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ABSTRACT
Restless multi-armed bandits (RMAB) is a popular framework for

optimizing performance with limited resources under uncertainty.

It is an extremely useful model for monitoring beneficiaries (arms)

and executing timely interventions using health workers (limited

resources) to ensure optimal benefit in public health settings. For

instance, RMAB has been used to track patients’ health and monitor

their adherence in tuberculosis settings, ensure pregnant mothers

listen to automated calls about good pregnancy practices, etc. Due

to the limited resources, typically certain individuals, communities,

or regions are starved of interventions, which can potentially have

a significant negative impact on the individual/community in the

long term. To that end, we first define a soft fairness objective which

entails an algorithm never probabilistically favors one arm over

another if the long-term cumulative reward of choosing the latter

arm is higher. Then we provide a scalable approach to ensure long-

term optimality while satisfying the proposed fairness constraints

in RMAB. Our method, referred to as SoftFair, can balance the trade-

off between the goal of having resources uniformly distributed and

maximizing cumulative rewards. SoftFair also provides theoretical

performance guarantees and is asymptotically optimal. Finally, we

demonstrate the utility of our approaches on simulated benchmarks

and show that the soft fairness objective can be handled without a

significant sacrifice on the optimal value.
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1 INTRODUCTION
Restless Multi-Armed Bandits (RMAB) Process is a generalization of

the classical Multi-Armed Bandits (MAB) process, which has been

studied since the 1930s [15]. RMAB is a powerful framework for

budget-constrained resource allocation tasks in which a decision-

maker must select a subset of arms for interventions in each round.

Each arm evolves according to an underlying Markov Decision

Process (MDP). The overall objective in a RMAB model is to se-

quentially select arms so as to maximize the expected value of

the cumulative rewards collected over all the arms. RMAB is of

relevance in public health monitoring scenarios, recommendation

systems and many others. Tracking a patient’s health or adherence
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and intervening at the right time is an ideal problem setting for

an RMAB [2, 25], where the patient health/adherence state is rep-

resented using an arm. Resource limitation constraint in RMAB

comes about due to the severely limited availability of healthcare

personnel. By developing practically relevant approaches for solv-

ing RMAB within severe resource limitations, RMAB can assist

patients in alleviating health issues such as diabetes [28]. hyperten-

sion [4], tuberculosis [5, 29], depression [23, 27], etc.

WhileWhittle index based approaches [19, 25] address the RMAB

problem with an infinite time horizon by providing an asymptoti-

cally optimal solution, they are susceptible to starving arms, which

can have severe repercussions in public health scenarios. Owing

to the deterministic selection strategy of picking arms that pro-

vide the maximum benefit, in many problems, only a small set of

arms typically get picked. As shown in our experimental analy-

sis, Figure 1 provides one example, where almost 50% of the arms

do not get any interventions using the Whittle index approach.

While it is an optimal decision, it should be noted that interven-

tions help educate patients or beneficiaries on potential benefits

and starvation of such interventions for many patients can result

in a lack of proper understanding of the program and reduce its

effectiveness in the long run. Thus, there is a need to not starve

arms without significantly sacrificing optimality. Providing such

decision support with a fairness mindset can promote acceptability

among community [16, 34].

Existing works have proposed different notions of fairness in the

context of MAB to prevent starvation by enabling the selection of

non-optimal arms. Li et al. [21] study a new Combinatorial Sleeping

MAB model with Fairness constraints, called CSMAB-F. Their fair-

ness definition requires algorithm to ensure a minimum selection

fraction for each arm. Patil et al. [30] introduce similar fairness

constraints in the stochastic MAB problem, where they use a pre-

specified vector to denote the guaranteed number of selections.

Joseph et al. [13] define fairness as saying that a worse arm should

not be picked compared to a better arm, despite the uncertainty

on payoffs. Chen et al. [6] form the allocation decision-making

problem as the MAB with fairness constraints, where fairness is

defined as a minimum rate at which a task or resource is assigned

to a user. Since knowing the guaranteed number (or proportion)

of selection is difficult to ascertain a priori, we generalize these

fairness notions for MAB. We build on the notion of fairness in-

troduced by Jabbari et al. [11] for reinforcement learning setting

and introduce a soft fairness notion for our RMAB setting. Our soft

fairness definition requires that an RMAB algorithm never favor an

arm probabilistically over another arm, if the long-term cumulative

reward of choosing the latter arm is higher.

In summary, our goal is to compute stochastic policy for selecting

arms in finite horizon RMAB, which satisfies the soft fairness notion.

To that end, we make the following contributions:
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• A practically relevant algorithm called SoftFair, that enforces
the soft fairness constraint and thereby avoids starvation of

interventions for arms. Unlike the well-knownWhittle index

algorithm that can only solve the infinite horizon setting,

SoftFair can also easily handle finite horizon RMAB.

• SoftFair provides a trade-off between optimal performance

and avoiding intervention starvation for arms. This trade-off

is highlighted by the performance bounds and theoretical

properties of the SoftFair algorithm.

• Detailed experimental results demonstrate that SoftFair is
competitive with other policies in terms of expected reward,

while significantly reducing the starvation of interventions

for arms (by increasing the entropy of the stochastic policy).
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Figure 1: The x-axis is the number of times being selected,
and the y-axis is the frequency distribution. We consider
the RMAB given in Section 3, with 𝑘 = 10, 𝑛 = 100, 𝑇 = 100.
Left: the Whittle index algorithm. Right: SoftFair (𝑐 = 2). As
can be noted, without fairness constraints in place, the arm
activation frequency is lopsided, and almost 50% of the arms
never get activated.

2 RELATEDWORK
We focus on two threads of relevant research, the first category is

related to approaches for solving RMAB, and the second category

is related to fairness definitions and related approaches in decision

making.

As one of the most well-studied generalisations of the Multi-

Armed Bandit (MAB), RMAB is increasingly used for decision

making problems ranging from wireless broadcast [33, 36], job

allocation [12], cancer detection [19], wildlife protection [32], rec-

ommender systems [26], and health intervention [3, 17]. Whittle

[41] considered the Lagrangian relaxation of the RMAB in which

arm selection constraint (number of arms selected = k) is enforced

on average over the horizon. This policy, referred as the Whittle

index policy is asymptotically optimal [40]. Liu and Zhao [22] in-

vestigate the application of RMAB in dynamic multichannel access,

establish indexability and obtain Whittle index in closed form for

both discounted and average reward criteria. In [32], the authors

formulate the wildlife protection problem as a RMAB model and

present an algorithm that is based on binary search to find Whittle

index policy. Mate et al. [25] build a fast algorithm for computing

the Whittle index, which provides an order-of-magnitude speedup

compared to Qian et al. [32]. Biswas et al. [3] develop a model-free

learning method based on Q-learning mechanism and show that it

converge to the optimal solution asymptotically. Online RMAB has

also raised some attentions in recent years, Wang et al. [39] present

a learning policy to construct offline instances in guiding action

selection. Xiong et al. [42] propose a generative model based rein-

forcement learning augmented algorithm toward an index policy.

Another line of work that is closely related to ours is the growing

body of literature on ensuring fairness in decision making [7, 11],

in particular in the domain of resource allocation [6, 21]. For ex-

ample, ensuring resources are fairly distributed among the arms

is an important design concern in wireless communication sys-

tems [8]. In the case of beneficiaries, an arm/patient might consider

action/participation fair when participation of a certain patient (i.e.,

due to receiving an active action) resulted in a greater increase in ex-

pected time spent in a adherent state compared to non-participation

(i.e., the passive action on the arm/patient) [16]. One widely used

fairness notion in MAB literature is to ensure that there is a mini-

mum rate of arm activation for each user (arm) over time [21, 31].

Joseph et al. [13] introduce the study of fairness in MAB problems,

where their fairness notion is defined as not giving preference to a

worse arm over a better one. The quality of an action is the expected

immediate reward for selecting action from current state. However,

this notion of fairness can lead to policies favoring short-term re-

wards and ignoring long-term rewards. Jabbari et al. [11] therefore

adapt the fairness notion by defining the quality of an action as its

potential long-term reward, and generalize it to a reinforcement

learning setting. Li and Varakantham [20] define fairness as a min-

imum number of times an arm should be activated in a decision

period, but their definition requires pre-specified values about the

number of activation times and the length of the decision period.

We generalize the fairness notion in [11] to the RMAB setting,

and make several advancements in this paper.

3 MODEL: RMAB
In this section, we formally introduce the finite horizon RMAB

model with a new objective of computing policies that balance the

trade-off between maximizing cumulative rewards while giving

a reasonable chance for each arm (proportional to their value) to

get selected for intervention. As indicated earlier, this is a prop-

erty that is of critical importance in public health settings. RMAB

is defined using the tuple: ⟨𝑁, {M𝑖 }𝑖∈𝑁 ,𝑇 , 𝑘⟩. There are 𝑁 inde-

pendent arms
1
and each arm 𝑖 evolves according to an associated

Markov Decision Process (MDP),M𝑖 is characterized by the tuple

{S𝑖 ,A𝑖 ,P𝑖 , 𝑅𝑖 , 𝛾}:
• S𝑖 represents the state space. Typically, in public health settings,

S𝑖 = {0, 1}. 1 represents patient in the “good” state (patient

adheres to the health program), and 0 represents patient in the

"bad" state (patient not adhering).

• A𝑖 represents the action space.A𝑖 = {0, 1} with 1 corresponding

to activating or intervening on the arm and 0 action correspond-

ing to not activating the arm or staying passive.

• P𝑖 represents the action dependent transition dynamics of arm 𝑖 .

Specifically, 𝑃
𝑎𝑖
𝑠𝑖 ,𝑠
′
𝑖

refers to the probability of transitioning from

state 𝑠𝑖 to 𝑠
′
𝑖
when the arm 𝑖 is taking action 𝑎𝑖 ∈ {0, 1}.

• 𝑅𝑖 provides the independent rewards obtained by arm 𝑖 . We as-

sume a range for these rewards, given by [𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 ]. We use a

simple reward function: 𝑅𝑖 (𝑠𝑖 , 𝑎𝑖 ) = 𝑠′
𝑖
∈ {0, 1} determined by the

1
in public health settings, the patients or beneficiaries will be the arms
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next state 𝑠′
𝑖
obtained by taking action 𝑎𝑖 when the observed state

is 𝑠𝑖 for any arm 𝑖 ∈ [𝑁 ]. 2 Note that the expected immediate

reward will be E[𝑅𝑖 (𝑠𝑖 , 𝑎𝑖 )] = 𝑃
𝑎𝑖
𝑠𝑖 ,1

.

• 𝛾 is the discount factor.

𝑇 is the time horizon. 𝑘 is the resource capacity constraint that

limits the number of arms that can be selected at each time step

𝑡 ∈ [𝑇 ], i.e.,:
𝑁∑︁
𝑖=1

𝑎𝑡𝑖 = 𝑘 (1)

Policy, 𝜋 for the overall RMAB is a mapping from joint states, s =
[𝑠1, . . . , 𝑠𝑁 ] of all arms to joint actions, a = [𝑎1, . . . , 𝑎𝑁 ]. 𝜋 (s, a) ∈
[0, 1] denotes the probability of selecting the joint action a when
the joint state of RMAB is s. Particularly, 𝜋𝑖 (𝑠𝑖 , 𝑎𝑖 ) ∈ [0, 1] denotes
the probability of selecting action 𝑎𝑖 , with

∑
𝑎𝑖 𝜋𝑖 (𝑠𝑖 , 𝑎𝑖 ) = 1. We

denote the state-action value function for a policy 𝜋 by

𝑄𝜋 (s, a) = E𝜋 [
𝑇∑︁
𝑡=1

𝛾𝑡−1𝑅𝑡 (s𝑡 , a𝑡 )] = E𝜋 [
𝑇∑︁
𝑡=1

𝛾𝑡−1

𝑁∑︁
𝑖=1

𝑅𝑡𝑖 (𝑠
𝑡
𝑖 , 𝑎

𝑡
𝑖 )]

𝑄𝜋 (s, a) is the expected cumulative discounted long-term reward

over all arms when taking action a in the joint state s. The objective
is to find an optimal policy 𝜋∗ that can satisfy

𝑄𝜋∗ (s, a) = max

𝜋
𝑄𝜋 (s, a) = 𝑄∗ (s, a),

where 𝑄∗ (s, a) is the optimal state-action value function:

𝑄∗ (s, a) = 𝑅(s, a) + 𝛾
∑︁
s′

Pr(s′ |s, a)max

a′
𝑄∗ (s′, a′) (2)

Similar to Jabbari et al. [11], we define the fairness using the

state-action value function 𝑄∗ (s, a) as follows:

Definition 1. (Fairness) A stochastic policy, 𝜋 is fair if for any
time step 𝑡 ∈ [𝑇 ], any joint state s and actions a, a′, where a ≠ a′:

𝜋𝑡 (s, a) ≥ 𝜋𝑡 (s, a′) only if 𝑄∗ (s, a) ≥ 𝑄∗ (s, a′) (3)

In summary, the objective is to efficiently approximate the max-
imum cumulative long-term reward while satisfying resource con-
straints and fairness constraints. Towards this end, the reward maxi-

mization problem can be formulated as

maximize

𝜋
E𝜋 [

𝑇∑︁
𝑡=1

𝛾𝑡−1𝑅𝑡 (s𝑡 , a𝑡 )]

such that Equation. 1, and Equation. 3 are satisfied

(4)

We show in Proposition 1 that this fairness notion at the level of

joint actions is equivalent to selecting arms with higher probability

if their relative importance is higher.

4 SOFTFAIR APPROACH
In this section, we design a probabilistically fair (as defined in Defi-

nition 1) arm selection algorithm, referred to as SoftFair. SoftFair
builds on softmax value iteration [38, 43] in conjunction with Whit-

tle index. Softmax value iteration is one of the simplest dynamic

programming algorithms, which recursively computes the value

2
The reward function over RMAB can be written as 𝑅 (s, a) = ∑𝑁

𝑖=1
𝑅𝑖 (𝑠𝑖 , 𝑎𝑖 )

function through a point-wise update rule [35]. The notations that

are frequently used in this paper are summarized in Table 1.

In order to implement the softmax value iteration method in the

RMAB setting, we need to compute the relative value of activating

an arm (in comparison to not activating the arm) and compute the

probability distribution of selecting an arm using a softmax function
over the relative value. More specifically, during the 𝑒𝑝-th iteration,

SoftFair identifies the estimated value function of the state of each

arm 𝑖 ∈ [𝑁 ] at the time step 𝑡 ∈ [𝑇 ], and calculate the difference of
state-action value function between the active and passive action.

𝑄
𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡𝑖 , 𝑎

𝑡
𝑖 ) = 𝑅𝑡𝑖 (𝑠

𝑡
𝑖 , 𝑎

𝑡
𝑖 ) + 𝛾

∑︁
𝑠𝑡+1
𝑖

Pr(𝑠𝑡+1𝑖 |𝑠
𝑡
𝑖 , 𝑎

𝑡
𝑖 )𝑉

𝑡+1;𝑒𝑝

𝑖
(𝑠𝑡+1𝑖 )

𝜁
𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡𝑖 , 𝑎

𝑡
𝑖 ) = 𝑒𝑄

𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡
𝑖
,𝑎𝑡

𝑖
)−𝑉 𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡
𝑖
)

𝜆
𝑡 ;𝑒𝑝

𝑖
= log 𝜁

𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡𝑖 , 𝑎

𝑡
𝑖 = 1) − log 𝜁

𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡𝑖 , 𝑎

𝑡
𝑖 = 0)

(5)

Here𝑉
𝑡 ;𝑒𝑝

𝑖
(·) is the value function of arm 𝑖 from time step 𝑡 till the

end of horizon after being updated 𝑒𝑝 times. Similarly,𝑄
𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡
𝑖
, 𝑎𝑡

𝑖
)

is the state-action value function of arm 𝑖 from time step 𝑡 till the

end of horizon during 𝑒𝑝-th iteration. Then SoftFair maps each

arm 𝑖’s state to a state-specific probability distribution over actions

using the following softmax expression in the 𝑘 = 1 case.

𝜋𝑡 ;𝑒𝑝 (s𝑡 , a𝑡 = I{𝑖 } ) =
exp(𝑐 · 𝜆𝑡 ;𝑒𝑝

𝑖
)∑𝑁

𝑞=1
exp(𝑐 · 𝜆𝑡 ;𝑒𝑝

𝑞 )
(6)

where a𝑡 = I{𝑖 } denotes the joint action 3
to select the arm 𝑖 while

keeping other arms passive, and 𝜋𝑡 ;𝑒𝑝 (s𝑡 , a𝑡 = I{𝑖 } ) denotes the
probability that arm 𝑖 will be selected under the joint state s𝑡 during
the 𝑒𝑝-th iteration. 𝑐 ∈ (0,∞) is the multiplier parameter

4
that

can adjust the gap between the probabilities of choosing an arm.

If 𝑐 = ∞, SoftFair becomes the standard optimal Bellman opera-

tions [1] (Refer to Equation 13). When 𝑐 = 0, each arm has the same

probability of being selected, and SoftFair can make the resources

uniformly distributed. Equation 6 shows the probability of selecting

an joint action at each time step when 𝑘 = 1.

Unfortunately, this expression does not hold when selecting a

subset of arms, i.e., 𝑘 > 1. This is because when the resource con-

straint 𝑘 > 1, the probability of an arm being selected will also

rely on the probability of other arms being selected, henceforth

affecting the recursive update of the value function. Let a𝑡 = I{𝜙 }
denote the action to select arms in the set 𝜙 . Then, 𝜙− is the set

that includes all of the arms except those in set 𝜙 . After getting the

action probability of selecting a single arm, which is the multino-

mial distribution, formulated as [𝜋𝑡 ;𝑒𝑝 (s𝑡 , a𝑡 = I{1} ), 𝜋𝑡 ;𝑒𝑝 (s𝑡 , a𝑡 =
I{2} ), . . . , 𝜋𝑡 ;𝑒𝑝 (s𝑡 , a𝑡 = I{𝑁 } )].We can then sample from thismulti-

nomial distribution without replacement to obtain 𝑘 arms to acti-

vate, which ensures that we meet the resource constraint as well as

the fairness constraint. More specifically, we can derive the prob-

ability that the arm 𝑖 is among the 𝑘 selected arms (active set 𝜙),

3I{𝑖} is the indicatorwith value 1 at the 𝑖th item and value 0 at other places. Equivalently,

this means activating arm 𝑖 while keeping the other arms passive

4
The updation process of our Softfair algorithm will converge to the Bellman Equa-

tion 13 with an exponential rate in terms of 𝑐 [37], and 𝑐 controls the asymptotic

performance [18].
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Table 1: Notations

Notation Description

𝑘, 𝑁 ,𝑇 𝑁 :number of all arms in RMAB; 𝑘 :number of arms can be selected each round; 𝑇 : time horizon.

𝑐, 𝑒𝑝,𝛾 𝑐: multiplier parameter, 𝑒𝑝 : iteration times, 𝛾 : discount factor.

𝑠𝑖 , 𝑎𝑖 , s, a 𝑠𝑖 , 𝑎𝑖 : state and action of arm 𝑖 , s, a: joint state vector and joint action vector of RMAB.

[𝑛], [𝑇 ] We use [n] to represent the set of integers {1, . . . , 𝑛} for 𝑛 ∈ N and [T] also has the same interpretation.

𝑃𝑎
𝑠,𝑠′ 𝑃𝑎

𝑠,𝑠′ refers to the probability of transition from state 𝑠 to 𝑠′ when an arm is taking action 𝑎.

𝑃𝑟 (𝑎𝑖 |s) 𝑃𝑟 (𝑎𝑖 |s) is the probability that arm 𝑖 is among the selected arms when the joint state of RMAB is s.

𝑄𝑡
𝑚 (𝑠, 𝑎),

𝑉 𝑡
𝑚 (𝑠)

𝑄𝑡
𝑚 (𝑠, 𝑎): A state-action value function for the subsidy𝑚 and state 𝑠 when taking action 𝑎 start at time step 𝑡

followed by optimal policy using Whittle index based approach in the future time steps;

𝑉 𝑡
𝑚 (𝑠): Value function for the subsidy𝑚 and state 𝑠 start at time step 𝑡 using Whittle index based approach

𝑄𝑡 (𝑠, 𝑎),
𝑉 𝑡 (𝑠)

𝑄𝑡 (𝑠, 𝑎): The state-action value function when taking action 𝑎 at time step 𝑡 with state 𝑠

𝑉 𝑡 (𝑠): The value function at the time step 𝑡 with state 𝑠 .

denoted as Pr(𝑎𝑡
𝑖
= 1|s𝑡 ) 5. Consider the multinomial distribution,

the results of 𝑘 draws made at random without replacement is a

random permutation of all the elements, and this can be computed

through the permutation tool. Consequently, we have:

𝜋𝑡 ;𝑒𝑝 (s𝑡 , a𝑡 = I{𝜙 } ) = Π
𝑖∈𝜙

Pr(𝑎𝑡𝑖 = 1|s𝑡 ) Π
𝑗∈𝜙−

(
1 − Pr(𝑎𝑡𝑗 = 1|s𝑡 )

)
(7)

For arm 𝑖 , the value function𝑉
𝑡 ;𝑒𝑝

𝑖
(·) at time step 𝑡 during the 𝑒𝑝-th

iteration can be written as

𝑉
𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡𝑖 ) =

∑︁
𝑎𝑡
𝑖
∈{0,1}

Pr(𝑎𝑡𝑖 |s
𝑡 )𝑄𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡𝑖 , 𝑎

𝑡
𝑖 )

Please note that 𝑃𝑟 (𝑎𝑡
𝑖
|s𝑡 ) is computed based on the sample estimate.

The update of value function𝑉
𝑡 ;𝑒𝑝

𝑖
(·) during the 𝑒𝑝-th iteration for

any 𝑡 ∈ [𝑇 ] is:
• For the current state, 𝑠𝑡

𝑖
of arm 𝑖 , the value function is updated

in the following way:

𝑉
𝑡 ;𝑒𝑝+1
𝑖

(𝑠𝑡𝑖 ) =
∑︁

𝑎𝑡
𝑖
∈{0,1}

Pr(𝑎𝑡𝑖 |s
𝑡 )

∑︁
𝑠𝑡+1
𝑖
∈{0,1}

Pr(𝑠𝑡+1𝑖 |𝑠
𝑡
𝑖 , 𝑎

𝑡
𝑖 )

·
(
𝑅(𝑠𝑡𝑖 , 𝑎

𝑡
𝑖 ) + 𝛾𝑉

𝑡+1;𝑒𝑝

𝑖
(𝑠𝑡+1𝑖 )

)
(8)

• For all other states, 𝑠𝑡 of arm 𝑖 we have

𝑉
𝑡 ;𝑒𝑝+1
𝑖

(𝑠𝑡 ) = 𝑉
𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡 ) (9)

Similarly, we can also write the equation to update the state-

action value function, and we provide it in the Appendix. The

overall process of SoftFair is summarized in Algorithm 1 and is

guaranteed to ensure that an arm is selected in proportion with

its 𝜆 value, thereby guaranteeing fairness while approximately

maximizing the overall value. This guarantee is possible because

we can decouple the fairness constraint defined on the joint action

to each individual arm. We have the following proposition, which

is equivalent to the definition 1.

Proposition 1. Fairness of a stochastic policy defined in Equa-
tion 3 can also be stated in terms of arm selection as follows:

𝑃𝑟 (𝑎𝑡𝑖 = 1|s𝑡 ) ≥ 𝑃𝑟 (𝑎𝑡𝑗 = 1|s𝑡 ) only if 𝜆𝑡𝑖 ≥ 𝜆𝑡𝑗 (10)

5
Note that Pr(𝑎𝑖 = 1 |s) = 𝜋𝑒𝑝 (s𝑡 , a𝑡 = I{𝑖} ) = softmax𝑐 (𝑐 · 𝜆𝑖 ) if 𝑘 = 1

Algorithm 1 SoftFair Value Iteration (SoftFair)

Input: Transition matrices {P𝑖 }𝑖∈𝑁 , time horizon 𝑇 , set of ob-

served states s, resource constraint 𝑘 , multiplier parameter 𝑐 ,

iteration length 𝐼

Output: The value function 𝑉𝑖 (𝑠) for arm 𝑖 ∈ [𝑁 ]
1: 𝑉 𝑡

𝑖
(𝑠) ← 0,∀𝑠, 𝑖, 𝑡

2: for iteration 𝑒𝑝 = 1, . . . , 𝐼 do
3: Initialize s0 = {𝑠0

1
, . . . , 𝑠0

𝑁
}

4: for step 𝑡 = 0, . . . ,𝑇 do
5: for arm 𝑖 = 1, . . . , 𝑛 do
6: Compute 𝑄

𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡
𝑖
, 𝑎𝑡

𝑖
) and 𝜆

𝑡 ;𝑒𝑝

𝑖
(𝑠𝑡
𝑖
, 𝑎𝑡

𝑖
) using Equa-

tion. 5

7: Compute 𝜋𝑡 ;𝑒𝑝 (s𝑡 , a𝑡 = I{𝑖 } ) using Equation. 6
8: end for
9: Sample 𝑘 arms and add them into action set

10: for arm 𝑖 = 1, . . . , 𝑛 do
11: Compute Pr(𝑎𝑡

𝑖
= 1|s𝑡 )

12: Update 𝑉
𝑡 ;𝑒𝑝

𝑖
(𝑠) using Equation. 8 and Equation. 9

13: end for
14: Play the arm in the action set, and observe next state s𝑡+1

15: end for
16: end for

Intuitively, this implies an arm, 𝑖 will not be selected with lower

probability than that of arm 𝑗 if 𝜆 value of arm 𝑖 is higher than that

of arm 𝑗 . The proof showing that the proposition is equivalent to

the definition 1 is provided in the appendix.

5 ANALYSIS OF SOFTFAIR
In this section, we formally analyze the properties of the SoftFair
algorithm. We begin by comparing SoftFair with the well-known

Whittle index algorithm and show why the Whittle index approach

is not suitable for our case (Fairness constraint and Finite time

horizon), and then provide the performance bound of SoftFair.
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5.1 SoftFair vs. Whittle index based methods
Whittle index policy is known to be the asymptotically optimal

solution to RMAB for the infinite time horizon. It independently

assigns an index value for each arm to measure how attractive it

is to activate an arm at a particular state. The index is computed

using the concept of a "subsidy" 𝑚, which can be viewed as the

opportunity cost of remaining passive, and is rewarded to the arm

that is passive, in addition to the usual reward. The Whittle index

for an arm 𝑖 is defined as the infimum value of the subsidy,𝑚 that

must be offered to the algorithm to make the algorithm indifferent

between selecting and not selecting the arm. Consider a single arm

𝑖 ∈ [𝑛] where the state is 𝑠𝑡
𝑖
at time step 𝑡 ∈ [𝑇 ], let𝑄𝑡

𝑚;𝑖
(𝑠𝑡
𝑖
, 𝑎𝑡

𝑖
= 0)

and𝑄𝑡
𝑚;𝑖
(𝑠𝑡
𝑖
, 𝑎𝑡

𝑖
= 1) denote its active and passive state-action value

functions under a subsidy𝑚, respectively. For ease of explanation,

we drop the subscript 𝑖 when there is no ambiguity. The value

function of an arm in the state 𝑠 is

𝑉 𝑡
𝑚 (𝑠𝑡 ) = max{𝑄𝑡

𝑚 (𝑠𝑡 , 𝑎𝑡 = 0), 𝑄𝑡
𝑚 (𝑠𝑡 , 𝑎𝑡 = 1)}.

The Whittle index𝑊 (𝑠𝑡 ) for the state 𝑠𝑡 can be formally written as:

𝑊 (𝑠𝑡 ) = inf

𝑚

{
𝑚𝑡

: 𝑄𝑡
𝑚 (𝑠𝑡 , 𝑎𝑡 = 0) = 𝑄𝑡

𝑚 (𝑠𝑡 , 𝑎𝑡 = 1)
}
. (11)

After computing the Whittle index for each arm, a policy 𝜋 will

activate those 𝑘 arms whose current states have the highest indices.

In order to use the Whittle index approach, it needs to satisfy a

technical condition called indexability introduced by Weber and

Weiss [40]. The indexability can be expressed in a simple way:

Consider an arm with subsidy𝑚, the optimal action is passive, then

∀𝑚′ > 𝑚, the optimal action should remain passive. The RMAB is

indexable if every arm is indexable.

However, traditional Whittle index based approaches rely on

the assumption of an infinite time horizon, and the performance

deteriorates severely when time horizons are finite. Figure 2 shows

an illustrative example whereWhittle index values are low when an

arm’s residual time horizon is short, and there is a bias in approxi-

mating theWhittle index value under the finite time horizon setting

using methods proposed in [24, 32]. Often, real-world phenomena

are formalized in a finite time horizon setting, which precludes the

direct use of Whittle index based methods. We now demonstrate

that a phenomenon called Whittle index decay [20, 24] exists in

our problem. All detailed proofs can be found in the Appendix.

Theorem 1. At any time step 𝑡 ∈ [𝑇 ], the Whittle index𝑚𝑡 for
arm 𝑖 under the observed state 𝑠𝑡

𝑖
is the value that satisfies the equation

𝑄𝑡
𝑚 (𝑠𝑡𝑖 , 𝑎

𝑡
𝑖
= 0) = 𝑄𝑡

𝑚 (𝑠𝑡𝑖 , 𝑎
𝑡
𝑖
= 1). The Whittle index will decay as the

value of current time step 𝑡 increases: ∀𝑡 < 𝑇 : 𝑚𝑡 > 𝑚𝑡+1 ≥ 𝑚𝑇 =

𝑃1

𝑠,1
− 𝑃0

𝑠,1
.

Proof Sketch. Consider the discount reward criterion with the

discount factor 𝛾 , we can simply compute𝑚𝑇
and𝑚𝑇−1

by solving

equations 𝑄𝑇
𝑚 (𝑠𝑇𝑖 , 𝑎

𝑇
𝑖

= 0) = 𝑄𝑇
𝑚 (𝑠𝑇𝑖 , 𝑎

𝑇
𝑖

= 1)6. We can find that

𝑚𝑇−1 ≥ 𝑚𝑇 = 𝑃1

𝑠,1
− 𝑃0

𝑠,1
. Then in order to show𝑚𝑡 > 𝑚𝑡+1

, we

first prove a lemma to show value function 𝑉 𝑡
𝑚 (𝑠𝑡𝑖 ) > 𝑉 𝑡+1

𝑚 (𝑠𝑡
𝑖
) ≥ 0,

and then we can combine this with the definition of𝑚𝑡
to complete

the proof. The detailed proof is in the appendix. □
The Whittle index based approach needs to solve the costly

finite horizon problem because the index value varies according to

6
get𝑚𝑇 −1

by solving𝑄𝑇 −1

𝑚 (𝑠𝑇 −1

𝑖
, 𝑎𝑇 −1

𝑖
= 0) = 𝑄𝑇 −1

𝑚 (𝑠𝑇 −1

𝑖
, 𝑎𝑇 −1

𝑖
= 1)

Figure 2: Whittle index value as a function of the residual
time horizon. Figure taken fromMate et al. [24]. The grey line
is the whittle index value in an infinite time horizon setting,
and the others are approximated Whittle index values under
a finite time horizon to capture the index decay phenomenon.

the residual time horizon even in the same state, and computing

the index value under the finite horizon setting is (𝑂 ( |𝑆 |𝑘𝑇 ) time

and space complexity [10]. However, as an alternative method,

our SoftFair can naturally approximate the optimal value function

at arbitrary time steps while requiring less memory space than

model-free learning methods such as Q-learning. In addition, the

optimal condition for approximating the Whittle index value is

difficult to satisfy. For example, Mate et al. [24] demonstrate that

their proposed approach is optimal under the condition:

𝑃1

1,1 − 𝑃
1

0,1 ≤
(
𝑃0

1,1 − 𝑃
0

0,1

) (
1 + 𝛾 (𝑃1

1,1 − 𝑃
1

0,1)
)
(1 − 𝛾)

Intuitively, consider the case where 𝑃0

0,1
= 𝑃1

0,1
and 𝑃0

1,1
= 𝑃1

1,1

(also considered by Liu and Zhao [22]), this makes such a condition

always not satisfied. Furthermore, we will show that the Whittle

index based approach fails to address the problem of fair distribu-

tion of interventions (the distribution of resources is lopsided). In

contrast, our proposed method, SoftFair becomes the optimal algo-

rithm when 𝑐 →∞ and can control the trade-off between optimal

performance and uniform distribution of resources.

Due to the finite time horizon setting in many practical appli-

cations, the Whittle index based method can not effectively ap-

proximate the whittle index value, and it only concentrates on

beneficiaries who can mostly improve the objective in the case of

initiatives related to public health. This can result in some benefi-

ciaries never having the opportunity to receive intervention from

public health professionals, which may lead to a poor adherence

behavior and henceforth a bad state from which improvements

may only be marginal even with intervention, preventing them

from ever being chosen by the index policy. Refer to Figure 1 to

get a better picture of the difference between the Whittle index

approach and SoftFair. We can see that when using the Threshold

Whittle index based method proposed by Mate et al. [24], the acti-

vation frequency of the arm is extremely unbalanced, with nearly

half of the arms never being selected. Such starvation of interven-

tions may escalate to communities. To avoid such cycle between

bad outcomes, the RMAB needs to consider fairness in addition to

maximizing cumulative long-term reward when picking arms. We

now demonstrate why SoftFair can satisfy our proposed fairness

constraint while effectively approximating our cumulative reward

maximization objective. We begin by providing a theorem show-

ing that SoftFair is guaranteed to be optimal when the multiplier

parameter 𝑐 →∞.
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Theorem 2. Choose the top 𝑘 arms according to the 𝜆 value in
Equation 6 (𝑐 → ∞) is equivalent to maximizing the cumulative
long-term reward.

Proof Sketch. Because when 𝑐 approaches infinity, SoftFair be-
comes deterministically choosing the arm with the highest 𝜆 value.

Let 𝜙∗ to be the set of actions containing the 𝑘 arms with the

highest-ranking of 𝜆 value, we need to show 𝑄 (s, a = I{𝜙 } ) ≥
𝑄 (s, a′ = I{𝜙 ′ } ) for ∀𝜙 ′, where 𝜙 ′ is the set of any 𝑘 selected arms,

and 𝜙 ′ ≠ 𝜙∗. We first get the expression of

∑
𝑖∈𝜙 𝜆𝑖 . Combining the

definition of 𝜆 in Equation 5 with the fact that
∑
𝑖∈𝜙∗ 𝜆𝑖 ≥

∑
𝑗∈𝜙 ′ 𝜆 𝑗 ,

we add

∑
𝑧∉𝜙∗∧𝑧∉𝜙 ′

𝑄 (𝑠𝑧 , 𝑎𝑧 = 0) on both sides of the inequality func-

tion to show 𝑄 (s, a = I{𝜙 } ) ≥ 𝑄 (s, a′ = I{𝜙 ′ } ). □
When 𝑐 approaches infinity, SoftFair becomes the optimal policy,

but it will suffer from the starvation phenomena. As 𝑐 gets closer

to 0, SoftFair can ensure that every arm/beneficiary has roughly

the same probability of receiving the intervention, which leads to a

uniform distribution of resources. Given these facts, 𝑐 can control

the trade-off between ensuring the fair distribution of resources

and the objective of maximizing cumulative rewards. In the subse-

quent theorem, we demonstrate that SoftFair satisfies our proposed
fairness constraint.

Theorem 3. SoftFair is fair under our proposed fairness constraint,
and 𝑐 controls the trade-off between fairness and optimal performance.

Proof Sketch. Similar to the proof of the Theorem 2, we can see

that the value of 𝜆 is proportional to the state-action value function.

According to the Equation 6, the probability of selecting an arm

is the softmax function on 𝜆, and it can be guaranteed that the

higher the value of 𝜆, the higher the probability of selecting that

arm. Therefore SoftFair remains fair under our proposed fairness

constraints. The trade-off between ensuring a fair distribution of

resources and the objective of maximizing cumulative rewards is

governed by 𝑐 , where a larger 𝑐 means SoftFair prefers arms with

a higher value of 𝜆, while a small 𝑐 means that SoftFair tends to
ensure that resources are uniformly distributed among the arms.

□
In the next section we will show how the value of 𝑐 controls the

performance bounds of the SoftFair algorithm.

5.2 Performance bound of SoftFair
For ease of explanation, we investigate the case of 𝑘 = 1 at each

time step, and the multi-selection (𝑘 > 1) can be viewed as the

iteration of the case 𝑘 = 1. Let Ψ𝑠𝑜 𝑓 𝑡 denote our Soft operator at
time step 𝑡 ∈ [𝑇 ], we ignore the subscript 𝑡 here, which is

𝑄𝑒𝑝+1 (s, a) = Ψ𝑠𝑜 𝑓 𝑡𝑄
𝑒𝑝 (s, a)

=
∑︁
s′

Pr(s′ |s, a) (𝑅(s, a) + 𝛾
∑︁
a′

Pr(a′ |s′)𝑄𝑒𝑝 (s′, a′))

= 𝑅(s, a) + 𝛾
∑︁
s′

Pr(s′ |s, a)
∑︁
a′

Pr(a′ |s′)𝑄𝑒𝑝 (s′, a′).

(12)

Before we derive the performance bound for SoftFair, We first bound

the state-action value function in the following lemma.

Lemma 1. The 𝑄 (s, a) is bounded within [0, 𝑛/(1 − 𝛾)].

Proof Sketch. The upper bound can be obtained by showing that

∀(s, a), state-action value during the 𝑒𝑝−th iteration are bounded

through induction. □

Corollary 1. As we have 𝑅𝑚𝑎𝑥 = 𝑛 and 𝑅𝑚𝑖𝑛 = 0 of RMAB, we
can easily derive that |𝑄 (s, a) −𝑄 (s, a′) | ≤ 𝑛

1−𝛾 , for ∀𝑄 and ∀(s, a).

Following Song et al. [37], we let 𝛿 (s) = sup𝑄 maxa,a′ |𝑄 (s, a) −
𝑄 (s, a′) | denote the largest distance between state-action value

functions. Then we have the following lemma showing the bound

on the difference between two state-action value functions.

Lemma 2. ∀𝑄 and ∀s, Let Pr(·|s) = [Pr(a = I{1} |s), . . . , Pr(a =

I{𝑛} |s)]⊤ and 𝑄 (s, ·) = [𝑄 (s, a = I{1} ), . . . , 𝑄 (s, a = I{𝑛} )]⊤, here
the superscript⊤ denotes the vector transpose.We have 𝛿 (s)

𝑛 exp[𝑐 ·𝛿 (s) ] ≤
max

a
𝑄 (s, a) − (Pr(·|s))⊤𝑄 (s, ·) ≤ 𝑛−1

2+𝑐 .

Proof Sketch. We first sort 𝑄 (s, a = I{𝑖 } ) in the ascending order

according to the 𝜆 value and replace Pr(·|s) with 𝑄 (s, ·). We take

advantage of the fact that for any two non-negative sequences {𝑥𝑖 }
and {𝑦𝑖 },

∑
𝑖 𝑥𝑖

1+∑𝑖 𝑦𝑖
≤ ∑

𝑖
𝑥𝑖

1+𝑦𝑖 , combine this fact with the difference

between state-action value functions for different actions. Through

using Taylor series, we can derive the upper and lower bounds. □
Different from Soft Operator Ψ𝑠𝑜 𝑓 𝑡 in Eq. 12 ,let Ψ denote the

Bellman optimality operator, which we have

𝑄𝑒𝑝+1 (s, a) = Ψ𝑄𝑒𝑝 (s, a)

= 𝑅(s, a) + 𝛾
∑︁
s′

Pr(s′ |s, a)max

a′
𝑄𝑒𝑝 (s′, a′) (13)

For the optimal state-action value function, we have Ψ𝑄∗ (s, a) =
𝑄∗ (s, a). We have the following theorem showing the performance

bound of SoftFair compared to the optimal value.

Theorem 4. Our SoftFair method can achieve the performance
bound as lim sup

𝑒𝑝→∞
𝑉 𝑒𝑝 (s) ≤ 𝑉 ∗ (s), where 𝑉 ∗ (s) is the optimal value

function. More specifically, we have

lim sup

𝑒𝑝→∞
𝑄𝑒𝑝 (s, a) ≤ 𝑄∗ (s, a) and

lim inf

𝑒𝑝→∞
𝑄𝑒𝑝 (s, a) ≥ 𝑄∗ (s, a) − 𝑛 − 1

(2 + 𝑐) (1 − 𝛾)
Proof. We derive the performance bound through induction

based on Lemma 1 and 2. □

Conjecture 1. For the cause when multiple arms can be pulled
at each time step, i.e., 𝑘 > 1, Our SoftFair method can achieve the
bound as lim sup

𝑒𝑝→∞
Ψ𝑒𝑝𝑉 0 (s) ≤ 𝑉 ∗ (s). More specifically, we have

lim sup

𝑒𝑝→∞
𝑄𝑒𝑝 (s, a) = lim sup

𝑒𝑝→∞
Ψ𝑒𝑝𝑄0 (s, a) ≤ 𝑄∗ (s, a) and

lim inf

𝑒𝑝→∞
𝑄𝑒𝑝 (s, a) ≥ 𝑄∗ (s, a) − 𝑛 − 𝑘

(2 + 𝑐) (1 − 𝛾)

6 EXPERIMENTS
In this section, we empirically compare our proposed method Soft-
Fair to the baselines on both (a) a realistic patient adherence be-

havior dataset [14] and (b) a synthetic dataset to represent more

general settings enforced by structural constraints on transition
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Figure 3: Intervention benefit of SoftFair is consistently greater than other baselines. (a) We fix 𝑇 = 50, and 𝑘 = 10% ∗ 𝑛, and let
𝑛 = {10, 100, 1000}. (b) We fix 𝑇 = 50, and 𝑛 = 100, and let 𝑘 = {5, 10, 20}. (c) We fix 𝑛 = 100, and 𝑘 = 10, and let 𝑇 = {20, 50, 100}.
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Figure 4: (a) The intervention benefit of different multiplier 𝑐. Here 𝑐 = ∞ refers to deterministically selecting the top 𝑘 arm
with the highest cumulative rewards. (b) The action entropy of a single process. We investigate the action entropy for different
value of 𝑃1

0,1
range from 0.4 to 0.9 (at 0.45, 0.55, 0.65, 0.75, 0.85, respectively), and 𝑐 = 1.

matrix (more details in Appendix). We consider the finite time hori-

zon where reward is the undiscounted sum of arms/beneficiaries

in the good state over all time steps and set the following scenario

for the simulation: 𝑛 = {10, 100, 1000}, 𝑘 = {5%𝑛, 10%𝑛, 20%𝑛},
𝑇 = {20, 50, 100}. All results are averaged over 50 simulations. In

particular, We compare our method against the following baselines:

• Random: At each time step, algorithm randomly select 𝑘 arms

to play. This will ensure that each arm has the same probability

of being selected.

• Myopic: A myopic policy ignores the impact of present actions

on future rewards and instead focuses entirely on the predicted

immediate returns. It select 𝑘 arms that maximize the expected

reward at the immediate next time step. Formally, this could

be described as choosing the 𝑘 arms with the largest gap Δ𝑡 =

𝑃1

𝑠,1
− 𝑃0

𝑠,1
at time step 𝑡 under the observed state 𝑠 .

• FairMyopic: After computing Δ𝑡 for each arm, instead of deter-

ministically selecting the armwith the highest immediate reward,

we use the softmax function over Δ𝑡 to get the probability of

each arm being selected. Then we sample the 𝑘 arms according

to the probability.

• FaWT: Algorithm proposed by Li and Varakantham [20]. They

ensure that each arm will be selected at least 𝜂 times during any

intervention interval of length 𝐿. Since this algorithm requires

two predefined and extra parameters, the intervention interval

length 𝐿 and the minimum selection times during each interval

𝜂, it is not feasible to create a fair comparison against other

approaches across all settings. However, for one of the settings

we are able to provide a direct comparison with SoftFair by doing
a brute force search for fair parameter values for FaWT.

• SOTA: Algorithm proposed by Mate et al. [24] under the as-

sumption that the states of all arms are fully observable and the

transition probabilities are known. We use a sigmoid function to

approximate the Whittle index value and select arms determinis-

tically for the finite time horizon setting.

We examine policy performance from two perspectives: (a) Inter-

vention benefit (essentially the solution quality): The intervention

benefit is defined as
𝑅method−𝑅No intervention

𝑅SOTA−𝑅No intervention

×100%. It calculates the dif-

ference between one algorithm’s expected cumulative reward and

the cumulative reward when no intervention is involved, then nor-

malized by the difference between the asymptotically optimal but

fairness-agnostic SOTA algorithm in baselines (100% intervention

benefit) and the reward obtained without intervention (0% interven-

tion benefit) and. (b) Action distribution entropy (representative

of the fairness): We calculate the selection frequency distribution

across all time steps, and then compute its entropy after normaliza-

tion through: 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑖∈[𝑛] 𝑃 (𝑖) log 𝑃 (𝑖), where 𝑃 (𝑖) refers
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Table 2: Resutls for CAPAAdherence dataset with 𝑛 = 100, 𝑘 =

10,𝑇 = 80.

Policy Intervention benefit Action entropy

Random 79 ± 13 4.56 ± 0.0056

Myopic 98 ± 3.3 2.67 ± 0.0

FairMyopic 83 ± 11 4.5 ± 0.0089

SoftFair 93 ± 7.6 4.27 ± 0.019

to the normalization of the number of times arm 𝑖 is selected (i.e.,

the number of times that arm 𝑖 has been selected divided by 𝑘 ·𝑇 ),
and 𝑃 (𝑖) log 𝑃 (𝑖) = 0 if an arm is never selected.

Realistic dataset. : Obstructive sleep apnea is one of the most

prevalent sleep disorder among adults, and continuous positive

airway pressure therapy (CPAP) is a highly effective treatment

when it is used consistently for the duration of each sleep bout.

But non-adherence to CPAP in patients hinders effective treatment

for this type of sleep disorder. Similar to [9], we adapt the Markov

model of CPAP adherence behavior in [14] to a two-state system

with the clinical adherence criteria. We add a small noise to each

transition matrix so that the dynamics of each individual arm is

different (See more details about the dataset in Appendix).

In table 2, we report average results for each algorithm. Myopic

method has the best performance, which is caused by the specific

structure of the underlying transitionmatrices, since there is not too

much difference between 𝑛 Markovian models, and in this case the

Myopic approach is indeed close to optimal. However, the myopic

approach has significantly lower action entropy, which is indicative

of overall fairness. Meanwhile, our SoftFair provides the right trade-
off between intervention benefit and having a varied selection of

arms (high action entropy) at each time step.

Synthetic dataset. (a) We first test the performance when the

number of patients (arms) varies. Figure 3a compares the inter-

vention benefit for 𝑛 = {10, 100, 1000} patients and 𝑘 = 10% of 𝑛.

As shown in Figure 3a, in addition to satisfying the fairness con-

straints, our SoftFair consistently outperforms the Random, Myopic

and FairMyopic baselines. (b) We next compare the intervention

benefit when the number of arms 𝑛 is fixed and the resource con-

straint 𝑘 is varied. Specifically, we fix 𝑛 = 100 patients, and let

𝑘 = {5, 10, 20}. Figure 3b shows that there has been a gradual

increase in the intervention benefit as the 𝑘 increases. One possi-

ble reason is that a larger resource budget 𝑘 can make the arms

with higher cumulative rewards more likely to be selected, thereby

reducing the performance gap with the SOTA method. (c) The per-

formance of our method is slightly influenced by the time horizon𝑇 .

As shown in Figure 3c, the common trend is that a smaller 𝑇 leads

to better performance. This means that our method can efficiently

solve the RMAB in a finite time horizon, while a larger horizon 𝑇

will make the convergence slower. Overall, all results demonstrate

the our method provides a good trade-off between providing high

intervention benefit and preventing starvation for arms (through

high action entropy).

Intervention benefit when 𝑐 changes. We investigate the effect of

the multiplier parameter 𝑐 on performance. Formally, a larger 𝑐 will
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Figure 5: Comparison of performance of FaWT and SoftFair
when their action distribution entropy values are close.

widen the gap between the probabilities of choosing an arm, leading

to better performance as it prefers selecting an arm with a higher

cumulative reward. Figure 4 (a) reveals that SoftFair performs well

empirically as 𝑐 increases, and if we deterministically choose the

top 𝑘 arms based on the value of 𝜆, it achieves the optimal result.

Action entropy comparison. We also compare the entropy of the

action of a process in the synthetic dataset when 𝑃1

0,1
ranges from

0.4 to 0.9. As shown in Figure 4, the Random policy has the highest

value as it requires uniform selection of all arms. Our proposed

method, SoftFair consistently has a higher action entropy than the

SOTA method because we enforce fairness constraints. FairMyopic

has a high action entropy value, but it is indeed unfair under our

proposed fairness constraints, as it relies on immediate rewards.

SoftFair vs. FaWT. We perform a search in the value space of

parameters 𝜂 and 𝐿 of FaWT and the value space of multiplier 𝑐 of

SoftFair, and we use the value of these parameters which makes the

values of the action distribution entropy of these two methods close

to each other and compare their performance. We present the result

in Figure 5. As shown in the figure, SoftFair can better balance the

trade-off between the goal of uniform resource distribution and

maximizing cumulative rewards. This may be due to the difficulty

in satisfying the conditions for optimal performance of FaWT.

Discussion. In some real-world applications, state transitions

may not be fully available. In this case, we can learn the transition

probabilities online using a learning method based on Thompson

Sampling. We provide detailed experiments in the appendix and

show that it performs well in real-world situations.

7 CONCLUSION
In this paper, we study fairness constraints in the context of Restless

Multi-Arm Bandits model, which is of critical importance for ad-

herence problems in public health (e.g., monitoring the adherence

of preventive medicine for Tuberculosis, monitoring engagement

of mothers during calls on good practices during pregnancy). To

tackle the challenges introduced by the objective, we design a com-

putationally efficient algorithm by integrating the softmax value

iteration technique in the RMAB setting. Our algorithm can effec-

tively approximate the optimal value function within the proven

performance bounds while having fairness guarantees.
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