub-optimality bound, i.e., 𝑝𝐻
and 𝛿𝜖𝑏𝐻2, and the order of the error depends on the larger term.
Therefore, the best order of the bound can be achievedwhen the two
terms are equal. Based on this intuition, the relationship between
𝑝 and 𝛿 should be 𝑝 = 𝛿𝜖𝑏𝐻 . In fact, the choice of 𝑝 preserves
the Õ(𝜖𝑏𝐻 ) bound in Corollary 5.2 when the assumption on 𝑃 is
satisfied. Please refer to Appendix ?? for a detailed discussion.

It is natural to assume the optimization process is smooth, i.e.,
the intervention probability 𝛿 and policy 0-1 loss 𝜖𝑏 changes slowly
throughout the optimization process. Therefore, we can calculate 𝑝
using 𝛿 and 𝜖𝑏 of the last iteration as an approximation. 𝛿 and 𝜖𝑏
of the last iteration are easy to obtain because 𝜖𝑏 can be calculated
directly and 𝛿 can be estimated with the intervention frequency.

For tasks with continuous action spaces, the policy 0-1 loss is
exactly 1, which makes the bound in Theorem 5.1 trivial. In fact,
Theorem 5.1 holds for ℓ is the TV divergence between 𝜋 and 𝜋∗,
and we discuss this in Appendix ??. According to Pinsker’s inequal-
ity [29], 𝐷TV (𝑃,𝑄) ≤

√︁
𝐷KL (𝑃,𝑄), i.e., KL divergence can be the

upper bound of TV divergence. Thus we use KL divergence instead
to avoid the complex computation of TV divergence because the
condition E𝑠∼𝛽 [ℓ (𝑠, 𝜋, 𝜋 ′)] ≤ 𝜖𝑏 still holds when ℓ is selected as the
TV divergence of policy and 𝜖𝑏 is selected as the KL divergence of
policy. In this way, we only need to determine 𝑝 in the first iteration.
The key idea to tune the initial 𝑝 is to let 𝑝 approximately equals
𝛿𝜖𝑏𝐻 , which can be easily calculated after a few interactions with
environments.

6.2 Surrogate of Q-value difference
In many real-world applications, though the exact expert Q-values
are hard to get upfront, many existing methods can acquire a Q
that is close to 𝑄𝜋∗

, including learning from offline datasets [13,
18, 41], using human advice [19, 26], and computing from rules [22,
23]. However, in some cases the Q-function cannot be obtained,
we hope to find a surrogate of 𝑄𝜋∗

. Note that the expert policy
𝜋∗ is accessible, and we derive the relationship between Q-value
difference and policy divergence as follows.

Theorem 6.2. The Q-value difference can be bounded by the policy
divergence:

𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) −𝑄𝜋∗

ℎ
(𝑠, 𝜋) ≤ 𝐷TV (𝜋∗ (·|𝑠), 𝜋 (·|𝑠)) (𝐻 − ℎ).

This theorem shows 𝐷TV (𝜋∗ (·|𝑠), 𝜋 (·|𝑠)) (𝐻 − ℎ) is the upper
bound of𝑄𝜋∗

ℎ
(𝑠, 𝜋∗) −𝑄𝜋∗

ℎ
(𝑠, 𝜋). Using the upper bound as a surro-

gate is reasonable because the sub-optimality bound in Theorem 5.1
is preserved.

Similarly, in the environments with continuous action spaces, we
use

√︁
𝐷KL (𝜋∗ (𝑎 |𝑠), 𝜋 (𝑎 |𝑠)) instead of 𝐷TV (𝜋∗ (𝑎 |𝑠), 𝜋 (𝑎 |𝑠)). This is

because TV divergence is difficult to calculate in continuous action
spaces, and Pinsker’s inequality [29] guarantees the theoretical
results under this modification.

For our practical algorithm, as the threshold is adaptively tuned
in the training process, we name it Active adaptive expert in-
volveMent (AdapMen). The pseudo-code of AdapMen is given in
Alg. 1.

Algorithm 1 Training procedure of AdapMen

Require: An expert policy 𝜋∗; A Q-function 𝑄 corresponding to
𝜋∗; Number of sampling steps 𝑁 ; Learner update interval 𝐾

1: Initialize learner policy 𝜋 , buffer 𝐵, 𝑝
2: for 𝑛 = 1 to 𝑁 do
3: Get learner agent action 𝑎𝑙 and expert action 𝑎𝑒
4: Calculate the surrogate Q-value difference 𝐷𝑄

5: if 𝐷𝑄 > 𝑝 then
6: Take expert action 𝑎𝑒 , add the transition to 𝐵
7: else
8: Take learner agent action 𝑎𝑙
9: end if
10: if 𝑛%𝐾 == 0 then
11: Sample batches of transitions from 𝐵 to train 𝜋
12: Update 𝑝-value
13: end if
14: end for

7 EXPERIMENTS
In this section, we conduct experiments to test whether AdapMen
reaches the theoretical advantages of our framework.

We choose MetaDrive [20] and Atari 2600 games from ALE [3]
as benchmarks. MetaDrive is a highly compositional autonomous
driving benchmark that is closely related to real-world applications.
The MetaDrive simulator can generate an infinite number of di-
verse driving scenarios from both procedural generation and real
data importing. The agent observes a 259-dimensional vector which
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Figure 2: Performance in MetaDrive with policy experts

is composed of a 240-dimensional vector denoting the 2D-Lidar-
like point clouds, a vector summarizing the target vehicle’s state
and a vector for the navigation information. The action space is
a continuous 2-dimensional vector representing the acceleration
and steering of the car, respectively. The goal is to follow the traffic
rules and reach the target position as fast as possible. The training
configuration of MetaDrive follows that in [28]. For the justice of
comparison, the evaluation is performed on 20 randomly selected
scenarios. Atari 2600 games are challenging visual-input RL tasks
with discrete action spaces. Using conventional environment wrap-
pers and processing techniques, the agent observes a (84 × 84)
grayscale image and has discrete action spaces ranging from 6 valid
actions to 18 valid actions depending on the game. We randomly
select six common Atari games. To avoid the small stochasticity
problem of the Atari simulator, we activate the "sticky action" fea-
ture to simulate actual human input and increase stochasticity.

We choose BC [2], DAgger [35], HG-DAgger [15], EnsembleDAg-
ger [24], and ValueDICE [17] as baselines. The details of BC and
DAgger have been introduced in Sec. 1. HG-DAgger and Ensem-
bleDAgger are representative methods of active imitation learning
methods. HG-DAgger allows interactive imitation learning from
human experts in real-world systems by letting a human expert
take over control when deemed necessary, and EnsembleDAgger
uses both action variance from an ensemble of policies and action
discrepancies between learner and expert as the criterion to decide
whether the expert should take over control. ValueDICE is the SoTA
of AIL methods, which trains the learner agent via robust diver-
gence minimization in an off-policy manner. Hyper-parameters of
the implementations of baselines are listed in Appendix ??.

We first test the performance of AdapMen and baselines in the
two benchmarks with expert in the form of trained policies, namely
policy experts. Then, we dive into AdapMen and demonstrate some
key properties of our algorithm to answer the following questions:

• How is the intervention threshold automatically adjusted
during the training process?

• Can the distribution of 𝐷𝑄 satisfy the assumption in Corol-
lary 5.2 in most cases?

• Is policy divergence a good surrogate of 𝐷𝑄?

Finally, we simulate real-world scenarios by letting a human be the
expert and control the vehicle in the MetaDrive benchmark.

7.1 Performance with policy experts
7.1.1 Performance in MetaDrive. The expert policy of MetaDrive
is trained by Soft Actor-Critic (SAC) [8]. For AdapMen, we take
one of the trained Q-networks as𝑄𝜋∗

and calculate 𝐷𝑄 based on it.
To demonstrate the robustness towards inaccurate 𝑄𝜋∗

when the
ground truth value is not available, we also perform experiments
on the estimated value function in Appendix ??.

The performance in the MetaDrive benchmark is plotted in Fig. 2.
The horizontal axis represents the total number of steps sampled
in the environment. The vertical axis of Fig. 2(a) and Fig. 2(b) are
policy return, success rate, and number of expert interventions,
respectively. HG-DAgger is omitted in experiments for the sake of
fairness because the expert of the algorithm should be human.

For the MetaDrive benchmark, AdapMen achieves the best per-
formance in terms of both cumulative return and success rate. Val-
ueDICE achieves the worst performance probably because of its
highest sample complexity and sensitivity to hyper-parameters thus
we fail to find a working configuration. Notwithstanding the low
expert intervention counts of EnsembleDAgger, the performance
of EnsembleDAgger severely degrades. The `-recoverability prop-
erty of DAgger is hard to satisfy in risk-sensitive environments so
that DAgger shows no advantage than BC. BC achieves the best
performance among all the baseline algorithms. This is because the
policy expert has little stochasticity and the dimension of input is
small.

The total number of expert data usage is shown in Fig. 2(b).
Here the expert data usage is defined as the number of expert
state-action pairs added to the buffer for training the learner. This
quantity of BC, ValueDICE is the same as DAgger and we omit
them in the figure. DAgger always adds the expert state-action pair
to the buffer, thus having the biggest expert data usage. Compared
with EnsembleDAgger, by generating the best buffer distribution
for teaching, AdapMen requires fewer expert interventions while
achieving a better test performance.
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Figure 3: Performance in six Atari games with policy experts

To further verify our theory, we draw the trend of 𝑝-value and
actual intervention probability throughout the training process in
Fig. 4, where the left vertical axis represents the value of 𝑝 ,while
the right vertical axis represents the intervention probability. The
probability is calculated every 200 sample steps in the environment.
Theorem 5.1 implies the sub-optimality is negatively related to 𝑝
and 𝛿 . This is verified by the decreasing trend of 𝑝 and 𝛿 in the
training process, coinciding with the increasing policy return in
Fig. 2(a). Meanwhile, the sharply changing 𝑝 also demonstrates
the importance of adaptively changing intervention criterion. Intu-
itively, as the learner agent gets better at driving the car, the teacher
should increase the difficulty of the teaching policy. A lower 𝑝-value
indicates more difficult learning content.

0.5 1.0 1.5 2.0 2.5 3.0
Sample Steps 1e4

0

2

4

6

8

10

p-
va

lu
e

p-value

0.0

0.1

0.2

0.3

0.4

0.5

In
te

rv
en

tio
n 

Pr
ob

ab
ilit

y

Intervention Probability

Figure 4: 𝑝-value and intervention probability of AdapMen
on MetaDrive

7.1.2 Performance in Atari games. The expert policies of Atari
games are trained by Deep Q Learning [25]. Note that we activate

the "sticky action" features to increase the stochasticity of the tasks.
Since Ensemble-DAgger requires a continuous action space, we
omit it for comparison in the Atari 2600 games. The performance
curves in the Atari 2600 games are plotted in Fig. 3.

AdapMen outperforms baselines in 5 out of 6 Atari games. These
tasks are more challenging, which can be inferred from the perfor-
mance of baselines. In Qbert, all algorithms fail to learn from the
expert except for AdapMen. In all the tasks, ValueDICE performs
equally poorly as in MetaDrive. BC, which has near-optimal perfor-
mance in MetaDrive, also collapses in most of the six Atari games.
This shows that BC fails in higher-dimensional environments. DAg-
ger performs better than other baselines, this is probably because
the `-recoverability assumption can still be satisfied in most states
in Atari games.

7.2 Performance of AdapMen criterion based on
policy divergence
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Figure 5: Performance in MetaDrive with different criteria
of AdapMen

Session 4A: Reinfocement and Immitation Learning
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1282



As mentioned in Sec. 6, when𝑄𝜋∗
is not available, we use policy

divergence as a surrogate of 𝐷𝑄 . To validate the correctness of this
surrogate, we test it onMetaDrive, and plot its performance in Fig. 5.
AdapMen is the original algorithm, while AdapMen-PI uses the
policy divergence instead of 𝐷𝑄 . The result shows AdapMen-PI has
comparable performance with AdapMen. This experiment validates
our theory and demonstrates that policy divergence is also a proper
criterion.

7.3 Analysis of 𝐷𝑄 distribution
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Figure 6:𝐷𝑄 distributions inMetaDrive and Atari games. The
blue lines show the distributions of 𝐷𝑄 estimated by kernel
density estimation.

In Corollary 5.2, we assume the distributions of 𝐷𝑄 , i.e., 𝑃 in
Sec. 5, belongs to O(𝜖𝑏 )-Sub-Exponential distribution class with
expectation O(𝜖𝑏 ). The assumption is satisfied if the tail of 𝑃 is
bounded by an exponential distributionwith parameter 𝜖𝑏 . To verify

this assumption, we plot 𝑃 ofMetaDrive and the six Atari games and
compare their tails with exponential distribution. The partial results
are shown in Fig. 6 because of space limitation. The rest of the
results are in Appendix ??. The distributions at the beginning and
at the end of the training are on the left-hand side and right-hand
side, respectively. All the tails of 𝑃 are bounded by the exponential
distribution, which implies the assumption is satisfied in nearly all
tested tasks. This bridges the gap between the theoretical analysis
and practical applicability of AdapMen.

7.4 Performance in MetaDrive with a human
expert
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Figure 7: Performance in MetaDrive with a human expert

In real-world tasks, humans are important sources of expert
information, especially in autonomous driving tasks. To mimic
real-world tasks, we substitute the SAC expert in MetaDrive with
a human. The experimental results are shown in Fig. 7. The ran-
dom and sometimes irrational behaviors of human experts raise
a huge challenge for imitation learning algorithms, and general
degradation of performance happens for all methods. BC has a 75%
performance degradation. In contrast, AdapMen has a relatively
small performance degradation and achieves the best final perfor-
mance. The performance of HG-DAgger is surprising. Although our
human expert has tries his best to correct the behavior of the learner
agent, HG-DAgger is only slightly better than BC. HG-DAgger even
uses more expert actions to train the learner policy than AdapMen.
This shows the teaching strategy of humans are unreliable and an
objective criterion is important.

8 CONCLUSION
In this paper, we formulate the IL process as a teacher-student
interaction framework. The proposed framework shows expert
should involve in the interaction of the agent with the environment
according to a certain criterion. We theoretically verify the effec-
tiveness of this framework, and derive a better error bound and sam-
ple complexity under a mild condition, which we experimentally
demonstrate common in many benchmarks. Based on the teacher-
student interaction framework, we propose a practical method
AdapMen, where the intervention criterion is tuned automatically
in the training process, which frees the hyper-parameter tuning
budget of other active imitation learning methods. Experimental
results demonstrate that AdapMen achieves a better performance
than other IL methods.
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