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ABSTRACT

Responsibility attribution is a key concept of accountable multi-
agent decision making. Given a sequence of actions, responsibility
attribution mechanisms quantify the impact of each participating
agent to the final outcome. One such popular mechanism is based
on actual causality, and it assigns (causal) responsibility based on
the actions that were found to be pivotal for the considered out-
come. However, the inherent problem of pinpointing actual causes
and consequently determining the exact responsibility assignment
has shown to be computationally intractable. In this paper, we
aim to provide a practical algorithmic solution to the problem of
responsibility attribution under a computational budget. We first
formalize the problem in the framework of Decentralized Partially
Observable Markov Decision Processes (Dec-POMDPs) augmented
by a specific class of Structural Causal Models (SCMs). Under this
framework, we introduce a Monte Carlo Tree Search (MCTS) type
of method which efficiently approximates the agents’ degrees of
responsibility. This method utilizes the structure of a novel search
tree and a pruning technique, both tailored to the problem of re-
sponsibility attribution. Other novel components of our method
are (a) a child selection policy based on linear scalarization and (b) a
backpropagation procedure that accounts for a minimality condition
that is typically used to define actual causality. We experimentally
evaluate the efficacy of our algorithm through a simulation-based
test-bed, which includes three team-based card games.
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1 INTRODUCTION

One of the well known Gedankenexperimente in the Al literature
on actual causality and responsibility attribution is the story of
Suzy and Billy. As J. Y. Halpern describes it in his book on Actual
Causality [25], the story goes as follows:

“Suzy and Billy both pick up rocks and throw them at a bottle.
Suzy’s rock gets there first, shattering the bottle. Because both throws
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are perfectly accurate, Billy’s would have shattered the bottle had it
not been preempted by Suzy’s throw.”

Who is to be held responsible for the bottle being shattered? As
the curious reader may have noticed, the conceptual challenge of
attributing responsibility for this outcome lies in the fact that the
outcome would not have changed had Suzy not thrown her rock.
Needless to say, there are a plethora of other examples from moral
philosophy that challenge human intuition on how responsibility
should be ascribed, including Bogus Prevention [30], Marksmen [25],
Arsonists [28], and Bystanders [26].

Much of the (recent) work in moral philosophy and AI has fo-
cused on resolving these conceptual challenges utilizing different
formal frameworks [3, 6, 7, 51]. Often, perhaps unsurprisingly, these
works [15, 27, 48] take as a starting point the framework of actual
causality based on Structural Causal Models (SCMs) [39]. Given a
specific scenario, approaches that utilize this framework typically
first pinpoint actions that were pivotal to the outcome of that sce-
nario. It is also not hard to see the importance of these works for
accountable Al systems. Consider, for example, a semi-autonomous
vehicle, and let Suzy be the auto-pilot of this vehicle, Billy be the
human driver that oversees the autopilot, and the shattered bottle
be the pedestrian injured in an accident caused by the vehicle.

However, real-world scenarios are often much more complex
than the aforementioned examples from moral philosophy capture.
In order to operationalize responsibility attribution for automated,
yet accountable decision making systems it is important to ground it
in a framework that is general enough to capture the nuances of real-
world decision making settings. This has recently been recognized
by Triantafyllou et al. [48], who study the problem of actual causal-
ity and responsibility attribution in Decentralized Partially Observ-
able Markov Decision Processes (Dec-POMDPs) — a rather general
framework for multi-agent sequential decision making under un-
certainty. However, while Triantafyllou et al. [48] show how to
combine Dec-POMDPs with SCMs to enable causal reasoning, they
still primarily focus on challenges related to defining actual causal-
ity and designing responsibility attribution mechanisms. In contrast,
in this paper we focus on the fact that the problem of inferring
actual causes, and consequently attributing causal responsibility,
is known to have high computational complexity [4, 21, 24]. Since
determining the exact responsibility assignment is then intractable,
we ask the following question: “Can we design an efficient procedure
for approximately ascribing responsibility in Dec-POMDPs?’

We propose an algorithmic framework for approximating re-
sponsibility assignments under a computational budget. Having a
bounded budget is important for complex systems, where brute-
force approaches do not work [25, 31]. The example scenarios range
from autonomous public transit systems and system controllers,
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Figure 1: The figure provides an overview of our approach to responsibility attribution in Dec-POMDPs. Based on received
execution traces, that is the agents’ trajectories, our approach first aims to infer the underlying context under which these
decisions were made. To do so we utilize Dec-POMDP SCMs - a framework introduced in [48] that combines Dec-POMDPs and
SCMs. The context in our case models randomness/noise, and together with the underlying causal model forms the causal
setting. The next step is to apply an MCTS type of search to infer actual causes that are consistent with the definition of actual
causality introduced in [48]. This search method is formally specified in a language that is an extension of propositional logic.
In order to determine the agents’ degrees of responsibilities, we apply the responsibility attribution method of [15] over the
actual causes found by the search. In cases where the underlying context cannot be exactly inferred we use posterior inference
over possible contexts. More specifically, we first draw samples from the posterior over possible contexts, and then repeat the
process described above for each sampled context. Agents are assigned the average degrees of responsibility over all samples.

such as traffic light controllers (TLC), to multi-agent cooperative
systems, such as warehouse robots. For an extended discussion on
the application scenario of TLC see the Supplemental Material.
Fig. 1 provides an overview of our algorithmic approach. We
recognize two main challenges that this approach has to overcome.
The first one is a statistical challenge and is related to the fact that in
practice the context under which an outcome of interest is generated
cannot be always inferred. As explained in Fig. 1, to make responsi-
bility attribution feasible in such cases, we use posterior inference
over the possible values of the underlying context. The second chal-
lenge is a computational one and it is related to the computational
complexity of identifying actual causes. We tackle this challenge
by applying a Monte Carlo Tree Search (MCTS) type of method
tailored to the problem of finding actual causes. As we show in this
paper, our approach significantly outperforms baselines in terms
of approximating the “ideal” responsibility assignments, obtained
under no uncertainty and unlimited computational budget. Our
contributions are primarily related to the design and experimental
evaluation of this algorithmic framework, and they include:

o A novel search tree tailored to the tasks of pinpointing actual
causes and attributing responsibility.

e A novel pruning technique that utilizes the structural proper-
ties of both the actual causality definition of Triantafyllou et al.
[48] and the responsibility attribution mechanism of Chockler
and Halpern [15].

o Responsibility Attribution-MCTS (RA-MCTS), a new search
method for efficiently finding actual causes under a given causal
setting. Compared to standard MCTS, the main novel components
of RA-MCTS are in its simulation phase, evaluation function, child
selection policy, and backpropagation phase.

e Experimental test-bed for evaluating the efficacy of RA-MCTS.
The test-bed is based on three card games, Euchre [50], Spades [17],
and a team variation of the game Goofspiel [43]. We deem the
test-bed to be generally useful for studying actual causality and
responsibility attribution in multi-agent sequential decision mak-
ing. Our experimental results show that RA-MCTS almost always
outperforms baselines, such as random search, brute-force search,
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or modifications of RA-MCTS. Our results also show that in cases
where the underlying context cannot be exactly inferred, comput-
ing a good approximation of the “ideal” responsibility assignment
might not be possible, even under unlimited computational bud-
get. This can happen when the posterior distribution over the
possible contexts is not informative enough. !

1.1 Additional Related Work

This paper is related to works on responsibility and blame attribu-
tion in multi-agent decision making [6, 7, 22, 27, 47, 51].

To the best of our knowledge, there is no prior work on de-
veloping general algorithmic approaches on efficiently computing
degrees of causal responsibility. The closest we could find, are
domain-specific applications of the Chockler and Halpern respon-
sibility approach [15] in program verification [14, 16]. Chapter 8
of [25] provides a general overview of such applications. Addition-
ally, to our knowledge, the only general algorithmic approach on
determining causality, and subsequently responsibility attribution,
is that of [31]. Their approach on checking actual causality utilizes
SAT solvers and thus is significantly different than ours. They also
restrict their focus to binary models, as opposed to ours which
considers categorical variables.

The only other work that has used the same framework as the
one used in this paper is that of Triantafyllou et al. [48]. Close to
our work in this aspect, Buesing et al. [12] and Oberst and Sontag
[37] have considered a combination of SCMs with POMDPs. Tsirtsis
et al. [49] utilize a connection between SCMs and MDPs to generate
counterfactual explanations for sequential decision making.

This paper is also related to a line of work which introduces vari-
ants of MCTS that apply to specific domains. For instance, Schadd
et al. [44] and Bjornsson and Finnsson [10] propose modifications
to MCTS in order to adapt it to single-player games. We refer the
interested reader to Browne et al. [11] for more such examples.

YA full version of this paper that includes an appendix containing additional
discussions, implementation details and experimental results can be found at
https://arxiv.org/abs/2302.12676. Code to reproduce the experiments is available at
https://github.com/stelios30/aamas23-responsibility-attribution-mcts.git.
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2 FRAMEWORK AND BACKGROUND

In this section, we first give an overview of a formal framework
which allows us to study responsibility attribution in the context of
multi-agent sequential decision making. This framework is adopted
from Triantafyllou et al. [48], and relies on decentralized partially
observable Markov decision processes (Dec-POMDPs) [9, 38] and
structural causal models (SCMs) [40, 41]. Next, we provide the
necessary background on actual causality and responsibility attri-
bution. Finally, we state the responsibility attribution problem and
highlight its main algorithmic challenges.

2.1 Dec-POMDPs

The first component of this framework are Dec-POMDPs with
n agents; state space S; joint action space A = XI_  A;, where
A; is the action space of agent i; transition probability function
P: Sx A — A(S); joint observation space O = X[, O;, where O;
is the observation space of agent i; observation probability function
Q : 8 — A(O); finite time horizon T; initial state distribution
0. Here A denotes the probability simplex. For ease of notation,
rewards are considered to be part of observations.

Each agent i is modeled with an information state space Z;; de-
cision making policy ; : I; — A(A;); information probability
function Z; : I; X A; X O; — Ij; initial information probability
function Z; : O; — I;. We denote with 7;(a;|1;) agent i’s proba-
bility of taking action a; given information state 1;, and with x the
collection of all agents’ policies, i.e., the agents’ joint policy.

We assume spaces S, A, O and 7; to be finite and discrete.

2.2 Dec-POMDPs and Structural Causal Models

In order to reason about actual causality and responsibility attri-
bution in multi-agent sequential decision making Triantafyllou
et al. [48] view Dec-POMDPs as SCMs.? More specifically, given
a Dec-POMDP M = (S,{1,...,n}, A,P,0,Q,T,0) and a model
m; = (I;, m;, Zi, Zi o) for each agent i, they construct a SCM C,
which they refer to as Dec-POMDP SCM. Under C functions P, Q,
{Zi}iequ,..,ny and {7} (1, n) are parameterized as follows

St = gs,(St-1,Ar-1,Us,), Ot = go,(St,Uo,)s

Lir = g1, (Tit-1,Ait-1,0it, Ur,,),  Air = ga,, (i, Uga,,), (D)

where gs,, go,, g1;, and g4,, are deterministic functions, and Us,,
Uo,, Ur,, and Uy, are independent noise variables with dimensions
|S], 10|, |7;] and |A;|, respectively.

Following SCM terminology [40], we refer to state variables
St, observation variables Oy, information variables I; ; and action
variables A; ; as the endogenous variables of C. Furthermore, we
call noise variables U the exogenous variables of C and a setting # of
U context. Note that given a context # one can compute the value of
any endogenous variable in C by consecutively solving equations in
(1), also called structural equations. Therefore, a Dec-POMDP SCM-
context pair (C, 1), also called causal setting, specifies a unique
trajectory 7 = {(s¢, at)}th_Ol.

2They establish a connection between the two by building on prior work from Buesing
etal. [12].
3Such a parameterization is always possible [48].
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Another well-known notion in causality that is important for our
analysis is that of interventions [39].# An intervention A;; « a;
on SCM C is performed by replacing g4, , (Ii,¢, Ua, +) in Eq. (1) with
alf, also called the counterfactual action of the intervention. We
denote the resulting SCM by C44¢ 4 If one has knowledge over
C as well as the context # under which a trajectory r was generated,
they can efficiently compute the counterfactual outcome of that
trajectory under some intervention A;; < a; on C. This can be
done by simply generating the counterfactual trajectory 7/ that
corresponds to the causal setting (CA’?”_“;’, ). In other words, they
can predict exactly what would have happened in that scenario had
agent i taken action a] instead of a; ;. However, the true underlying
SCM C or context # are not always available in practice. Following
a standard modeling approach [36, 48, 49], we restrict our focus
on a specific class of SCMs, the Gumbel-Max SCMs, introduced by
Oberst and Sontag [37]. More details on Gumbel-Max SCMs and
how they can be integrated in the Dec-POMDP SCM framework,
can be found in the Supplemental Material.®

2.3 Actual Causality

Next, we present a language for reasoning about actual causality
in (Dec-POMDP) SCMs [25]. Let C be a Dec-POMDP SCM. A prim-
itive event in C is any formula of the form V = v, where V is an
endogenous variable of C and v is a valid value of V. We say that
a Boolean combination of primitive events constitutes an event.
Given a context # and an event ¢, we write (C,u) = ¢ to denote
that ¢ takes place in the causal setting (C, ii). Furthermore, for a
set of interventions A «— @’ on C, we write (C,#) = [A — a'lg,if
(CA<? 5 @. For example, let T = {(s, at)}tT;OI be the trajectory
that corresponds to (C, #). Consider the counterfactual scenario in
which agent i takes action a] instead of a;; in 7, and the process
transitions to state s at ¢ + 1. This can be expressed by

(C.u) E [Air < ai](St+1 =5).

In the context of Dec-POMDP SCMs actual causality is related to
the process of pinpointing agents’ actions that were critical for ¢ to
happen in (C, #). In this paper, we adopt the actual cause definition
proposed by Triantafyllou et al. [48]. Their definition utilizes the
agents’ information states in order to explicitly account for the
temporal dependencies between agents’ actions.

Definition 2.1. (Actual Cause) A = d1is an actual cause of the
event ¢ in (C,#)under the contingency W = w’ if the following
conditions hold:

ACL. (C,i) E (A=d)and (C,%) E ¢
AC?2. There is a setting @’ of the variables in A, such that

(CA)E[A— @ We—w]g

AC3. AU W is minimal w.r.t. conditions ACI and AC2
AC4. For every agent i and time-step ¢ such that A;; € A and
(C,4) E (Ii)y = 1), it holds that

(Ci) [ [A e @ W — &1 (Iir =11)

“In this paper, we consider interventions on action variables only.
3For a more detailed overview of SCMs we refer the reader to [40].
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ACS5. For every agent i and time-step ¢ such that A;; € W and
(C, ) E (Iiy =1i4), it holds that

(Ci) E[A @ W eI = 1y)

We say that the tuple (W, w’,d@) is a witness of A = @ being an
actual cause of ¢ in (C, i).

ACI requires that both A = @ and ¢ happened in (C, #). AC2
1mphes that ¢ would not have occurred under the interventions
Ae— d@andW « W on (C,u). AC3is a mmlmahty condition,
which ensures that there are no subsets A’ and W’ of A and W,
and setting w”’ of W', such that A’ = @ and W’ = w"’ satisfy AC1
and AC2, where @ is the restriction of 4 to the variables of A. AC4
(resp. AC5) requires that the information states which correspond
to the action variables in A (resp. W) have the same (resp. different)
values in the counterfactual scenario (CA‘_“ Wi ,u) and the
actual scenario (C, ii). We say that a conjunct of an actual cause
A = G constitutes a part of that cause. If for some A=GandW =
conditions AC1, AC2, AC4 and AC5 hold we say that A=Gisa
candidate actual cause of ¢ in (C, #) under the contingency W=w
We also say that a set of interventions X « % constitutes an
(candidate) actual cause-witness pair according to Definition 2.1 if
there exists such a pair (A=3, (W w’,@")), where X = AUW, and
a’ and w’ are the projections of X’ in A and W, respectively.

2.4 Responsibility Attribution

Responsibility attribution is a concept closely related to actual
causality, which aims to determine the extent to which agents’
actions were pivotal for some outcome. In this paper, we adopt a
responsibility attribution approach which was first introduced by
Chockler and Halpern [15], and then adapted by Triantafyllou et al.
[48] to the setting of Dec-POMDP SCMs. Given a causal setting
(C, 1) and an event ¢, the Chockler and Halpern approach (hence-
forth CH) uses the following function to determine an agent i’s
degree of responsibility for ¢ in (C, ) relative to a set of interven-
tions X « X’ on C and an actual causality definition D

- m
x', D) = Tl,
X

constitutes an actual

dri((C.7).4.X (2)
where m; is computed as follows. If X 3%
cause-witness pair (A =& (W, w,d)) of ¢ in (C,u) according
to D, then m; denotes the number of i’s action variables in A
Otherwise, m; is 0. In this paper, an agent’s degree of responsibility
according to the CH approach is computed as follows.

Definition 2.2. (CH) Consider a causal setting (C, %) and an event
¢ such that (C, i) |= ¢. With D being Definition 2.1, an agent i’s de-
gree of responsibility for ¢ in (C, %) is equal to the maximum value
dri((C, 1), ¢,)_(' «— X/, D) over all possible sets of interventions
X — X' onC.

The CH definition captures some key ideas of responsibility
attribution. First, an agent’s degree of responsibility depends on
the size of an actual cause A = g the agent participates in. Second,
it depends on the amount of participation the agent has in that
cause. Finally, it depends on the size of the smallest contingency of
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A= d, i.e., the minimum number of interventions that need to be
performed on C in order to make ¢ counterfactually depend on A.

2.5 Problem Statement and Challenges

Given a trajectory 7 generated by causal setting (C, #), the general
problem we are interested in is computing the agents’ degrees of
responsibility for the final outcome ¢” of 7. In this paper, we focus
on two main challenges of this problem. The first one is related to
the computational complexity of the problem. The second one has
to do with the fact that in practice context # might not be known.

In order to address the first challenge, we view responsibility
attribution as a multi-objective search problem with limited
computational resources. An algorithmic solution to this problem
should find a set of interventions, for each agent, that maximizes
the function in Eq. (2). The pipeline we consider for such algorithms
can be summarized as follows. First, the algorithm searches for sets
of interventions that constitute actual cause-witness pairs of the
outcome ¢°. Next, based on the found actual cause-witness pairs
the algorithm computes the responsibility assignment. A natural
question that arises is how to choose which intervention sets to
evaluate before the computational budget is exhausted. We believe
that the answer to this question lies in the structural properties of
Definitions 2.1 and 2.2 (Sections 3.1-3.3). Another question related
to this problem is how to recognize if a set of interventions is in
fact an actual cause-witness pair. Even though it is easy to infer
whether a set of interventions constitutes a candidate actual cause-
witness pair of ¢* when (C, ) is known, it is impossible to know
if it is minimal, i.e., if it satisfies condition AC3, unless all of its
subsets are first checked for AC1 and AC2. Despite that, there are
countermeasures that one can implement to reduce the negative
impact that AC3 might have on the search process (Section 3.3).

To address the second challenge, we view responsibility attri-
bution as an inference problem. Our approach is to build on the
above mentioned search algorithm, and by using posterior infer-
ence design a mechanism that can efficiently estimate responsibility
assignments under context uncertainty (Section 3.4).

3 ALGORITHMIC SOLUTION

In this section, we analyze our algorithmic solutions to the search
and inference problems described in Section 2.5. First, we propose a
novel search tree tailored to the tasks of pinpointing actual causes
and attributing responsibility. Next, we propose a pruning tech-
nique that utilizes the structural properties of Definitions 2.1 and
2.2. We then propose RA-MCTS, a novel Monte Carlo Tree Search
(MCTS) type of method for finding approximate responsibility as-
signments under limited computational budget. Finally, we propose
an extension of RA-MCTS to the unknown context regime.

3.1 Search Tree

Fig. 2 illustrates an instantiation of our proposed search tree. Note
that the tree is defined relative to the causal setting (C, i), that is,
every state, observation, information state and action is determin-
istically computed by the structural equations of C together with
context i (see Eq. (1)). Nodes in this tree fall into one of 5 categories.
At the top of the tree, we have the Root node, where the time-step
of the first intervention is selected. Nodes t = 0,t =1 and t = 2 in
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Figure 2: The red edges denote the path in our search tree,
which corresponds to the intervention on the action of agent
0 at time-step 1 with counterfactual action a’ =3, Ag; « 3.

Fig. 2 correspond to their respective time-steps, and we call them
TimeStep nodes. From a TimeStep node, the agent of the next inter-
vention is picked. Nodes ag = 0 and ag = 1 correspond to agents
0 and 1, and they are categorized as Agent nodes. From an Agent
node, the counterfactual action of the next intervention is chosen
from the available options. More specifically, let ag = i be the node
where the search is currently on, and ¢ = ¢’ be that node’s parent.
Let also X « %’ denote the current set of interventions encoded
in ag = i. The available options from node ag = i then include
all the valid actions that i could have taken at time-step t’, except
the action that it would have normally taken given the current set
of interventions, i.e., the action determined by the causal setting
(CXH’?’, ). Nodes a’ = 3,a’ = 5and a’ = 6 in Fig. 2 correspond to
such counterfactual actions and they are characterized as Action
nodes. From an Action node, search can either stop growing the
intervention set, and hence transition to a Leaf node L or continue
by transitioning to the next TimeStep node. If search transitions to
L, then the current set of interventions is evaluated. In case this
set of interventions is found to change the final outcome ¢7, it is
added to the set of found candidate actual cause-witness pairs.

3.2 Pruning

Apart from its intuitive nature and computational efficiency (Sec-
tion 4.3), the search tree of Fig. 2 also allows us to apply a number
of effective pruning techniques. Pruning can take place at any
point during the search and it is basically the process of removing
branches from a tree that cannot possibly improve the output of
the algorithm. In our setting, this means that a node needs not be
further visited if it becomes apparent that the evaluation of any
leaf node reachable from that node cannot in any way influence the
final responsibility assignment. Our method prunes away a node
(and all of its descendants) if any of the following conditions hold:
e Itis a Leaf node that has already been evaluated.

o It is the closest ancestor Agent node of a Leaf node L, such that
L’s encoded set of interventions X « ¥’ constitutes a candi-
date actual cause-witness pair. Note that the set of interventions
encoded in any descendant of the pruned Agent node is either
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identical to X « %’ apart from its last counterfactual action, or
its variable set is a superset of X , and hence it is non-minimal
according to Definition 2.1.

o Itis an Agent node whose encoded set of interventions is non-
minimal w.r.t. to the current set of found candidate actual cause-
witness pairs.

o It is a fully-expanded node with all of its children already pruned.

3.3 Responsibility Attribution Using Monte
Carlo Tree Search (RA-MCTS)

The search algorithm we propose is based on the well-known Monte
Carlo Tree Search (MCTS) method [11]. We refer to our algorithm
as RA-MCTS because it is specific to the task of responsibility
attribution. The main differences between RA-MCTS and standard
MCTS [13, 18] are in their simulation phases, evaluation functions,
child selection policies and backpropagation phases.

Simulation Phase. At each iteration, the entire simulation path
is added to the search tree. Although in applications of MCTS the
tree is usually expanded by one node per iteration, this would not
be optimal in our setting. Namely, under a fixed causal setting, the
state transitions, observations generation and other such functions
are deterministic.® Hence, computing their values more than once
is a waste of computational resources.

Evaluation Function. Whenever a Leaf node L is visited dur-
ing an iteration of (RA-)MCTS, a score is assigned to it and then
backpropagated to all of its ancestors. Properly defining the func-
tion that determines that score, i.e., the evaluation function, is con-
sidered to be a critical ingredient of successfully applying MCTS
methods. Considering the idiosyncrasy of our task, we design an
evaluation function that returns a multi-dimensional score, as op-
posed to a single numerical value which is typically the case. More
precisely, this evaluation function takes as input the set of inter-
ventions X « ¥’ encoded in L, and outputs a score vector 7, of
size n + 1, which is defined as follows. For each agent i € {1, ..., n},
ri = dri((C, 1), gﬁﬂ)? «— X', D), where D denotes Definition 2.1.
The n + 1th value of 7 is equal to the output of an environment
specific function genv ((C, i), X %) which provides some addi-
tional information about the final outcome that corresponds to the

causal setting (CX <% i1).” For example, in a card game scenario
we typically want to attribute responsibility to the members of the
team that lost (outcome). Additional information that our search
algorithm could benefit from in this scenario is how closer to or
further from winning would the losing team get, had we intervened
on some actions taken by its members. The purpose of 7’s first n
values is to guide the search towards optimizing its main objective,
i.e., approximating the agents’ degrees of responsibility. The role
of the last value of 7 is complementary, as it helps to identify areas
which are promising for discovering new actual causes.

Child Selection Policy. Similar to standard MCTS, in RA-MCTS
each node v keeps track of two statistics, the number N (v) of times it
has been visited and the vector é(l)), where Q;(v),with j € {1, .., n+
1}, is equal to the total score r; of all simulations that passed through

6Similar MCTS modifications have been used in other deterministic tasks, such as
guiding symbolic execution in generating useful visual programming tasks [2].
7If such a function is not available then this part can be omitted.
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that node. In order to transform Q(v) into a scalar score value, the
child selection policy of RA-MCTS follows a linear scalarization
approach inspired by the Multi-Objective Multi-Armed Bandits
(MO-MAB) literature [20, 46]. At iteration k, a pre-defined weight
by j is assigned to each value of é(a), where Y1, n+1) bkj = 1.

The linear scalarized value of é(v) at iteration k is then defined as

fis(0(v) = br; - Qj(v). ©)

je{1,...,n+1}

After computing fLS(é(v)) for each child node v, our policy em-
ploys the UCB1 formula [5, 33] to select the next node in the path

fis Q@) |

o"*! .= argmax C- \’ lnN’ 4)
vechildren N(v) N(o)

where N is the parent node’s number of visitations and C is the
exploration parameter of RA-MCTS. Ties are broken randomly.

In our experiments, at every iteration k, we set by .1 = B,
where B € [0, 1) is a constant. Additionally, for i = (k mod n) we
set by ; := 1 — B, while every other weight by ;, with j ¢ {i,n + 1},
is set to 0. As a result, the only simulated responsibility degrees
that guide the search at iteration k are those of agent i.

Backpropagation Phase. Note that as the set of found candidate
actual cause-witness pairs grows during search, the intervention
set encoded in a previously expanded Agent node v might be eval-
uated as non-minimal when v gets visited again. Whenever this
happens, in addition to pruning v, we also backpropagate values
(—Q(U), —N(v)) to its ancestors. This way, we completely erase the
footprints of the pruned node from the rest of the tree. Therefore,
by taking this measure our search method is no longer guided by
scores of simulations that passed through v.

3.4 Estimating Responsibility Assignments
under Context Uncertainty

Our analysis so far in this section, assumes context i to be known.
We now lift this assumption and propose our solution to the infer-
ence problem described in Section 2.5. We extend RA-MCTS in the
following way. First, we draw M Monte Carlo samples from the
posterior Pr(|r), utilizing the procedure described in Section 3.4
of [37]. Next, we compute for each agent i its average degree of
responsibility over all samples

®)

where d" is i’s degree of responsibility in (C, i) according to
RA-MCTS, and #y, is the mth sample.

4 EXPERIMENTS

In this section, we experimentally test the efficacy of RA-MCTS,
for known and unknown context, using a simulation-based testbed,
which contains three card games. In our experiments, we restrict
the maximum size of actual cause-witness pairs to 4, for reasons
explained in [48]. We also fix RA-MCTS parameters to C = 2and B =
0.5. Additional results can be found in the Supplemental Material.
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4.1 Environments and Policies

We consider three card games played by two teams of two players.
The members of one team are referred to as opponents, and they
are treated as part of the environment. The members of the other
team are treated as agents, and they are denoted by Ag0 and Ag1.
All players have the same (initial) information probability function,
but different decision making policies.

TeamGoofspiel(H). The first game is a team variation of the
card game Goofspiel, introduced in [48]. In this game, the initial
hand of each player consists of H cards. Typically, H = 13. At each
round, all players simultaneously discard one of their cards, after
observing the round’s prize. The team which played the cards with
highest total value collects the prize. After H rounds, the team that
accumulated the biggest prize wins the game. Agent Ag0 tries to
always play the card whose value matches the round’s prize. If that
card is not in Ag0’s hand, then it chooses a card based on which
team is currently leading the game. Agent Agl chooses its card
based on a comparison between the average value of its hand and
the current round’s prize. Opponents follow the same stochastic
policy which assigns a distribution on their hand based on the
round’s prize and the current leading team. For more details on the
rules of the game and the players’ policies see [48].

Euchre(H). Second, we consider a turn-based trick-taking game.
Each player is initially dealt H cards from a standard deck, with H
typically being 5. Next follows the calling phase, where the trump
suit and the player who starts first are chosen. For simplicity, we
omit this phase and make the aforementioned choices randomly.
At each round, the first player discards one card. This card’s suit
becomes the leading suit of the current round. The rest of the play-
ers (in clockwise order) have to follow the leading suit if possible,
otherwise they are allowed to play any card from their hand. The
winner of the round is determined by a game-specific card ranking
which takes into account the trump and the lead suits. The player
who won the previous round starts next. After H rounds, the team
with the most wins takes the game. The policies of agents Ag0 and
Ag1 are based on the HIGH! policy [45]. The main idea of HIGH! is
that “if your teammate leads the round then let them win”. We im-
plement the policy of Ag0 to be slightly more aggressive than that
of Agl. Opponents’ policies follow the HIGH! principle only when
they play last in a round, otherwise they follow a stochastic greedy
policy which assigns higher probabilities to cards that have poten-
tial to win the round. For more information see the Supplemental
Material.

Spades(H). Our third card game is yet another trick-taking
game which is similar to Euchre(H), but with some key differences.
For example, there is no calling phase and the trump suit is always
spades. Before they start playing, the players must bid on the num-
ber of tricks they believe that they will have won after H rounds,
where typically H = 13. Spades(H) has a different card ranking
than Euchre(H), and also some additional rules on which cards are
allowed to be discarded by the players at each time. At the end of
the game, the score of each team is calculated based on the number
of tricks it won and its initial bids. In case a team bid more than
its won tricks, it receives a penalty based on a sandbagging rule.
The players’ policies in Spades(H) are very similar to the ones in
Euchre(H). For more information see the Supplemental Material.
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Figure 3: Performance profiles on TeamGoofspiel, Euchre and Spades with known context. Shaded regions show standard

deviation. We add a marker if at the current number of steps the fraction of runs with €4, < 0 or ¢

Note that all three games are standard benchmarks for Al re-
search [8, 19, 29, 32], and have also received extensive mathematical
analysis [17, 23, 42, 43, 50]. Moreover, Goofspiel and Euchre are parts
of a well known framework for RL in games [34].

4.2 Experimental Setup

We evaluate the efficacy of several search algorithms on estimating
a responsibility assignment under a computational budget. Compu-
tational budget in our experiments is defined as the total number
of environment steps that an algorithm is allowed to take.
Baselines. Apart from RA-MCTS we also implement RANDOM,
which repeatedly samples a set of interventions and checks whether
it constitutes a candidate actual cause-witness pair or not. When
computational budget is reached, RANDOM determines the agents’
degrees of responsibility based on the found solutions. Other base-
lines are BF-DT and BF-ST, which perform a brute force search
over all possible sets of interventions. BF-DT is the algorithm of
choice in [48], and it utilizes the standard decision (game) tree. On
the other hand, BF-ST utilizes the search tree from Section 3.1.
Performance profiles. We generate multiple configurations of
our environments by changing parameter H. For each of these con-
figurations, our methods are evaluated on 50 different trajectories,
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in which the agents fail to win the opponents. For each such trajec-
tory, we perform 10 independent runs of each method. 8 Following
[1], we report performance profiles based on run-score distributions,
and show for each method the fraction of runs in which it performs
better than a certain threshold D. We measure the performance of
a method in terms of its accuracy w.r.t. some target responsibility
assignment. More specifically, when it is computationally feasible
to find the exact responsibility assignment, we report the maximum
absolute difference €pqx € [0, 1]. For instance, if for some trajec-
tory the agents’ degrees of responsibility according to a method are
0.25 and 0.75, but the exact degrees are 0.33 and 1, then €45 = 0.25.
If instead of the exact values, we can only compute lower bounds of
the agents’ responsibilities, we report the maximum absolute lower
difference €9, € [0, 1]. Going back to our previous example, if the
known lower bounds are 0.33 and 0.5, then efgax =0.08.

For Euchre(H) and Spades(H), we are able compute the exact
responsibility assignments for values of H up to 10.° For Team-
Goofspiel(H), the upper limit is 9. In order to evaluate our methods
on environments with larger H, we follow a procedure, described
in the Supplemental Material, and generate trajectories for which

8We change the initial seed of the method.
9They are found using BF-DT, as in [48].
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we can retrieve non-trivial lower bounds of the agents’ degrees of
responsibility.

4.3 Results

4.3.1 Results with Known Context. Plots in Fig. 3 display perfor-
mance profiles for the implemented methods and for different com-
putational budgets. Note that threshold D in these experiments is
set to 0. This means that a method performs better than D iff it
manages to find the exact responsibility assignment.

We observe that RA-MCTS almost always converges to the opti-
mal solution, i.e., achieves €pqx = 0 or ef,‘fax = 0, under a reasonable
computational budget. The only exception is TeamGoofspiel(13), for
which it converges for 96% of the runs. To better understand how
budget efficient RA-MCTS is, consider configurations Euchre(10)
and Spades(10). By looking at Plots 3g and 3k, we observe that RA-
MCTS needs at most 4.2-10° and 3.5-10° environment steps in order
to converge to the exact responsibility assignment in these two
configurations. In comparison, performing an exhaustive search,
i.e., fully executing BF-DT or BF-ST, on one trajectory of Euchre(10)
and one of Spades(10) can take up to more than 10-10° and 6.2 - 10°
steps, respectively. It is also worth noting that RA-MCTS achieves
€max = 0 for more than 90% of the runs, in the above mentioned
configurations, within at most 2 - 10% and 0.5 - 10° steps.

By comparing RA-MCTS to RANDOM in Plots 3a-3l, we can see
that the former always stochastically dominates the latter [35].1°
As part of our ablation study, we also compare RA-MCTS to BF-
ST. In Plots 3a-3c and 3e-3k, RA-MCTS stochastically dominates
BF-ST. In Plot 3c, performance profiles of the two methods are
almost identical, while in Plot 31, BF-ST outperforms RA-MCTS only
for a small number of steps. Moreover, it can be seen that almost
always the maximum number of environment steps that RA-MCTS
might need in order to find the exact responsibility assignment,
is considerably less than that of BF-ST. For instance, in Plot 3b
RA-MCTS needs almost 5 times fewer environment steps compared
to BF-ST, while in Plots 3a, 3e, 3j, 3k we witness a drop of at least
30%. These results show that components from Sections 3.2 and
3.3 are important for RA-MCTS. In the Supplemental Material, we
include a similar ablation study, where we compare RA-MCTS to
the BF-ST method enhanced with the pruning technique described
in Section 3.2.

19The curve of the dominant method is strictly above the other method’s curve [1].
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Finally, Plots 3a-31 showcase that BF-ST stochastically dominates
BF-DT. This result demonstrates that a brute force algorithm that
uses the structure of the tree we propose in Section 3.2 converges
faster to the exact solution than a brute force algorithm that uses
the standard decision tree of the underlying Dec-POMDP.

4.3.2 Results with Unknown Context. In this section, we present
the results of our experiments under context uncertainty, where
we make use of the sampling procedure introduced in Section 3.4,
with total number of samples M = 10. Each sample corresponds to
a context generated by posterior inference. Plots in Fig. 4 display
performance profiles for methods RA-MCTS and RANDOM for dif-
ferent computational budgets and for different values of threshold
D. First, we observe that almost always RA-MCTS stochastically
dominates RANDOM. Moreover, all plots show that RA-MCTS
achieves €4 = 0.25 in more than 75% of the runs, within at most
0.5 - 10° steps per sample, or 5 - 10° steps in total. Finally, we can
also see that our method performs the best for TeamGoofspiel(9),
where it achieves €4 = 0.15 in 86% of the runs.

Our results give prominence to an inherent problem of responsi-
bility attribution under context uncertainty. We observe that even
for a number of steps that suffices for RA-MCTS to find the exact
agents’ degrees of responsibility for most of the sampled trajectories,
the responsibility assignments for many of the actual trajectories
are not fully found. We conclude then that even under unbounded
computational budget if the posterior distribution of the underly-
ing context of a trajectory is not informative enough, then failing
to exactly estimate the agents’ degrees of responsibility for that
trajectory is unavoidable. We believe however that one potential
way to alleviate this issue is by designing responsibility attribu-
tion mechanisms that incorporate domain knowledge, which could
balance the non-informativeness of the posterior distribution.

5 CONCLUSION

We initiate the study of developing efficient algorithmic approaches
for responsibility attribution in Dec-POMDPs. To that end, we
propose and experimentally evaluate RA-MCTS, an MCTS type
of method which efficiently approximates responsibility assign-
ments. Looking forward, we plan to apply and test the efficiency
of RA-MCTS on a real-world domain. Extending our approach to
continuous models is another research direction that we deem par-
ticularly interesting.
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