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ABSTRACT
We study the problem of selecting a single element from a set of
candidates on which a group of agents has some spatial preferences.
The exact distances between agent and candidate locations are
unknown but we know how agents rank the candidates from the
closest to the farthest. Whether it is desirable or undesirable, the
winning candidate should either minimize or maximize its aggre-
gate distance to the agents. The goal is to understand the optimal
distortion, which evaluates how good an algorithm that determines
the winner based only on the agent rankings performs against the
optimal solution. We give a characterization of the distortion in
the case of latent Euclidean distances such that the candidates are
aligned, but the agent locations are not constrained. This setting
generalizes the well-studied setting where both agents and candi-
dates are located on the real line. Our bounds on the distortion are
expressed with a parameter which relates, for every agent, the dis-
tance to her best candidate to the distance to any other alternative.
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1 CONTEXT
The problem of electing a set of representatives is central in social
choice theory. Some voters (a.k.a. agents) express their preferences
over a set of candidates and one has to aggregate the voters’ pref-
erences to identify the winners (see e.g., [28]). In typical voting
scenarios, the voters can only express ordinal preferences over
the candidates, which are consistent and summarize their cardinal
preferences.

In a recent stream of articles (see, for example, [3] for a recent
survey), researchers study problems where some agents have latent
distances over a set of candidates but these distances are unknown.
Nevertheless, each agent has reported a ranking of the candidates.
Though these rankings are consistent with the latent distance func-
tion, we are not guaranteed to find the candidates whose aggregate
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distance to the agents is minimum, even if we aim to choose a single
candidate [4].

Similar to the approximation ratio [27], the distortion measures
the worst-case performance of an algorithm due to lack of cardinal
information [6, 25]. The intriguing question of determining the best
distortion for selecting a single winner (called the metric distortion
problem) has attracted a lot of attention [1, 2, 24]. Gkatzelis et al.
[16] proposed a deterministic algorithm with distortion 3, which is
optimal because no deterministic algorithm has distortion less than
3 [1, 2]. Determining the best possible distortion for randomized
algorithms is considered as a major open problem [3]. Nevertheless,
the special cases of 2 and 3 candidates are resolved [4, 8, 19, 20].

More insight into the problem can be gained when more infor-
mation on the instance is available. In this respect, 𝛼-decisiveness,
where 𝛼 is a real in [0, 1], plays a key role [4]. This parameter
captures how much more the agents prefer their best candidate to
any other alternative. In an 𝛼-decisive instance, every agent’s dis-
tance to her closest candidate is at most the distance to her second
closest candidate multiplied by 𝛼 . Then, every agent is co-located
with her top choice when 𝛼 = 0. For the other extreme (𝛼 = 1),
𝛼-decisiveness does not constrain the agents’ locations at all.

The algorithm of Gkatzelis et al. has distortion 2+𝛼 for 𝛼-decisive
instances with at least 3 candidates [16]. The deterministic lower
bound of 3, which relies on a two-candidate instance, can be ex-
tended to show that when the number of candidates𝑚 is at least
2, no deterministic algorithm has 𝛼-distortion less than 1 + 2𝛼 .
The upper and lower bounds do not match anymore under the
𝛼-decisiveness framework, but Gkatzelis et al. proposed a lower
bound which approaches 2 + 𝛼 when the number of candidates𝑚
tends to infinity [16]. When 𝑚 = 2, the deterministic algorithm
which outputs the top choice of a majority of agents has distortion
1 + 2𝛼 [4, 16]. Regarding randomized algorithms parameterized by
𝛼 , the best lower and upper bounds, for any number of candidates
𝑚, are 2 + 𝛼 − 2(1 − 𝛼)/𝑚 and 2 + 𝛼 − 2/𝑚, respectively [16].

Besides 𝛼-decisiveness, the metric distortion problem has been
studied in the well-known case where agents and candidates are
located on a real number line. The locations are unknown but the
agents rank the candidates from the closest to the farthest. The pref-
erences induced by this setting (a.k.a. 1-Euclidean because the dis-
tances are Euclidean and there is only one dimension) possess nice
properties (namely, single-peakedness [5] and single-crossingness
[18, 23]) which can be favorably exploited by an algorithm. Anshele-
vich and Postl proposed a randomized algorithm with an optimal
distortion of 1+𝛼 for 𝛼-decisive instances on a line [4]. They exploit
the possibility to efficiently identify a set of (at most) two candidates
which are consecutive on the line and to which the optimum must
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belong. Regarding deterministic algorithms, the aforementioned
lower bound of 1+2𝛼 deriving from the lower bound of 3, applies to
the case where agents and candidates are on a line. On the contrary,
the candidates are not aligned in the lower bound approaching 2+𝛼
presented in [16].

Elections share similarities with 𝑘-median and facility location
problems [7, 12, 14]. The goal is to choose a subset of candidate
locations where desirable facilities (e.g., schools) can be built. The
total distance to some given agent set has to be minimized, assum-
ing that each agent is connected to the nearest facility. Sometimes,
the candidate to be selected is undesirable (e.g., a garbage depot
or a candidate to leave a group of people). In this case, one wants
to select a candidate of maximum total distance to the agents (see
[11] for a recent survey on obnoxious facility location). Obnoxious
facility location problems have previously received attention from
several viewpoints. In a “pure” optimization framework, one wants
to choose the location of the facilities and the true distances are
accessible (see e.g., [17, 26] and the references therein). In the field
of algorithmic mechanism design, the agents may misreport their
preferences over the set of candidates so as maximize their indi-
vidual distance to the winner(s). The authors of [10, 21, 22] pursue
the goal of designing (group) strategyproof mechanisms1 with the
best possible approximation ratio. Recently, Chen et al. [9] studied
the distortion of algorithms in a setting where the location of the
candidates is known but the location of every agent is private.2
They resolved the deterministic case for which the best distortion is
3. For randomized algorithms, a general lower bound of 1.5 is given,
together with upper bounds for well studied special cases. In par-
ticular, they proposed two randomized mechanisms for building a
single facility on the real line. The first mechanism is strategyproof
and its distortion is 2. The second mechanism is not strategyproof
but its distortion is lower: 13/7.

2 CONTRIBUTION
Interested readers can refer to [15] for the full version of this article.

We consider the metric distortion problem in 𝛼-decisive in-
stances. The distances between agent and candidate locations are
unknown but every agent has reported a strict preference over
the candidate set. The influence of 𝛼-decisiveness on the agents’
locations is clear when 𝛼 = 0 or 𝛼 = 1, but no previous work pre-
cisely explains (to our best knowledge) how 𝛼-decisiveness rules
the agents’ locations when 𝛼 ∈ (0, 1). Our first contribution is to
fill this gap by showing that agents lie inside some spheres under
Euclidean distances. This characterization is interesting on its own
and we exploit it in the full version of this article [15].

Our second contribution is the definition of a domain which
generalizes the well-studied case where both agents and candidates
are located on the real line (1-Euclidean). In this generalization
called AC for “Aligned Candidates”, the candidates are aligned but
the agent locations are not constrained. As for the 1-Euclidean case,
the distances in the AC setting are Euclidean. As an application
of AC, one can think of a straight road that crosses a region. The
agents can be located anywhere in the region but the candidates

1There is no incentive for a single agent or a group of agents to misreport their true
rankings.
2In the present work, the location of the agents and the candidates are private.

must be along the road. One can also interpret the AC domain from
an electoral perspective: every candidate lies on a left right political
axis while the voters’ ideological positions are more complex and
require more dimensions.

We demonstrate that, as for the 1-Euclidean domain and under
the assumption that no agent is equidistant from two distinct candi-
dates, preferences remain single-peaked and single-crossing under
the AC domain. Hence, when one wants to select a desirable candi-
date to which the agents want to be as close as possible, the set of
potential optima can be reduced to two contiguous candidates, as
for the 1-Euclidean case [4, 13]. Since the metric distortion problem
is resolved when𝑚 = 2 by selecting the candidate supported by
a majority of the agents [4, 16], we get a deterministic algorithm
with distortion at most 1+ 2𝛼 for any number of aligned candidates.
This is the best possible ratio because the aforementioned lower
bound of 1 + 2𝛼 applies to the setting of aligned candidates.

Afterwards, we investigate the distortion of choosing a single
undesirable candidate. The aim is to determine the candidate that
maximizes the total distance to the agents. As opposed to the set-
ting studied in [9], we do not assume that the location of the can-
didates are public. We generalize the notion of 𝛼-decisiveness to
the case of selecting an undesirable candidate. Namely, an instance
is 𝛼-decisive, for some 𝛼 ∈ [0, 1], if every agent prefers her best
candidate (now, this is the farthest one) at least 1/𝛼 times more than
her second best (the second farthest). Though this definition reads
similar to that of decisiveness for a desirable facility, 𝛼-decisiveness
constrains the instances in a very different way. We obtain tight
bounds on the distortion of undesirable single winner election by
deterministic algorithms, as a function of 𝛼 , in two cases. When
there are only two candidates and the latent distance function 𝑑 is
a metric (𝑑 is not necessarily Euclidean), we show that the simple
algorithm which outputs the candidate ranked last by a majority of
agents has distortion 1 + 2𝛼 and this is the best possible ratio.

We finally consider the AC domain with any number of candi-
dates. As for the case of selecting a desirable candidate, the set of
possible optima of the undesirable case with aligned candidates
reduces to (at most) two elements which can be efficiently identified
from the preference profile. However, these possible optima are
typically different. All our bounds on the distortion for selecting an
undesirable alternative are tight and summarized in the following
table when𝑚 > 2 (the distortion is 1 + 2𝛼 when𝑚 = 2).

𝛼 < 1
3

1
3 ≤ 𝛼 ≤

√
2 − 1

√
2 − 1 < 𝛼

1 3𝛼−𝛼2

2−3𝛼−𝛼2 1 + 2𝛼

Regarding these bounds, note that 3𝛼−𝛼2

2−3𝛼−𝛼2 = 1 when 𝛼 = 1/3,
3𝛼−𝛼2

2−3𝛼−𝛼2 = 1 + 2𝛼 when 𝛼 =
√

2 − 1, and 3𝛼−𝛼2

2−3𝛼−𝛼2 < 1 + 2𝛼 for all
𝛼 ∈ [1/3,

√
2 − 1). Since 𝛼 ∈ [0, 1], the distortion is always below 3,

which is consistent with the results of [9].
In conclusion, all our bounds on the distortion, for both selecting

a desirable or undesirable candidate, are best possible and derive
from the same simple algorithm: identify a set of two candidates
containing the optimum and return the one that is supported by a
majority of agents.
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