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ABSTRACT
A diffusion auction is a market to sell commodities over a social net-

work, where the challenge is to incentivize existing buyers to invite

their neighbors in the network to join the market. Existing mecha-

nisms have been designed to solve the challenge in various settings,

aiming at desirable properties such as non-deficiency, incentive

compatibility and social welfare maximization. Since the mech-

anisms are employed in dynamic networks with ever-changing

structures, buyers could easily generate fake nodes in the network

to manipulate the mechanisms for their own benefits, which is com-

monly known as the Sybil attack. We observe that strategic agents

may gain an unfair advantage in existing mechanisms through

such attacks. To resist this potential attack, we propose two diffu-

sion auction mechanisms, the Sybil tax mechanism (STM) and the

Sybil cluster mechanism (SCM), to achieve both Sybil-proofness

and incentive compatibility in the single-item setting. Our proposal

provides the first mechanisms to protect the interests of buyers

against Sybil attacks with a mild sacrifice of social welfare and

revenue.
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1 INTRODUCTION
Auction is an important method of selling commodities where the

seller collects bids from buyers and allocates commodities according

to these bids. Previous works [1] have shown that more buyers

would significantly lead to higher social welfare and revenue in

auctions. However, buyers have no incentive to invite others to

their auctions because it would cause tougher competition and

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

hurt their own interests. Recently, there has been an emergence

of studies on the diffusion auction over social networks [6], which

studies mechanisms that incentivize buyers to invite new agents to

an auction via a social network. In these works, while the seller only

knows her neighbors, any buyer who is informed of the auction

may bid to buy, as well as diffuse the information about the auction

to her neighbors to improve her utility.

The first work of diffusion auctions [11] proposed the informa-

tion diffusion mechanism (IDM) for selling one item in a social

network, focusing on the incentive compatibility of its informa-

tion propagation action. Under IDM, it’s a dominant strategy for

each bidder to truthfully bid her private valuation and to diffuse

the auction information to all her neighbors. Zhao et al. [22] and
Kawasaki et al. [8] further designed diffusion mechanisms in selling

multiple homogeneous items in a social network. Those works,

however, did not consider a common threat known as the Sybil

attack.

The first study on Sybil attacks [5] considered a situation in

peer-to-peer systems where malicious agents may gain an unfair

advantage by creating fake identities. One such example is pre-

sented in Figure 1 for a social network where the agent 𝑥 creates

six false-name identities. In this example, a directed edge from a

vertex 𝑥 to 𝑦 means that agent 𝑥 knows the existence of 𝑦. When

agent 𝑥 creates Sybil identities, they cannot connect to other agents

that she does not know. The Sybil attack is a significant threat to
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Figure 1: (a) the true type of 𝑥 ; (b) a Sybil attack of 𝑥 involving
six Sybil identities (in the red rectangle).
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auctions (commonly called false-name bids) and has been exten-

sively investigated in traditional auction settings [18]. One example

proven to be vulnerable to Sybil attacks is the well-known Vickrey-

Clarke-Groves (VCG) auction for combinatorial auctions of at least

two items.

Our work studies this fundamental issue in diffusion auctions on

social networks, where fake nodes can be easily created. In existing

mechanisms such as IDM and FPDM [20], intermediate buyers are

rewarded for inviting more buyers. This makes Sybil attack highly

profitable and harmful. Intermediate buyers under IDM can use

Sybil identities as shill bidders to exploit their descendants; under

FPDM, buyers with more neighbors are prioritized when allocating

the item, and Sybil attack can increase the number of neighbors.

We consider a strong adversarial model that allows every buyer

to create fake identities, which can link with other such identities or

link to the buyer’s neighbors. But they don’t have incoming edges

from other agents, since they are only visible to the creator. Our

goal is to incentivize diffusion without encouraging Sybil attacks

in diffusion auctions.

Contribution: We propose two Sybil-proof diffusion mechanisms,

the Sybil tax mechanism (STM) and the Sybil cluster mechanism

(SCM). STM achieves Sybil-proofness by identifying trustworthy

agents. In STM, diffusing to “suspicious” agents is not beneficial

to buyers. However, agents in STM do not have a strong incentive

to diffuse information. In proposing SCM, we provide a stronger

incentive for diffusion, where the reachability of each non-Sybil

vertex is credited to some selected agents. By a mild sacrifice on

the seller’s revenue, SCM creates a strong incentive to invite new

buyers.

Our work overcomes several difficulties. We are the first to iden-

tify and model the Sybil attack in diffusion auctions. Our adversarial

model is the most general form of Sybil attack possible without

collusion. Existing diffusion mechanisms cannot resist such Sybil

attacks, even after removing “suspicious” agents.

Additionally, we discuss the social welfare and revenue of Sybil-

proof diffusion auctions. We prove that there is no optimal SP diffu-

sion auction mechanism for social welfare, and all SP mechanisms

perform poorly in the worst case. We conduct experiments under

different settings to evaluate the performance of STM and SCM.

The results suggest that STM and SCM do not significantly sacrifice

welfare and revenue when compared to non-SP mechanisms.

Related Literature. The Sybil attack has become a fundamental

issue in traditional social networks [15], where nodes are usually

divided into two types: honest ones and Sybil ones. In such settings,

various protocols have been proposed to identify Sybil nodes and

maintain honest nodes through the graph structures [12, 19].

The Sybil attack is also destructive in auctions. The pioneer-

ing work to study Sybil attacks on combinatorial auctions [18]

proved that Sybil-proofness and Pareto optimality can’t be achieved

simultaneously. Many other works have followed. For example,

Iwasaki et al. [7] have shown that a Sybil-proof combinatorial auc-

tion mechanism may result in extremely low social welfare in some

cases. In dynamic spectrum access auctions, Sybil-proofness has

been only achieved when severe restrictions are imposed on Sybil

agents. For example, PRAM [4] requires that if an agent performs

the Sybil attack, the sum of bids given by herself and her Sybil

identities is equal to her private valuation.

2 PRELIMINARIES
In a social network, a seller 𝑠 is selling one item to a buyer among the

set of potential buyers 𝑁 = {1, 2, . . . , 𝑛}. The set 𝑁 is unknown to

the seller; instead, she only knows some buyers 𝑟 (𝑠) ⊆ 𝑁 . Likewise,

each buyer 𝑖 ∈ 𝑁 has her private social connections, represented

as a set of neighbors 𝑟 (𝑖) ⊆ 𝑁 . Each buyer 𝑖 ∈ 𝑁 also has a private

valuation of the item, which is denoted as 𝑣𝑖 . Collectively, each

buyer 𝑖 owns a private type 𝜃𝑖 = (𝑣𝑖 , 𝑟 (𝑖)) ∈ R≥0 × 2
𝑁
.

In a diffusion auction, 𝑠 can only advertise the sale to her neigh-

bors 𝑟 (𝑠) initially. Then, each buyer 𝑖 with the information of the

sale may diffuse it to some of her neighbors in 𝑟 (𝑖). Recursively,
many buyers can be informed. Each buyer is asked to give a bid on

the item besides diffusing the sale. The mechanism consequently

sells the item to an informed buyer and rewards some buyers for

their contribution of inviting others.

We model the bid and diffusion of buyer 𝑖 as the report type

𝜃 ′
𝑖
= (𝑣 ′

𝑖
, 𝑟 ′ (𝑖)) ∈ R≥0 × 2

𝑟 (𝑖 )
, where 𝑣 ′

𝑖
∈ R≥0 is her bid and 𝑟 ′ (𝑖)

is the set of buyers she diffuses to. A buyer can only diffuse to

her neighbors (i.e. 𝑟 ′ (𝑖) ⊆ 𝑟 (𝑖)). The input of the mechanism is

therefore a report profile 𝜽 ′ = (𝜃 ′
1
, . . . , 𝜃 ′𝑛), and we suppose the set

of seller’s neighbors 𝑟 (𝑠) is provided in advance and fixed.

The set of all possible types and reports of buyer 𝑖 is denoted as

Θ𝑖 = R≥0 × 2
𝑁
, and we denote the set of all possible profiles as Θ.

Definition 2.1 (Diffusion auction mechanism). A diffusion auc-

tion mechanism M is defined as a pair of allocation and payment

schemes (𝝅 (·), 𝒕 (·)) for arbitrary agent set 𝑁 :

• allocation scheme 𝝅 : Θ → {0, 1}𝑛 ;
• payment scheme 𝒕 : Θ → R𝑛 .

Given the reported type profile 𝜽 ′ = (𝜃 ′
1
, . . . , 𝜃 ′𝑛), whose length is

not known in advance, 𝜋𝑖 (𝜽 ′) = 1 means that agent 𝑖 wins the item,

and 0 otherwise. She then pays 𝑡𝑖 (𝜽 ′) ∈ R to the seller.

We assume the following feasibility conditions for diffusion auc-

tions throughout the paper:

(1) Allocation feasibility:

∑
𝑖∈𝑁 𝜋𝑖 (𝜽 ′) ≤ 1,

(2) Anonymity: except for ties, the mechanism output is invari-

ant to any permutation on 𝑁 , and

(3) Ignorance of unreachable vertices: if 𝑖 ∈ 𝑁 is unreachable

from 𝑠 on the social network represented by𝜽 ′, then 𝜋𝑖 (𝜽 ′) =
𝑡𝑖 (𝜽 ′) = 0, and the mechanism output must be invariant with

respect to 𝜃 ′
𝑖
.

We can use graph theory to formalize the third condition above.

The social network represented by the true type profile 𝜽 can be

denoted as a graph 𝐺 with vertex set 𝑉 (𝐺) = {𝑠} ∪ 𝑁 and directed

edge set 𝐸 (𝐺) = {(𝑥,𝑦) | 𝑥 ∈ 𝑉 (𝐺), 𝑦 ∈ 𝑟 (𝑥)}. Likewise, a graph
𝐺 (𝜽 ′) can be defined for the report profile 𝜽 ′. The subgraph of

𝐺 (𝜽 ′) with vertices that are reachable from 𝑠 is denoted as 𝐺𝑠 (𝜽 ′).
All vertices unreachable from 𝑠 are excluded from it. When 𝜽 ′ can
be inferred from context, we omit it and write 𝐺𝑠 (𝜽 ′) as 𝐺𝑠 . The
ignorance condition means that the mechanism can only use the

structural information about𝐺𝑠 (𝜽 ′) and the bids of𝑉 (𝐺𝑠 ) as inputs.
This is a key difference between a diffusion mechanism and the

traditional auction mechanism.

The agents have a quasi-linear utility model. Given a buyer’s true

type 𝜃𝑖 = (𝑣𝑖 , 𝑟 (𝑖)) and the report profile of all agents 𝜽 ′, her utility
under mechanismM = (𝝅 , 𝒕) is𝑢𝑖 (𝜃𝑖 , 𝜽 ′,M) = 𝑣𝑖 ·𝜋𝑖 (𝜽 ′) −𝑡𝑖 (𝜽 ′).

Session 4C: Auctions + Voting
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1380



2.1 Non-deficiency, Individually Rationality
and Incentive Compatibility

In this section, we define the objectives of diffusion mechanisms.

An individually rational mechanism is one in which every buyer

can attain a non-negative utility by reporting truthfully, regardless

of what other agents do. This means that any agent is at least willing

to participate.

Definition 2.2 (IR). A diffusion mechanism M = (𝝅 , 𝒕) is ex-
post individually rational (IR) if for all 𝜽 ∈ Θ, for all 𝑖 ∈ 𝑁 with

𝜃𝑖 = (𝑣𝑖 , 𝑟 (𝑖)), it is guaranteed that 𝑢𝑖 (𝜃𝑖 , 𝜽 ,M) ≥ 0.
1

A desired mechanism encourages agents to behave truthfully, i.e.,

to bid their private values and to diffuse the information to all their

neighbors. In a diffusion auction, an agent may act strategically by

overbidding, underbidding, or not sharing information with some

neighbors, if it provides a benefit. Dominant-strategy incentive

compatibility requires that reporting the true type is a dominant

strategy for every buyer, ruling out these strategic reports.

Definition 2.3 (DSIC). A diffusion mechanism M = (𝝅 , 𝒕) is
dominant-strategy incentive compatible (DSIC, or IC for short) if, for

any buyer 𝑖 ∈ 𝑁 with type 𝜃𝑖 , any report profile of other agents 𝜽
′
−𝑖

and any 𝜃 ′
𝑖
∈ Θ𝑖 satisfying 𝑟

′ (𝑖) ⊆ 𝑟 (𝑖), we have 𝑢𝑖 (𝜃𝑖 , 𝜽 ,M) ≥
𝑢𝑖 (𝜃𝑖 , 𝜽 ′,M), where 𝜽 = (𝜃𝑖 , 𝜽 ′−𝑖 ) and 𝜽

′ = (𝜃 ′
𝑖
, 𝜽 ′−𝑖 ).

Some IC diffusion auction mechanisms, like VCG, may give a

negative revenue to the seller [11]. We define the following non-

deficiency condition to rule out these mechanisms.

Definition 2.4. AdiffusionmechanismM is non-deficit, or weakly
budget balanced, if its revenue for the seller is always non-negative,

or formally,RM (𝜽 ) ≥ 0 for all 𝜽 ∈ Θ, whereRM (𝜽 ) = ∑
𝑖∈𝑁 𝑡𝑖 (𝜽 )

is the revenue to the seller.

2.2 The Sybil Attack and Sybil-Proofness
In this paper, we also want to disincentivize Sybil attacks. A Sybil

attack happens when a buyer 𝑖 creates multiple fake Sybil iden-

tities (or false-name identities) 𝑖1, 𝑖2, . . . , 𝑖𝑘 , each with its report

𝜃 ′
𝑖1
, . . . , 𝜃 ′

𝑖𝑘
. We call the set of all identities of 𝑖 as 𝜙 = {𝑖, 𝑖1, . . . , 𝑖𝑘 }.

For each identity 𝑖 𝑗 ∈ 𝜙 , its report 𝜃 ′𝑖 𝑗 = (𝑣 ′
𝑖 𝑗
, 𝑟 ′ (𝑖 𝑗 )) must satisfy

𝑟 ′ (𝑖 𝑗 ) ⊆ 𝑟 (𝑖) ∪ 𝜙 since 𝑖 does not know any agent beyond her-

self, her neighbors, and her Sybil identities. See Figure 1 for an

illustration of Sybil attacks.

We define Sybil-proofness as a criterion for ruling out such

attacks. A mechanism is Sybil-proof if, for every buyer, any form

of Sybil attack cannot bring a higher utility.

Definition 2.5 (SP). A diffusion mechanismM = (𝝅 , 𝒕) is Sybil-
proof (SP) if, for any type profile 𝜽 , any buyer 𝑖 ∈ 𝑁 , and for all

𝜃 ′
𝑖
, 𝜃 ′
𝑖1
, . . . , 𝜃 ′

𝑖𝑘
∈ Θ𝑖 satisfying 𝑟

′ (𝑖) ⊆ 𝜙∪𝑟 (𝑖) and∀𝑖 𝑗 ∈ 𝜙 : 𝑟 ′ (𝑖 𝑗 ) ⊆
𝜙 ∪ 𝑟 (𝑖), we have

𝑢𝑖 (𝜃𝑖 , 𝜽 ,M) ≥ 𝑢𝑖 (𝜃 ′𝑖 , 𝜽
′,M) +

∑︁
𝑖 𝑗 ∈𝜙

𝑢𝑖 𝑗 (𝜃 ′𝑖 𝑗 , 𝜽
′,M)

where the Sybil-attack report profile is 𝜽 ′ = (𝜃 ′
𝑖
, 𝜃 ′
𝑖1
, . . . , 𝜃 ′

𝑖𝑘
, 𝜽−𝑖 ).

1
The definition of IR in previous literature in diffusion auctions does not require the

buyer to truthfully diffuse, which differs from the traditional definition in AGT. In the

setting of this paper, the two definitions are equivalent, and the traditional definition

is presented.

s

20

50

a

90
b c

(a) (c)(b)

50 90 89
b c a1c

50 90

20

b

a

a1
30

d

d

s s

20
a

30
d

Figure 2: Sybil attack counterexamples of VCG and IDM.

A Sybil attacker can bring an arbitrary number 𝑘 of Sybil identi-

ties, and each of the 𝑘 + 1 identities (including the agent herself)

can report arbitrarily. This formulation is the most general form

of Sybil attacks without collusion. As a degenerate case, a Sybil

attack with 𝑘 = 0 is equivalent to a single-agent strategic play in

the previous diffusion action setting. Therefore, Sybil-proofness

implies incentive compatibility.

2.3 Vulnerability of Existing Mechanisms
To the best of our knowledge, none of the existing diffusion auc-

tions in the literature is Sybil-proof; the only exception is the trivial

Neighbor Second-Price Auction (NSP), where only the seller’s neigh-

bors are considered with a second price auction
2
(see Appendix B

in the full version of this paper [2] for a detailed definition). As

assumed, the seller’s neighbors are known to the seller, so there is

no chance for them to create fake identities to join NSP.

Other existing mechanisms for diffusion auctions are all vulner-

able to the Sybil attack. Here we use the two typical mechanisms

proposed in [11], VCG and IDM, to demonstrate the possibility of

Sybil attacks. Definitions of these mechanisms are given in Appen-

dix B.

Observation 1. VCG and IDM are not Sybil-proof.

The classic VCGmechanism can be easily extended as a diffusion

auction. Under VCG, the item is sold to the highest bidder, and other

agents are paid the social welfare increase due to their participation.

In the example shown in Figure 2(a), if the intermediate node 𝑎

does not participate, 𝑏 and 𝑐 will be unable to join, and the social

welfare will be 30. With 𝑎’s participation, the social welfare is 90,

so VCG will pay 60 to 𝑎. Now, if 𝑎 creates a fake identity 𝑎1, then

both 𝑎 and 𝑎1 will be paid 60 (a successful Sybil attack).

Since VCG paid a lot to the agents connecting the highest bidder

to the seller, it cannot be non-deficit. Thus, IDM was proposed to

guarantee that the seller’s revenue is non-negative. IDM does not

directly sell the item to the highest bidder; it uses a resale process

to find the winner. It first allocates the item to the first cut point to

reach the highest bidder, and the buyer pays the highest bid without

her participation. In the example shown in Figure 2(a), the item is

2
Confusingly, there are two mechanisms named VCG in the literature of diffusion

auctions: 1) the single-item VCG auction among the seller’s neighbors, and 2) the

generic VCG mechanism applied to diffusion auction [11]. To disambiguate, the former

is called Neighbor Second-Price (NSP) in this paper.
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first allocated to 𝑎 and 𝑎 pays 30. Then 𝑎 can choose to resell it to 𝑐

and 𝑐 has to pay the highest without 𝑐 to 𝑎, which is 50. Now, if 𝑎

creates a fake neighbor 𝑎1 with bid 89, then 𝑐 will need to pay 89

to 𝑎 (another successful Sybil attack).

We also proved that some other existing diffusionmechanisms [20,

21] are not Sybil-proof in Appendix of our full version [2].

3 ANALYSIS OF THE SYBIL ATTACK
In this section, we study the features of Sybil attacks. In our model,

a Sybil identity𝑦 created by a real agent 𝑥 can only be connected by

the other Sybil identities of 𝑥 or by 𝑥 itself. Thus, any path from 𝑠 to

𝑦 must include 𝑥 . In graph theory [9], this is known as 𝑥 dominating
𝑦, or 𝑥 dom𝑦, and 𝑥 is called a dominator of 𝑦. Every vertex 𝑦 has

at least two dominators: 𝑦 itself and 𝑠 . If it has no other dominators,

one can be sure that 𝑦 is not a Sybil identity.

In previous diffusion auction mechanisms like VCG and IDM, an

agent is rewarded for inviting others only if it is a dominator of the

item winner, which makes Sybil attacks (creating dominatorship)

profitable. This explains why Sybil-proofness is hard to achieve in

diffusion auctions.

An immediate dominator of 𝑥 , denoted as 𝑣 = 𝑖𝑑𝑜𝑚(𝑥), is defined
as the unique vertex 𝑣 who dominates 𝑥 and is dominated by every

other dominator𝑤 ≠ 𝑣 of 𝑥 .

Theorem 3.1. Every vertex on the graph 𝐺𝑠 (𝜃 ′) except 𝑠 has an
immediate dominator, and the edges {(𝑖𝑑𝑜𝑚(𝑥), 𝑥) | 𝑥 ∈ 𝑁 } form a
directed tree with 𝑠 being its root, called the dominator tree of𝐺𝑠 (𝜃 ′)
rooted at 𝑠 .

This is exactly Theorem 1 of [9]. The definition of dominators is

identical to diffusion critical nodes in [11], and the path from 𝑠 to 𝑥

on the dominator tree is the diffusion critical sequence of 𝑥 .

3.1 Graphical Non-Sybil Agents
In this subsection, we use graph theory to characterize the set

of vertices that cannot be Sybil identities. Firstly, the seller and

her neighbors are not Sybil identities. To account for trustworthy

entities like public figures and centralized institutions, we allow for

an optional set of vertices to be provided externally, which must be

guaranteed to be free of Sybil identities. This set Γ0 defaults to be

∅ if not provided. Allowing such external information makes our

mechanisms more flexible.

For the convenience of expression, we first give the definition of

meeting points.

Definition 3.2 (Meeting points). For a pair of vertices 𝑥,𝑦, a vertex
𝑧 is defined to be a meeting point of 𝑥 and 𝑦 if there are two vertex-

disjoint paths to 𝑧, from 𝑥 and 𝑦 respectively.

If a vertex is a meeting point of two other non-Sybil vertices

𝑥,𝑦, it must not be a Sybil identity. This is because all paths from

non-Sybil vertices to a Sybil identity 𝑖 𝑗 must contain its owner 𝑖

which contradicts the definition of meeting points. Therefore, we

have the following definition of graphical non-Sybil agents which

iteratively collects meeting points of existing members.

Definition 3.3 (Graphical non-Sybil agents). The set Γ(𝜃 ′) ⊆
𝑉 (𝐺𝑠 ) is defined as follows:

(1) Initialize the set as Γ(𝜃 ′) := {𝑠} ∪ 𝑟 (𝑠) ∪ Γ0.

(2) For each pair of vertices 𝑥,𝑦 ∈ Γ(𝜃 ′), if 𝑧 is a meeting point

of them in graph 𝐺𝑠 , then add 𝑧 to the set, i.e. Γ(𝜃 ′) :=

Γ(𝜃 ′) ∪ {𝑧}.
(3) Repeat step 2 until there are no more vertices to add.

It can be shown that Γ(𝜃 ′) is precisely the maximal set of vertices

that cannot be Sybil identities. This will be proven in Lemma 5.3

after the introduction of Sybil clusters.

3.2 Overly Sensitive Mechanism
Given the graphical non-Sybil agents, a straightforward idea to

achieve Sybil-proofness is to apply the existing diffusion mecha-

nisms on non-Sybil agents. This idea of detection and removal is

a common solution to Sybil attacks in social networks [12, 16, 17].

However, we find that such an approach doesn’t work because an

agent can misreport her neighbor set and turn non-Sybil agents

into suspicious ones.

We propose the overly sensitive mechanism (OSM) to show why

such an idea does not work. In OSM, we ignore all potential Sybil

identities (i.e. all 𝑖 ∉ Γ(𝜽 ′)) and focus on the reachable part of the

induced subgraph inducing from Γ(𝜽 ′), denoted as𝐺𝑠 [Γ(𝜽 ′)]. The
subgraph 𝐺𝑠 [Γ(𝜽 ′)] contains only vertices in Γ(𝜽 ′), and for each

vertex 𝑥 in it, there is a path from 𝑠 to 𝑥 that only passing non-Sybil

agents. We adopt IDM on 𝐺𝑠 [Γ(𝜽 ′)].
OSM seems Sybil-proof because Sybil identities are all ruled

out. However, we find that OSM is not even incentive compatible.

In OSM, the detection-and-removal process can be exploited by

malicious agents. In Figure 3a, every vertex will be in Γ(𝜽 ). Under
IDM, 𝑎 will buy the item with the second-highest price 𝑣 ′𝑐 = 9.

However, if 𝑎 chooses not to diffuse the information to 𝑐 as in

Figure 3b, 𝑐 would be excluded from 𝐺𝑠 [Γ(𝜽 ′)], and 𝑎 would get

the item with a lower payment of 7.

Since SP implies IC, OSM is not Sybil-proof either. Therefore, we

need a new approach to resist Sybil attacks in diffusion auctions.

4 SYBIL TAX MECHANISM
In this section, we present the first main contribution of this pa-

per, our first Sybil-proof diffusion mechanism, called Sybil Tax

Mechanism (STM).

Before describing STM, we introduce some notations. We use

Max[𝑆] to denote the highest bid in a set 𝑆 , that is, Max[𝑆] =

max𝑥∈𝑆 𝑣 ′𝑥 . We also denote the vertices she dominates as 𝛼 (𝑥) =

s

712

9

a b

c

s

712

9

a b

c

(a) (b)

Figure 3: A counterexample for the overly sensitive mecha-
nism. The set Γ(𝜽 ′) is denoted by the dashed border rectangle.
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{𝑦 | 𝑥 dom𝑦} for every vertex 𝑥 . The vertex 𝑥 is critical for these

𝑦 ∈ 𝛼 (𝑥), because without her diffusion, these vertices are not

reachable from 𝑠 . It is also known as diffusion critical children in

the terminology of previous literature on diffusion auctions.

Sybil Tax Mechanism (STM)

(1) Given the reported type profile 𝜽 ′, we first calculate
the reachable reported graph 𝐺𝑠 (𝜽 ′) and the graphical

non-Sybil agent set Γ(𝜽 ′). Let’s write them as 𝐺𝑠 and

Γ for short.

(2) Find the reachable buyer with the highest bid, denoted

by 𝑥∗, where 𝑣 ′
𝑥∗ = Max[𝑉 (𝐺𝑠 )].

(3) Compute the dominator sequence 𝐶𝑥∗ = {𝑐0 =

𝑠, 𝑐1, . . . , 𝑐ℓ = 𝑥∗}. Specifically, we have 𝑐 𝑗 =

𝑖𝑑𝑜𝑚(𝑐 𝑗+1), for all 0 ≤ 𝑗 < ℓ .

(4) We define 𝑝 𝑗 , the buying price of 𝑐 𝑗 , as the highest bid

without the participation of 𝑐 𝑗 . The selling price of 𝑐 𝑗 ,

denoted as 𝑞 𝑗 , is defined as the highest bid among all

vertices that are guaranteed to not be a Sybil identity

of 𝑐 𝑗 . Formally,

𝑝 𝑗 = Max[𝑉 (𝐺𝑠 ) \ 𝛼 (𝑐 𝑗 )] for 1 < 𝑗 ≤ ℓ,

𝑞 𝑗 = Max[(𝑉 (𝐺𝑠 ) \ 𝛼 (𝑐 𝑗 )) ∪ 𝛽 𝑗 ] for 1 ≤ 𝑗 < ℓ,

where

𝛽 𝑗 = {𝑥 | ∃𝑦 ≠ 𝑐 𝑗 , 𝑦 ∈ (𝛼 (𝑐 𝑗 ) \ 𝛼 (𝑐 𝑗+1)) ∩ Γ, 𝑥 ∈ 𝛼 (𝑦)}.
(5) Pick a 𝑐𝑑 with the lowest index 𝑑 that satisfies 𝑣 ′𝑐𝑑 ≥ 𝑞𝑑 .

If such 𝑑 does not exist among index 1 ≤ 𝑑 < ℓ , we set

𝑑 = ℓ . This agent 𝑐𝑑 wins the item with 𝜋𝑐𝑑 (𝜽 ′) = 1.

The payment function is calculated as

𝑡𝑐 𝑗 (𝜽 ′) =
{
𝑝 𝑗 − 𝑞 𝑗 for 1 ≤ 𝑗 < 𝑑,

𝑝 𝑗 for 𝑗 = 𝑑.

(6) The payment and allocation of all other buyers are zero.

In this mechanism, the item is sold along the dominator sequence

from 𝑠 to 𝑥∗ as a series of successive transactions between neigh-

boring agents. Agent 𝑗 ’s buying price 𝑝 𝑗 is set as other agents’

optimal social welfare (i.e. the highest bid of them) when she does

not participate in the auction. This ensures that her report cannot

lower her buying price. The agent 𝑗 can sell the item further down

the critical sequence to reach more potential buyers with a selling

price of 𝑞 𝑗 . To achieve Sybil-proofness, we need Sybil-attacking

to be not profitable, i.e. not able to increase 𝑞 𝑗 . When the item is

passed from 𝑐 𝑗 to 𝑐 𝑗+1, since the latter may be a Sybil identity of

the former, the selling price 𝑞 𝑗 of 𝑐 𝑗 must be irrelevant to the report

of 𝑐 𝑗+1. Indeed, 𝑞 𝑗 is defined as the highest bid among those who

are guaranteed not the Sybil identity of her. The set 𝛽 𝑗 is defined

in a way that it is monotonically increasing with the report of 𝑐 𝑗 to

incentivize diffusion, and that it contains no Sybil identity.

Conceptually, a buyer who gets the item can choose to keep it

or to resell. She will pass the item only when her selling price is

higher than her private value. STM simulates this choice based on

buyers’ bid through the choice of the winner 𝑑 .

(a) (b)
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Figure 4: Examples of the Sybil tax mechanism and the Sybil
cluster mechanism.

This series of transactions are summed up by STM. In a single

transaction, buyer 𝑐 𝑗 will receive 𝑞 𝑗 units of money and 𝑐 𝑗+1 pays

𝑝 𝑗+1 for it. The price difference 𝑝 𝑗+1 − 𝑞 𝑗 can be considered as a

“tax” paid by the intermediate buyers (which we call brokers) to
prove their innocence.

Since 𝑉 (𝐺𝑠 ) \ 𝛼 (𝑐 𝑗 ) ⊆ (𝑉 (𝐺𝑠 ) \ 𝛼 (𝑐 𝑗 )) ∪ 𝛽 𝑗 ⊆ 𝑉 (𝐺𝑠 ) \ 𝛼 (𝑐 𝑗+1),
we have 𝑝 𝑗 ≤ 𝑞 𝑗 ≤ 𝑝 𝑗+1, so the monetary gain of brokers and the

tax are all non-negative. This leads to individual rationality and

non-deficiency.

Figure 4(a) illustrates STM with an example. We assume that the

externally provided set Γ0 is empty. When all buyers report their

type truthfully, the mechanism runs as follows.

The set of graphical non-Sybil agents Γ(𝜽 ) is calculated as {𝑠, 𝑎, 𝑏,
𝑖, 𝑘}. The mechanism identifies the highest-bidder ℎ and calculates

the dominator sequence𝐶ℎ = {𝑐0 = 𝑠, 𝑐1 = 𝑏, 𝑐2 = 𝑒, 𝑐3 = 𝑓 , 𝑐4 = ℎ}.
The item is sold to 𝑐4 = ℎ because 𝑐4 is the only buyer on the

dominator sequence that satisfies 𝑣 ′𝑐 𝑗 ≥ 𝑞 𝑗 . Then we calculate the

payments. For brokers 𝑐1, 𝑐2, 𝑐3, 𝑝1 = 𝑝2 = 𝑝3 = 26 = 𝑞1 = 𝑞2 = 𝑞3,

so they get paid 0. The winner 𝑐4 = ℎ pays 𝑝4 = 29. The seller gets

a revenue of 29. In short, the buyer ℎ will pay 29 to buy the item.

Other buyers get zero utility.

Theorem 4.1 (Main). STM is IR, non-deficit and Sybil-proof.

The proof of Theorem 4.1 will be elaborated in Appendix E of [2].

We provide a proof sketch here.

Intuitively, STM is individually rational because 𝑞 𝑗 ≥ 𝑝 𝑗 and

𝑣 ′𝑐𝑑 ≥ 𝑝𝑑 . A non-Sybil-attacking buyer 𝑐 𝑗 would want to maximize

𝛽 𝑗 to maximize her utility, which can be achieved by maximal

diffusion. By the graph-theoretic properties of Sybil attacks, if a

Sybil attack happens on the dominator sequence, the identities of

the same buyer must be contiguous on the sequence, and the tax

paid by such brokers would disincentivize this attack.

The above theorem shows that STM is incentive compatible

because Sybil-proofness implies IC. In a previous work [10], Bin

Li et al. identified one class of diffusion mechanisms called critical

diffusion mechanism (CDM) on social graphs, which covers a large

class of incentive compatible mechanisms. The successive reselling

in STM resembles CDM, but STM is not a member of that class.
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By introducing non-Sybil agents externally (i.e. Γ0 ≠ ∅), STM can

contribute the occurrence of some “isolated” non-Sybil agents to

buyers in the dominator sequence.

Recall the example in Figure 4, and we can see that every buyer

other than the item’s winner has zero utility. The following lemma

shows that this is not a fluke. In essence, all possible profits of

the brokers are taxed by the seller. The proof can also be found in

Appendix E in the full version [2].

Lemma 4.2. In STM when Γ0 = ∅, every buyer, except the item
winner, has a payment of zero, and thus zero utility.

5 SYBIL CLUSTER MECHANISM
In STM, we reward the brokers for their contribution to introducing

agents in Γ(𝜽 ′). However, when Γ0 is empty, a broker cannot bring

a graphical non-Sybil agent on her own. This leads to zero profit

for all brokers, as shown in Lemma 4.2, and their incentive to invite

other agents is weak.

To create a positive incentive without sacrificing Sybil-proofness,

we propose a clustering process that removes edges from 𝐺𝑠 (𝜽 ′)
while keeping Γ(𝜽 ′) unchanged. This is used to reward brokers

who introduce non-Sybil agents.

5.1 Clustering
Definition 5.1 (Sybil clusters). For every 𝑥 ∈ Γ(𝜽 ′), we define its

Sybil cluster 𝐾𝑥 as below:

The cluster 𝐾𝑥 contains vertex 𝑡 if and only if there is a path

from 𝑥 to 𝑡 on 𝐺𝑠 (𝜽 ′) that does not contain any vertex in Γ(𝜽 ′)
other than 𝑥 itself.

The vertex 𝑥 is called the root of 𝐾𝑥 . The Sybil cluster rooted
at 𝑥 includes all vertices that might be the Sybil identities of 𝑥 .

All non-Sybil vertices in Γ(𝜽 ′) other than 𝑥 are not in 𝐾𝑥 , and all

vertices in 𝐾𝑥 \ {𝑥} are excluded from Γ(𝜽 ′).
The clusters {𝐾𝑥 | 𝑥 ∈ Γ(𝜽 ′)} get the name because they form a

partition of𝑉 (𝐺𝑠 (𝜽 ′)), which is shown in the following lemma. Its

proof is deferred to Appendix D in the full version [2].

Lemma 5.2. Sybil clusters are disjoint, and every vertex 𝑡 in𝑉 (𝐺𝑠 (𝜽 ′))
belongs to some Sybil cluster 𝐾𝑥 .

Using Sybil clusters, one can prove that Γ(𝜽 ′) is the maximal set

of guaranteed non-Sybil vertices.

Lemma 5.3. Any vertex 𝑡 in𝐺𝑠 (𝜽 ′) \Γ(𝜽 ′) may be a Sybil identity
of some other vertex in Γ(𝜽 ′).

Proof. Given a report profile 𝜽 ′, we can compute Γ(𝜽 ′) and the
Sybil clusters by definition. For any 𝑡 ∉ Γ(𝜽 ′), there exists 𝑥 ∈ Γ(𝜽 ′)
such that 𝑡 ∈ 𝐾𝑥 from Lemma 5.2. Let 𝑟 (𝑥) =

⋃
𝑢∈𝐾𝑥

𝑟 (𝑢) \ 𝐾𝑥 ,
and

˜𝜃𝑥 = (𝑟 (𝑥), 𝑣 ′𝑥 ). We can see that, under the true type profile

𝜽 = ( ˜𝜃𝑥 , 𝜽
′
−𝐾𝑥

), the agent 𝑥 may create Sybil identities 𝜙 = 𝐾𝑥 and

make the report profile identical to 𝜽 ′. This shows that 𝑡 may be a

Sybil identity of 𝑥 . □

5.2 SCM Mechanism

(a) (c)(b)

Figure 5: A visualization of SCM.

Sybil Cluster Mechanism (SCM)

(1) Given the reported type profile 𝜽 ′ as input, we recon-
struct a social network graph 𝐻 with vertices in Γ(𝜽 ′).
Formally, 𝐻 = (Γ(𝜽 ′), 𝐸 (𝐻 )), where

𝐸 (𝐻 ) =
{
(𝑥,𝑦) | ∃𝑖 ∈ 𝐾𝑥 , 𝑗 ∈ 𝐾𝑦 s.t. (𝑖, 𝑗) ∈ 𝐸 (𝐺𝑠 (𝜽 ′))

}
.

(2) Sample a random shortest-path tree
3
of 𝐻 with equal

probability and denote it as 𝑇𝐻 .

(3) We construct a subgraph 𝐺 of 𝐺𝑠 (𝜽 ′) using 𝑇𝐻 .
Formally, 𝐺 = (𝑉 (𝐺𝑠 (𝜽 ′)), 𝐸 (𝐺)) where 𝐸 (𝐺) is de-
fined as

𝐸 (𝐺𝑠 (𝜽 ′)) \ {(𝑖, 𝑗) | 𝑖 ∈ 𝐾𝑥 , 𝑗 ∈ 𝐾𝑦, (𝑥,𝑦) ∈ 𝐸 (𝐻 ) \ 𝐸 (𝑇𝐻 )}.
Specifically, edge (𝑖, 𝑗) on graph 𝐺𝑠 (𝜽 ′) is deleted if

𝑖 ∈ 𝐾𝑥 , 𝑗 ∈ 𝐾𝑦, 𝑥 ≠ 𝑦 and (𝑥,𝑦) ∉ 𝑇𝐻 . All the remaining

edges form a new graph 𝐺 .

(4) Perform STM with 𝐺𝑠 = 𝐺 , Γ = Γ(𝜽 ′) rather than
𝐺𝑠 = 𝐺𝑠 (𝜽 ′), Γ = Γ(𝜽 ′) on the agents’ reports.

In SCM,we remove some edges in𝐺𝑠 (𝜽 ′) according to the randomly

selected shortest-path tree 𝑇𝐻 and keep Γ(𝜽 ′) as graphical non-
Sybil agents. The appearance of some vertices in Γ can be attributed

to some brokers, thus increasing their profit.

The example in Figure 4(b) gives an example of the Sybil cluster

mechanism. The clustering process and a possible edge-removing

process are shown in Figure 5. Assuming that all buyers report their

true type, SCM runs as follows:

Themechanism divides𝑉 (𝐺𝑠 (𝜽 )) into five Sybil clusters {𝐾𝑠 , 𝐾𝑎, 𝐾𝑏 ,
𝐾𝑖 , 𝐾𝑘 }, where 𝐾𝑠 = {𝑠}, 𝐾𝑎 = {𝑎, 𝑐, 𝑑}, 𝐾𝑏 = {𝑏, 𝑒, 𝑓 , 𝑔, ℎ}, 𝐾𝑖 =

{𝑖, 𝑗}, and𝐾𝑘 = {𝑘, 𝑙,𝑚}. The mechanism randomly picks a shortest-

path tree 𝑇𝐻 and constructs a subgraph 𝐺 . We only show the case

when the mechanism picks the tree 𝑇𝐻 as Figure 5(b), where the

mechanism deletes edges (𝑎, 𝑖) and (𝑖, 𝑘). In this case, edges (𝑐, 𝑖),
(𝑑, 𝑖) and (𝑖, 𝑘) are removed from 𝐺𝑠 (𝜽 ). With Γ = {𝑠, 𝑎, 𝑏, 𝑖, 𝑘}, we
perform STM on 𝐺 .

3
For every vertex 𝑥 ∈ 𝑉 (𝐻 ) , we denote the shortest-path length from 𝑠 to it on graph

𝐻 as 𝑑𝑖𝑠𝑥 (𝐻 ) . A spanning tree 𝑇𝐻 of 𝐻 is a subgraph of 𝐻 with 𝑉 (𝑇𝐻 ) = 𝑉 (𝐻 ) ,
which is also a directed tree. A spanning tree𝑇𝐻 is said to be a shortest-path tree if,

for every vertex 𝑥 ∈ 𝑉 (𝐻 ) , 𝑑𝑖𝑠𝑥 (𝑇𝐻 ) = 𝑑𝑖𝑠𝑥 (𝐻 ) . A uniformly distributed random

shortest-path tree can be generated by independently selecting a parent 𝑦 for each

𝑥 ≠ 𝑠 , where 𝑦 is selected from {𝑦 | 𝑑𝑖𝑠𝑥 (𝐻 ) = 𝑑𝑖𝑠𝑦 (𝐻 ) + 1, (𝑥, 𝑦) ∈ 𝐸 (𝐻 ) } with
equal probability.
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STM identifies the buyer with the highest bidder to be ℎ and

calculates the dominator sequence 𝐶ℎ = {𝑐0 = 𝑠, 𝑐1 = 𝑏, 𝑐2 = 𝑒, 𝑐3 =

𝑓 , 𝑐4 = ℎ}. After comparing the bids, we select 𝑐4 = ℎ as the winner

of the item.

For the payments, broker 𝑐1 = 𝑏 pays 𝑡𝑏 = 𝑝1 − 𝑞1 = 19 − 19 = 0,

𝑐2 = 𝑒 gets −𝑡𝑒 = 𝑞2 − 𝑝2 = 21 − 19 = 2 units of money, and 𝑐3 = 𝑓

gets −𝑡𝑓 = 5. The winner 𝑐4 = ℎ pays 𝑡ℎ = 𝑝4 = 29. The seller gets

a revenue of 22.

Theorem 5.4. Sybil cluster mechanism is IR, non-deficit, and Sybil-
proof.

We give an intuition why SCM retains Sybil-proofness here.

Rigorous proof can be found in Appendix F of [2].

Assume an agent 𝑥 performs a Sybil attack. If we fix the con-

figuration of Sybil identities (the number of them and the social

structure among them), the graph structure is fixed, and so is the

clustering and the edge removal process. It is optimal for the agent

to bid truthfully since the last step of SCM, i.e. STM, is IC. This is

true for every configuration of Sybil identities.

Now the agent would pick a favorable configuration. If there

is a descendant 𝑦 connected to 𝑥 through some Sybil identities, 𝑦

would have a longer distance from the seller, thus less likely to

be chosen in the subtree of 𝑥 . It is favorable for 𝑥 to diffuse to 𝑦

directly without any Sybil identities in the middle. In this case, the

Sybil identities contribute nothing to 𝑥 , and can be removed. Thus,

SCM is Sybil-Proof.

6 DISCUSSION
In this paper, we propose two Sybil-proof mechanisms, STM and

SCM. In this section, we evaluate their performance on social wel-

fare and revenue. Comparing ourmechanismwith the non-diffusion

mechanism (i.e., NSP), other potential SP mechanisms and existing

diffusion mechanisms (e.g., IDM, VCG) which are not SP, we raise

three key questions.

(1) Do our diffusion mechanisms have better performance than

non-diffusion ones?

(2) Does STM or SCM achieve optimal social welfare and rev-

enue among all SP mechanisms?

(3) Compared with existing diffusion mechanisms, how much

do our mechanisms sacrifice to achieve Sybil-proofness?

In this section, we conduct theoretical and experimental analysis

to answer these questions. To eliminate the external effect, we

assume that Γ0 = ∅ from now on.

6.1 Comparison
We use SWM (𝜽 ) and RM (𝜽 ) to denote the social welfare and

revenue of the mechanism M under 𝜽 respectively. We have

SWM (𝜽 ) ≜
∑︁
𝑥∈𝑁

𝜋M
𝑥 (𝜽 ) · 𝑣𝑥 .

Recall that we have defined R(𝜽 ) = ∑
𝑖∈𝑁 𝑡𝑖 (𝜽 ) in Section 2.1.

The following theorem shows that both of our mechanisms out-

perform the non-diffusion NSP mechanism. Under our mechanisms,

agents’ invitations indeed benefit the seller and the society.

Theorem 6.1. For all possible type profile 𝜽 , we have

RSTM (𝜽 ) ≥ RSCM (𝜽 ) ≥ RNSP (𝜽 ),

SWSTM (𝜽 ) ≥ SWSCM (𝜽 ) ≥ SWNSP (𝜽 ) .

We are curious whether STM achieves higher social welfare and

revenue than all SP mechanisms. However, we’ll show in Section 6.2

that none of SP mechanisms always has optimal social welfare and

revenue.

The following theorems qualitatively examine the cost of Sybil-

proofness. In Theorem 6.2, we find that STM achieve better revenue

than the most cited diffusion auction, IDM [11]. However, social

welfare is sacrificed to achieve Sybil-proofness. Theorem 6.3 reflects

that there is no clear-cut comparison of the seller’s revenue between

SCM and IDM, or between SCM and VCG.

Theorem 6.2. For any possible type profile 𝜽 , we have

RSTM (𝜽 ) ≥ RIDM (𝜽 ) ≥ RVCG (𝜽 )

SWSCM (𝜽 ) ≤ SWSTM (𝜽 ) ≤ SWIDM (𝜽 ) ≤ SWVCG (𝜽 ).

Theorem 6.3. There exist two report profiles 𝜽 1, 𝜽 2, such that

RSCM (𝜽 1) > RIDM (𝜽 1),RSCM (𝜽 1) > RVCG (𝜽 1),

RSCM (𝜽 2) < RIDM (𝜽 2),RSCM (𝜽 2) < RVCG (𝜽 2) .

The proofs of Theorem 6.1, 6.2, and 6.3 can be found in Appen-

dix G.

6.2 Worst-Case Efficiency Analysis and (No)
Optimality

In this subsection, we conduct worst-case analysis on SP mecha-

nisms to explore the optimality of social welfare and revenue. We

consider the concept of worst-case efficiency ratio, which is adopted

from previous work [7] to measure the social welfare of Sybil-proof

combinatorial auctions in the worst case. The worst-case efficiency

ratio ofM indicates the ratio ofM’s social welfare and the optimal

social welfare in the worst-case input.

Definition 6.4. Given a type profile 𝜽 , the optimal social welfare

SW∗ (𝜽 ) is defined to be the highest private value max𝑥∈𝑉 (𝐺𝑠 ) 𝑣𝑥 .
The worst-case efficiency ratio of a mechanism M is defined as

follows:

inf

𝜽

SWM (𝜽 )
SW∗ (𝜽 ) .

Theorem 6.5. The worst-case efficiency ratio of any non-deficit,
IR, and Sybil-proof diffusion auction mechanism is zero.

The above theorem shows that the social welfare of every Sybil-

proof mechanism is far below the social optimum in some cases. Its

proof is included in Appendix H of [2].

Because every SP mechanism is sufficiently bad compared to

social optimum, it is natural to compare their social welfare relative

to other SP mechanisms. However, this further impossibility result

indicates that every SP mechanism would perform extremely worse

than another SP mechanism in some cases. Therefore, we cannot

find any optimal diffusion auction, even when the optimality is

relative to each other. The proof can also be found in Appendix H

of [2].
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Theorem 6.6. For any non-deficit, SP, and IR diffusion auction
mechanism M, and for any 𝜀 > 0, there exists another non-deficit,
SP, and IR diffusion auction mechanism M′ such that

inf

𝜽

SWM (𝜽 )
SWM′ (𝜽 )

< 𝜀.

We can derive a similar result in terms of the seller’s revenue.

Theorem 6.7. For any non-deficit, SP, and IR diffusion auction
mechanism M, and for any 𝜀 > 0, there exists another non-deficit,
SP, and IR diffusion auction mechanism M′ such that

inf

𝜽

RM (𝜽 )
RM′ (𝜽 )

< 𝜀.

The theorems above indicate that all SP mechanisms have ex-

tremely low social welfare and revenue compared to some other SP

mechanisms. These impossibility results are surprising and show

the drastic difference between diffusion mechanisms and traditional

auctions.

6.3 Experiments
Despite the qualitative comparison results in Section 6.1, we still

wonder how much our mechanisms are better than NSP, and how

much social welfare and revenue is sacrificed for Sybil-proofness.

Therefore, we conduct simulations to analyze the performance of

mechanisms in the average case. Such experiments have never been

performed on diffusion auctions in previous literature, so we have

to be innovative in the settings.

To test the diffusion auction mechanisms, we must specify the

private value vector of buyers and the social network structure.

For simplicity, we assume the private values are drawn i.i.d. from

a uniform distribution on [0, 1]. The graph structure in diffusion

auctions can be highly complex. Since diffusion auctions are held

on social networks, we take inspirations from network science to

create distributions for graphs. Price’s model [3] is a simple and

classical model for directed networks, used to describe various

scale-free networks in the real world [14]. It generates a graph of 𝑛

vertices, each with a degree of𝑚.

The mechanisms are tested with graphs with 𝑛 = 100 vertices,

and the density can be controlled by changing the parameter𝑚. For

each𝑚, 1,000 inputs are generated as specified above. We assume

that all agents act truthfully in the experiment. Five mechanisms

are tested: NSP, STM, SCM, IDM and VCG.We calculate and analyze

their social welfare and revenue. The results are visualized with

box plots in Figure 6.

We have the following observations. Firstly, our mechanisms

achieve significantly higher social welfare and revenue than the

non-diffusion NSP mechanism. Secondly, the average-case social

welfare distribution of either STM or SCM is very close to the

social optimum (VCG), especially when the graph is denser. Thirdly,

STM has the highest revenue, which is consistent with theoretical

analysis. Finally, seller’s revenue of SCM is slightly lower than IDM,

and higher than VCG.

Experimental results indicate that our diffusion mechanisms

have significantly better performance than NSP, and we do not

sacrifice seller’s revenue and social welfare much to achieve Sybil-

proofness.
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(a) Social welfare,𝑚 = 3.
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(b) Social welfare,𝑚 = 5.
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(c) Seller’s revenue,𝑚 = 3.
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(d) Seller’s revenue,𝑚 = 5.

Figure 6: The welfare and revenue distribution of five mecha-
nisms on graphs of different densities. Orange line: median;
green triangle: mean; box: 25% to 75%; whisker: 5% to 95%.

7 CONCLUSIONS
In this paper, we study an important issue in diffusion auctions,

the Sybil attack. We find that previous diffusion mechanisms are

vulnerable to Sybil attacks. We have proposed two novel solutions,

STM and SCM, and proved that they are incentive compatible and

Sybil-proof. We further discuss the social welfare and revenue of

these two mechanisms. Theoretical analysis and experiments indi-

cate that STM and SCM achieve Sybil-proofness with little sacrifice

in the social welfare and revenue.

We also conduct worst-case analysis on all Sybil-proof diffusion

mechanisms. We prove negative conclusions that the social welfare

and revenue of every SP mechanism is far below some other SP

mechanism in some cases.

Our work raises many open problems in the domain of Sybil-

proof diffusion auctions. Firstly, how to develop Sybil-proof diffu-

sion mechanisms for selling multiple items? Secondly, is there any

other effective way to achieve Sybil-proofness? Thirdly, since we

can’t pick out the optimal Sybil-proof diffusion mechanism in the

worst case, can we develop other methods to compare SP mecha-

nisms? Or can we only compare a subset of all SP mechanisms to

avoid such negative conclusions? Furthermore, how to reward the

intermediate buyers fairly is also worth consideration.
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