
SAT-based Judgment Aggregation

Ari Conati
University of Helsinki

Helsinki, Finland
ari.conati@helsinki.�

Andreas Niskanen
University of Helsinki

Helsinki, Finland
andreas.niskanen@helsinki.�

Matti Järvisalo
University of Helsinki

Helsinki, Finland
matti.jarvisalo@helsinki.�

ABSTRACT

Judgment aggregation (JA) o�ers a generic formal logical frame-

work for modeling various settings where agents must reach joint

agreements through aggregating the preferences, judgments, or

beliefs of individual agents by social choice mechanisms. In this

work, we develop practical JA algorithms for outcome determina-

tion by harnessing Boolean satis�ability (SAT) based solvers as

the underlying reasoning engines, leveraging on their ability to

e�ciently reason over logical representations incrementally. Con-

cretely, we provide algorithms for outcome determination under a

range of aggregation rules, using natural choices of SAT-based tech-

niques adhering to the computational complexity of the problem

for the individual rules. We also implement and empirically evalu-

ate the approach using both synthetic and PrefLib data, showing

that the approach can scale signi�cantly beyond recently proposed

alternative algorithms for JA.

KEYWORDS

judgment aggregation, outcome determination, Boolean satis�abil-

ity, maximum satis�ability, SAT with preferences

ACM Reference Format:

Ari Conati, Andreas Niskanen, and Matti Järvisalo. 2023. SAT-based Judg-

ment Aggregation. In Proc. of the 22nd International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2023), London, United

Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION

Judgment aggregation o�ers a generic formal logical framework

for modeling various settings where agents must reach joint agree-

ments through aggregating the preferences, judgments, or beliefs

of individual agents by social choice mechanisms [6, 29, 37, 48, 49].

As such, judgment aggregation captures various aggregation sce-

narios such as preference aggregation (including various voting

scenarios) [14, 24, 30, 35, 43, 45, 54], graph aggregation [33], as well

as further collective decision-making scenarios involving multiple

agents [9, 13, 62].

Computing collective judgments, and in particular outcome de-

termination in judgment aggregation, is computationally notori-

ously hard for various social choice mechanisms, being often NP-

hard or even complete for higher levels of the polynomial hierar-

chy [21, 31, 32, 35, 46]. This complexity barrier makes it challenging

to develop practical generic algorithmic approaches to outcome de-

termination. In fact, beyond earlier-developed approaches for more

speci�c settings—in particular for speci�c voting rules [17, 19, 53]

and (web-based) tools for preference aggregation [11, 12]—a �rst

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

more generic approach to judgment aggregation was only recently

introduced [22]. The approach makes use of declarative solver tech-

nology for answer set programming (ASP) [47] based on encoding

second-level complete judgment aggregation scenarios directly

with disjunctive answer set programs.

Despite its generality and motivations as a practical algorithmic

approach to judgment aggregation, the ASP-based approach was

not empirically evaluated by the original authors [22]. As we will

show in this paper, the implementation of the approach, although

it makes use of state-of-the-art ASP solvers, does not unfortunately

scale beyond very small data. However, the approach does serve as

themain current baseline against which to evaluate new algorithmic

approaches to judgment aggregation.

Taking on the challenge of developing increasingly-e�cient prac-

tical algorithms for judgment aggregation, we develop judgment ag-

gregation algorithms by harnessing Boolean satis�ability (SAT) [8]

based solvers as the underlying reasoning engines. The main moti-

vations for employing SAT-based techniques for JA are two-fold.

(i) Judgment sets take the form of logical formulas for which SAT

solvers are the reasoning engine of choice. In fact, SAT solving

is arguably today a key technology for solving computationally

hard real-world problems e�ciently. (ii) By enabling high levels of

incremental computations [28], SAT solvers have been employed in

developing highly-e�cient decision and optimization procedures

for various real-world problems, including ones complete for the

second level of the polynomial hierarchy, often surpassing in e�-

ciency alternative direct approaches such as disjunctive ASP and

quanti�ed satis�ability (QBF solving); see e.g. [27, 41].

As outcome determination under various aggregation rules is

complete for complexity classes on the second level of the polyno-

mial hierarchy (in particular, complete for Θ
?
2
, Σ

?
2
, and �

?
2
[32]), in-

cremental SAT-based procedures—although non-trivial to develop—

hold signi�cant promise in scaling up further than the current state

of the art in practical approaches to judgment aggregation.

Concretely, we provide algorithms for outcome determination

under a range of aggregation rules, using the most natural choice

of SAT-based techniques adhering to the computational complexity

of the problem for the individual rules. In terms of aggregation

rules, we cover a wide range of the most central ones, including

Kemeny, Slater, Young, Dodgson, MaxHamming, Reversal scoring,

Condorcet, Ranked agenda, and LexiMax. In terms of SAT-based

techniques, the procedures we develop for these settings make use

of recent advances in incremental maximum satis�ability (MaxSAT)

solving [57, 60] and preferential SAT-based reasoning [25]. In par-

ticular, we develop a generic MaxSAT-based approach covering

judgment aggregation under Kemeny, Slater, MaxHamming, Young,

and Dogdson; and show how to capture the other judgment ag-

gregation rules through incremental MaxSAT and PrefSAT-based

Session 4C: Auctions + Voting

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1412

counterexample-guided abstraction re�nement [15, 16]. For practi-

cal applicability, we provide an implementation of the procedures

developed here for outcome determination and empirically evaluate

the approach using both synthetic and PrefLib data. Our approach

scales signi�cantly beyond the reach of the recently proposed al-

ternative ASP-based algorithms for judgment aggregation. Empha-

sizing the general applicability of SAT-based approaches, we also

outline incremental SAT-based algorithms for the related tasks of

manipulation, bribery and control, using the Kemeny rule as a

speci�c instantiation.

2 PRELIMINARIES

We start by overviewing background on judgment aggregation. We

follow de�nitions from a recent taxonomy on judgment aggregation

rules [43] and recall the computational complexity of outcome

determination [32] as the main problem focused on in this work.

Judgment Aggregation. Consider a set- = {G1, . . . , G<} of propo-

sitional variables called issues, and let - = {¬G1, . . . ,¬G<}. The set

of literals ¨ = - ∪ - is called the agenda. A judgment set � ¦ ¨

represents an individual opinion on the agenda. The judgment set �

is complete if for all G ∈ - either G ∈ � or ¬G ∈ � (but not both), and

�-consistent with respect to a propositional formula � if �'
∧

;∈ � ; is

satis�able. We interchangeably represent complete and consistent

judgment sets as satisfying truth assignments to �, mapping each

issue G ∈ - to 1 if G ∈ � and to 0 otherwise. Let J (¨, �) be the

collection of all complete and �-consistent judgment sets.

De�nition 2.1. A judgment aggregation framework is a tuple

(¨, �in, �out, %), where ¨ is the agenda, �in and �out are propositional

formulas called the input and output constraints, which may contain

variables outside ¨, and % = (�1, . . . , �=) is a pro�le consisting of

judgment sets �8 ∈ J (¨, �in) representing the opinions of individual

agents.1

For any ; ∈ ¨, we denote by # (%, ;) = |{�8 ∈ % | ; ∈ �8 }| the

number of supporters of agenda item ; . The majoritarian judgment

set is then de�ned as �m (%) = {; ∈ ¨ | # (%, ;) > =/2}. Note that

this judgment set is not guaranteed to be �out-consistent even if

�out = �in; this is generally known as the discursive dilemma [58].

Judgment Aggregation Rules. A judgment aggregation rule 'maps

each pro�le % to a collection of collective judgment sets '(%). For

the following, the Hamming distance between complete judgment

sets � and � ′ is de�ned as � (� , � ′) = |� \ � ′ | = |� ′ \ � |.

We brie�y recall the central judgment aggregation rules consid-

ered in this work. We start with rules based on the majoritarian

set [43]: the Condorcet and Slater rules.

Condorcet [30, 32, 44, 56]. The Condorcet rule maximizes the

agreement with the majoritarian judgment set in a subset-wise

sense. That is, Condorcet(%) selects those � ∈ J (¨, �out) which

� ∩ �m (%) is subset-maximal, i.e., there is no � ′ ∈ J (¨, �out) with

� ′ ∩ �m (%) £ � ∩ �m (%).

1Note that our framework for judgment aggregation is as general as the general
de�nition (see e.g. [32]) where the agenda ¨ = {i1,¬i1, . . . , iģ,¬iģ } contains
arbitrary formulas instead of literals. This can be seen by reasoning similarly to [34]:
for every non-negated formula i Ġ ∈ ¨, construct the formula G Ġ ´ i Ġ , where
G Ġ is a fresh variable, and add it to the input and output constraints. The resulting
framework with issues as variables - = {G1, . . . , Gģ } is equivalent to the formula-
based framework.

Slater [30, 44, 54, 56] also maximizes the agreement with the

majoritarian judgment set, but in terms of the cardinality. Formally,

Slater(%) selects those � ∈ J (¨, �out) whichmaximize |�∩�m (%) |.

Next, we cover rules based on the number of supporters # (%, ·),

also called the weighted majoritarian set [43]: the Kemeny, Ranked

agenda, and LexiMax rules. As a distance-based rule related to

Kemeny, we also recall the MaxHamming rule [32].

Kemeny [30, 35, 44, 54, 56, 59]maximizes the agreement with

the pro�le % , hence minimizing the sum of the Hamming distances

to the judgment sets in % . Formally, Kemeny(%) selects those � ∈

J (¨, �out) whichmaximize
∑
;∈ � # (%, ;) (or equivalently, minimize∑

�ğ ∈% � (� , �8)).

MaxHamming [44]. In contrast to minimizing the sum of

Hamming distances, the MaxHamming rule minimizes the max-

imum Hamming distance to judgment sets in % , selecting those

� ∈ J (¨, �out) which minimize max�ğ ∈% � (� , �8).

The Ranked agenda and LexiMax rules are based on di�erent

preference orders over judgment sets. Towards the formal de�ni-

tions, let !%
:
= {; ∈ ¨ | # (%, ;) = :}.

Ranked agenda [31, 44, 61] is based on the ordering of agenda

items by their support. As long as the resulting judgment set re-

mains consistent, we iteratively include items based on this or-

dering, breaking ties nondeterministically. An equivalent formal

de�nition is based on an ordering {RA. We have that � {RA � ′ if

there is a : with =/2 f : f = such that � ∩!%
:
£ � ′ ∩!%

:
, and for all

9 > : , �∩!%9 = � ′∩!%9 . NowRA(%) consists of � ∈ J (¨, �out) which

are {RA-maximal, i.e., there is no � ′ ∈ J (¨, �out) with � ′ {RA � .

LexiMax [36, 55] is based on a lexicographic ordering {lex of

judgment sets. We say that � {lex � ′ if there is a : with =/2 f : f =

such that |� ∩!%
:
| > |� ′ ∩!%

:
|, and for all 9 > : , |� ∩!%9 | = |�

′ ∩!%9 |.

Now LexiMax(%) consists of {lex-maximal � ∈ J (¨, �out), i.e., for

which there is no � ′ ∈ J (¨, �out) with � ′ {lex � .

Furthermore, we consider the Young and Dodgson rules which

are based on modi�cations to the input pro�le [43]. Computation-

ally, the goal here is to minimize the number of modi�cations

in such a way that the majoritarian judgment set becomes �out-

consistent. Let P(¨, �) be the collection of all complete and �-

consistent pro�les over ¨.

Young [44] selects those complete and �out-consistent judgment

sets which are obtained as supersets of majoritarian judgment sets

of pro�les from which the least possible number of agents are

removed. That is, Young(%) �rst selects all pro�les % ′ ∈ P(¨, �in)

with % ′ ¦ % for which �m (%
′) is �out-consistent, maximizing |% ′ |,

and then all � ∈ J (%, �out) for which � § �m (%
′).

Dodgson [54]. The Dodgson rule selects those complete and

�out-consistent judgment sets which are obtained as majoritarian

judgment sets of pro�les in which the least possible number of opin-

ions are reverted. Formally, Dodgson(%) �rst selects all pro�les

% ′ ∈ P(¨, �in) with |%
′ | = |% | for which �m (%

′) is �out-consistent,

minimizing
∑=
8=1 � (�8 , �

′
8), and then all � ∈ J (%, �out) for which

� § �m (%
′).

Finally, the reversal scoring rule [23] selects � ∈ J (¨, �out)

that maximize the reversal score
∑

�ğ ∈%
∑
;∈ � '(�8 , ;) where '(�8 , ;)

is the least number of issues on which judgment has to be reverted

in �8 in order to reject issue ; , that is, the minimum Hamming

distance � (�8 , �
′) for � ′ ∈ J (¨, �out), ; ∉ � ′.

Session 4C: Auctions + Voting

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1413

Outcome Determination. Our main focus is on the outcome deter-

mination problem. Outcome determination asks to decide whether

a subset of the agenda is included in some collective judgment set

returned by the given judgment aggregation rule. Formally, the in-

put consists of a judgment aggregation framework (¨, �in, �out, %), a

set ! ¦ ¨, and a judgment aggregation rule '. The task is to decide

whether there is a judgment set � ∈ '(%) for which ! ¦ � holds.2

The algorithms developed in this work solve the search variant of

the outcome determination problem, i.e., the algorithm will provide

a witnessing judgment set if one exists.

For all of the rules we consider, it is known that the decision prob-

lem version of outcome determination lies on the second level of the

polynomial hierarchy. In particular, outcome determination is Θ
?
2
-

complete for Kemeny, Slater, Young, Dodgson, MaxHamming, and

Reversal scoring; Σ
?
2
-complete for Condorcet and Ranked agenda,

and �
?
2
-complete for LexiMax [32].

SAT and Boolean Optimization. The algorithms developed in this

work for outcome determination make use of Boolean satis�abil-

ity (SAT) and maximum satis�ability (MaxSAT) solvers, which are

iteratively called (in di�erent ways, depending on the judgment

aggregation rule at hand) under rule-dependent declarative encod-

ings. To this end, we introduce necessary preliminaries on SAT and

MaxSAT.

SAT. For a Boolean variable G there are two literals, G and ¬G . A

clause � is a disjunction (() of literals. A conjunctive normal form

(CNF) formula � is a conjunction (') of clauses. For convenience

we view clauses as sets of literals and formulas as sets of clauses.

We denote by + (�) and !(�) the set of variables and literals of

� , respectively. A truth assignment g : + (�) → {0, 1} maps each

variable to 0 (false) or 1 (true), and is extended to literals via g (¬G) =

1 − g (G), to clauses via g (�) = max{g (;) | ; ∈ �}, and to formulas

via g (�) = min{g (�) | � ∈ � }. We interchangeably represent truth

assignments g as sets of non-contradictory literals: {; ∈ !(�) |

g (;) = 1}. The Boolean satis�ability problem (SAT) asks for an input

formula � whether there is an assignment g with g (�) = 1. In this

case we say � is satis�able, and otherwise � is unsatis�able.

MaxSAT. In the maximum satis�ability problem (MaxSAT) [2],

the input consists of “hard” clauses �hard, “soft” clauses �soft, and

a weight function F : �soft → Z+. The task is to �nd a truth as-

signment g which satis�es �hard and minimizes the cost 2 (g) =∑
�∈�soft F (�) (1 − g (�)) incurred by not satisfying soft clauses.

3 DIRECT MAXSAT APPROACHES

We use MaxSAT as a suitable declarative paradigm to cover rules

for which outcome determination is Θ
?
2
-complete, that is, Kemeny,

Slater, MaxHamming, Young, and Dodgson (we will consider re-

versal scoring later on). For each of these rules, outcome deter-

mination can be solved by the following generic algorithm, using

two MaxSAT solver calls. Let (¨, �in, �out, %) be a given judgment

aggregation framework, ! ¦ ¨ an input subset of the agenda for

2Our de�nition of outcome determination captures the general variant de�ned by [32],
where in addition to ! ¦ ¨ sets !1, . . . , !ī ¦ ¨ are given as input, and the task is
to decide if there is � ∈ ' (%) with ! ¦ � and !ğ ª � for each 8 = 1, . . . ,D. This
can be seen by constructing for each 8 = 1, . . . ,D a formula >ğ ´

∧
Ģ ∈Ĉğ

; , where

>ğ is a fresh variable, adding it to the output constraint �out , and considering the set
! ∪ {¬>1, . . . ,¬>ī } as input.

outcome determination, and ' ∈ {Kemeny, Slater,MaxHamming,

Young, Dodgson} a judgment aggregation rule.

(1) Encode the judgment aggregation rule ' in MaxSAT, that is,

construct a MaxSAT instance �' (%) whose optimal solutions

g are in a one-to-one correspondence with judgment sets

� ∈ '(%) via g ∩ ¨ = � .

(2) Compute the optimal cost 2∗ of the instance �' (%) by invok-

ing a MaxSAT solver.

(3) Modify the MaxSAT instance �' (%) by adding
∧

;∈! ; to the

set of hard clauses. If there are no solutions or if the optimal

cost 2! > 2∗, there is no � ∈ '(%) with ! ¦ � ; return false.

Otherwise (i.e., if 2! = 2∗), return g∩¨, where g is the optimal

MaxSAT solution obtained from the second MaxSAT solver

invocation.3

What remains is to describe the MaxSAT encodings �' for the

individual judgment aggregation rules '. For each of the MaxSAT

encodings, we initialize the hard clauses �hard as the output con-

straint �out to ensure that all satisfying assignments g to �hard
represent complete and �out-consistent judgment sets � = g ∩ ¨.

We additionally make use of cardinality constraints of the form∑
;∈! ; ◦ : where ! is a set of literals, ◦ ∈ {f, g}, and : is an in-

teger; these cardinality constraints are encoded as clauses using

readily-available CNF encodings [40].

3.1 Kemeny and Slater

We encode the Kemeny rule in MaxSAT by introducing for each

; ∈ �m (%) a soft clause (;) with weight # (%, ;) − # (%,¬;). Note

that this is equivalent to introducing a soft clause (;) with weight

(%, ;) for each ; ∈ ¨ as a direct representation of the objective

function of the Kemeny rule. Similarly, the Slater rule is encoded

in MaxSAT by introducing for each ; ∈ �m (%) a soft clause (;)

with unit weight. Summarizing, let �Kemeny (%) and �Slater (%) be

MaxSAT instances with the hard clauses �out and a soft clause (;)

for each ; ∈ �m (%), and withFKemeny (;) = # (%, ;) − # (%,¬;) and

FSlater (;) = 1.

3.2 MaxHamming

For encoding the MaxHamming rule, we declare fresh variables

?: for each : = 1, . . . ,< with the interpretation “g (?:) = 1 if the

maximum Hamming distance between the input judgment sets

and the output max�ğ ∈% � (� , �8) is at least :”. For : = 1, . . . ,<, the

formula

disagreement: (%) =
©
«

=∨
8=1

©
«
∑
;∈ �ğ

¬; g :
ª®
¬
ª®
¬
→ ?:

enforces that ?: is set to true if any agent disagrees with the output

at least by : issues. The additional implications ?:+1 → ?: for each

: = 1, . . . ,< − 1 then ensure that g (?:) = 1 implies g (?: ′) = 1 for

all :′ < : , i.e., that if there is a disagreement by at least : issues,

then there is a disagreement by at least :′ < : issues. To minimize

the maximum Hamming distance, we introduce the soft clauses

(¬?:) with unit weights. Summarizing, �MaxHamming (%) has hard

3As an optimization, we note that the second MaxSAT solver call can be replaced by a
SAT solver call on the hard clauses of the corresponding MaxSAT instance,

∧
Ģ ∈Ĉ ; ,

and a cardinality constraint which enforces that the MaxSAT cost of any satisfying
truth assignment to this SAT instance is exactly 2∗ .

Session 4C: Auctions + Voting

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1414

clauses �out '
∧<

:=1
disagreement: (%) '

∧<−1
:=1
(?:+1 → ?:) and

soft clauses (¬?:) withF (¬?:) = 1 for each : = 1, . . . ,<.

3.3 Young

For encoding the Young rule, we introduce variables ~8 for each

8 = 1, . . . , = with the interpretation that g (~8) = 1 i� �8 is included

in the modi�ed pro�le. For 9 = 1, . . . ,<, the formula

support+9 (%) =

=∧
:=1

©
«
©
«

=∑
8=1

~8 f : '
∑

8=1,...,=
G Ġ ∈ �ğ

~8 g +:/2, + 1
ª®®®
¬
→ G 9

ª®®®
¬

enforces that issue G 9 is included in the collective judgment set

if a strict majority of the modi�ed pro�le supports it. This means

that for each : = 1, . . . , =, at most : judgment sets are included in

the modi�ed pro�le and there are at least +:/2, + 1 judgment sets

which support the issue. Similarly, support−9 (%) de�ned as

=∧
:=1

©
«
©
«

=∑
8=1

~8 g : '
∑

8=1,...,=
G Ġ ∈ �ğ

~8 f +:/2, − 1
ª®®®
¬
→ ¬G 9

ª®®®
¬

enforces that if a strict majority of themodi�ed pro�le supports¬G 9 ,

we must have G 9 = 0 in the collective judgment set. To minimize

the number of removed agents, we use (~8) for each 8 = 1, . . . , = as

a soft clause with unit weight. To summarize, �Young (%) contains

hard clauses �out '
∧<

9=1 (support
+
9 (%) ' support−9 (%)) and soft

clauses (~8) withF (~8) = 1 for each 8 = 1, . . . , =.

3.4 Dodgson

The MaxSAT encoding of the Dodgson rule is somewhat similar to

that of Young. We declare variables G8 9 for each 8 = 1, . . . , = and 9 =

1, . . . ,< with the interpretation that g (G8 9) = 1 i� in the modi�ed

pro�le, the 8th judgment set supports issue G 9 . Hard clauses are

used to enforce that for each 8 = 1, . . . , =, the set {G8 9 | 9 = 1, . . . ,<}

represents a �in-consistent judgment set via �
8
in

= �in [G 9 ↦→ G8 9 |

9 = 1, . . . ,<]. To express that issues must be set according to the

majority of the modi�ed pro�le, support9 (%) de�ned as((
=∑
8=1

G8 9 g +=/2, + 1→ G 9

)
'

(
=∑
8=1

G8 9 f +=/2, − 1→ ¬G 9

))
,

enforces that G 9 (resp. ¬G 9) is included in the collective judgment

set if it is supported by the strict majority of the modi�ed pro�le.

To summarize, �Dodgson (%) contains hard clauses �out '
∧=

8=1 �
8
in
'∧<

9=1 support9 , and soft clauses (G8 9) if G 9 ∈ �8 and (¬G8 9) if ¬G 9 ∈

�8 , with unit weights, to ensure the least number of changes to the

input pro�le.

The correctness of the encodings is established as follows, di-

rectly implying the correctness of the MaxSAT-based algorithm

outlined above for outcome determination.

Proposition 3.1. Let (¨, �in, �out, %) be a given judgment aggre-

gation framework. For each ' ∈ {Kemeny, Slater, MaxHamming,

Young, Dodgson}, we have that � ∈ '(%) if and only if there is an

optimal solution g to the MaxSAT instance �' (%) with g ∩ ¨ = � .

Algorithm 1 MaxSAT-based algorithm for outcome determination

under the reversal scoring rule.

Input: JA framework (¨, �in, �out, %), ! ¦ ¨.

1: (← {(;) | ; ∈ ¨}

2: for �8 ∈ % do

3: F ← {(;) ↦→ 1 | ; ∈ �8 } ∪ {(;) ↦→ 0 | ; ∉ �8 }

4: for ; ∈ �8 do

5: (2, _) ←MaxSAT(�out ' ¬;, (,F)

6: '(�8 , ;) ← 2; '(�8 ,¬;) ← 0;

7: F ← {; ↦→
∑

�ğ ∈% '(�8 , ;) | ; ∈ ¨}

8: (2∗, g) ←MaxSAT(�out, (,F)

9: (2!, g) ←MaxSAT(�out '
∧

;∈! ;, (,F)

10: if2∗ = 2! return g ∩ ¨ else return false

4 ITERATIVE SAT-BASED APPROACHES

While the so-far considered judgment aggregation rules are cap-

tured through a generic algorithm outlined in the previous section,

the remaining judgment aggregation rules considered in this work,

namely, Reversal scoring, Condorcet, Ranked agenda, and Lexi-

Max, call for more intricate SAT-based techniques. As described

in this section, we develop an incremental MaxSAT approach to

Reversal scoring; PrefSAT-based counterexample-guided abstrac-

tion re�nement (CEGAR) for Condorcet and Ranked agenda; and a

MaxSAT-based lexicographic optimization approach to LexiMax.

4.1 Reversal Scoring

First we consider outcome determination under the reversal scoring

rule, which is a Θ
?
2
-complete problem. An adaptation of the direct

MaxSAT-based algorithm covered in Section 3 would require a

monolithic MaxSAT encoding consisting of i) an encoding of a

judgment set � ;8 ∈ J (%, �out) for each 8 = 1, . . . , = and ; ∈ ¨,

ii) minimizing � (�8 , �
;
8) to compute '(�8 , ;) within the encoding,

iii) �nally minimizing the reversal score as the sum of '(�8 , ;). In

contrast to such a complex direct encoding, we propose an iterative

MaxSAT approach where the reversal score is computed via a series

of simpler MaxSAT solver calls.

The algorithm for reversal scoring is presented in pseudocode

as Algorithm 1. We begin by initializing a soft clause (;) for each

; ∈ ¨ (line 1). We then proceed by computing '(�8 , ;) for each

�8 ∈ % and ; ∈ ¨ via slightly di�erent MaxSAT queries (lines 2–6).

First, for each �8 ∈ % , we consider soft clauses (;) with ; ∈ �8 with

unit weights, and the rest with weight zero. This minimizes the

Hamming distance to �8 . Then, we iterate through ; ∈ �8 (lines 4–6),

solve a MaxSAT instance with hard clauses �out ' ¬; (line 5), and

set '(�8 , ;) as the cost of the optimal MaxSAT solution (line 6). Note

that '(�8 ,¬;) is trivially zero. Finally, we set the weight of each soft

clause (;) according to just-computed values of '(�8 , ;) (line 7), and

solve a MaxSAT instance with �out as hard clauses, obtaining the

optimal reversal score 2∗ (line 8). Now, similarly to rules covered in

Section 3, we solve one more MaxSAT instance with hard clauses

�out '
∧

;∈! ; (line 9). If the cost remains the same, we return the

obtained truth assignment as the collective judgment set which

includes !, and otherwise we know that no such set exists (line 10).

The algorithm can be implemented using a single incremental

MaxSAT solver [57]. After initializing the MaxSAT solver with

Session 4C: Auctions + Voting

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1415

Algorithm 2 PrefSAT-based CEGAR for outcome determination

under the Condorcet rule.

Input: JA framework (¨, �in, �out, %), ! ¦ ¨.

1: � ← �out

2: F ← {; ↦→ 1 | ; ∈ �m (%)}

3: while true do

4: (A4BD;C, g) ← PrefSAT(� '
∧

;∈! ; ,F)

5: if A4BD;C = D=B0C then return false

6: (A4BD;C, g) ← PrefSAT(�'
∧

;∈ �m (%)∩g ;'
∨

;∈ �m (%)\g ;,F)

7: if A4BD;C = D=B0C then return g ∩ ¨

8: � ← � '
∨

;∈ �m (%)\g ;

the output constraint �out as hard clauses, every MaxSAT query

involves changing weights of soft clauses or di�erent assumptions

(i.e. partial assignments), that is, operations which are supported

by state-of-the-art incremental MaxSAT solvers. The correctness

of this algorithm is based on the fact that optimal solutions of the

constructed MaxSAT instance correspond to judgment sets under

the reversal scoring rule.

Proposition 4.1. Let (¨, �in, �out, %) be a given judgment aggre-

gation framework. Let �rev be the MaxSAT instance constructed by

line 8 of Algorithm 1. We have that � ∈ ReversalScore(%) if and

only if there is an optimal solution g to the MaxSAT instance �rev
with g ∩ ¨ = � .

4.2 Condorcet

Outcome determination under the Condorcet rule is Σ
?
2
-complete,

which suggests developing a SAT-based CEGAR algorithm for this

problem. For intuition on the generic CEGAR approach [15], an

abstraction, i.e., an overapproximation of the set of solutions, is

�rst constructed. Then, we iteratively obtain candidate solutions

by solving the abstraction, and check their validity by checking for

a counterexample. If there are no counterexamples, we have found

an actual solution to the problem. Otherwise, we re�ne the search

space by analyzing the counterexample.

We make use of a modi�ed SAT solver, i.e., a PrefSAT solver

to directly compute judgment sets which agree with the major-

ity subset-maximally. In the SAT with preferences problem (Pref-

SAT) [25, 63], the input is a CNF formula � with a weight function

F : !(�) → Z+. For a set of literals ! and an integer : , denote

Λ
!
:
= {; ∈ ! | F (;) = :}. Now, a truth assignment g is preferred

to another truth assignment g ′, denoted by g { g ′, if there is an

integer : > 0with Λg
:
£ Λ

g ′

:
and for all 8 > : it holds that Λg8 = Λ

g ′

8 .

The task is to �nd a satisfying assignment g to � so that there is

no satisfying assignment g ′ to � with g ′ { g . Our algorithm for

outcome determination under the Condorcet rule is presented as

Algorithm 2, and is based on the following observation.

Proposition 4.2. Let (¨, �in, �out, %) be a given judgment aggre-

gation framework. De�ne the preferencesF (;) = 1 for each ; ∈ �m (%).

Now � ∈ Condorcet(%) if and only if there is a solution g to the

PrefSAT instance �out and preferencesF with g ∩ ¨ = � .

We initialize the abstraction � as the output constraint �out
(line 1) and the preferences asF (;) = 1 for each ; ∈ �m (%) (line 2).

Algorithm 3 PrefSAT-based CEGAR for outcome determination

under the ranked agenda rule.

Input: JA framework (¨, �in, �out, %), ! ¦ ¨.

1: � ← �out

2: F ← {; ↦→ # (%, ;) | ; ∈ ¨, # (%, ;) > =/2}

3: while true do

4: (A4BD;C, g) ← PrefSAT(� '
∧

;∈! ;,F)

5: if A4BD;C = D=B0C then return false

6: (A4BD;C, g) ← PrefSAT(� 'MorePref(g),F)

7: if A4BD;C = D=B0C then return g ∩ ¨

8: � ← � ' ¬g ' ¬LessPref(g)

Then, we enter the main CEGAR loop (lines 3–8). Within this loop,

we �rst query a PrefSAT solver for a candidate solution including !

(line 4); if the PrefSAT solver reports unsatis�ability, we know that

no such judgment set exists (line 5). Otherwise, the obtained candi-

date solution corresponds to a judgment set � for which � ∩ �m (%)

is subset-maximal under the constraint ! ¦ � . We query a PrefSAT

solver for a counterexample, checking whether removing ! from

the query results in a judgment set � ′ with � ′ ∩ �m (%) £ � ∩ �m (%)

(line 6). If there are no counterexamples, we return the obtained

truth assignment as the collective judgment set which includes !

(line 7). Otherwise this iteration was not successful, so we block

all assignments which are at least as close to the majority as the

counterexample (line 8), and continue.

4.3 Ranked Agenda

Similarly as for the case of the Condorcet rule, we propose a PrefSAT-

based CEGAR approach for the Σ
?
2
-complete problem of outcome

determination under the ranked agenda rule. However, in contrast

to the Condorcet rule, instead of having a single preference level

encoding subset-maximality, the preference level of each literal

with majority support is set as the number of supporters. The

PrefSAT-based algorithm for the ranked agenda rule is presented

as Algorithm 3, and is based on the following observation.

Proposition 4.3. Let (¨, �in, �out, %) be a given judgment aggre-

gation framework. De�ne the preferences F (;) = # (%, ;) for each

; ∈ ¨ with # (%, ;) > =/2. Now � ∈ RA(%) if and only if there

is a solution g to the PrefSAT instance �out and preferences F with

g ∩ ¨ = � .

We initialize the abstraction as the output constraint �out (line 1),

and set the preference level of each ; ∈ ¨ as # (%, ;) if # (%, ;) > =/2

(line 2). Then, we enter a CEGAR loop (lines 3–8), and query a

PrefSAT solver for an assignment which includes ! (line 4). If the

result is unsatis�able, we know that no such judgment set exists

(line 5). Otherwise, we obtain a truth assingment g corresponding

to a judgment set � which is {RA-maximal under the constraint that

! ¦ � . Thus, we need to check whether a counterexample exists,

that is, whether removing ! results in a judgment set � ′ {RA � . We

encode this relation as follows. We let

MorePref(g) =

=∨
:=+=/2,+1

(
Levelg

:
'Moreg

:
' EqUpTog

:+1

)
,

where for each : , Levelg
:

=
∧

;∈g∩Λġ
; , Moreg

:
=

∨
;∈¬g∩Λġ

; ,

EqUpTog
:

= EqUpTog
:+1
' Levelg

:
' ¬Moreg

:
for : < =, and

Session 4C: Auctions + Voting

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1416

Algorithm 4 MaxSAT-based algorithm for outcome determination

under the LexiMax rule.

Input: JA framework (¨, �in, �out, %), ! ¦ ¨.

1: � ← �out

2: for : = =, . . . , +=/2, + 1 do

3: (← {(;) | ; ∈ !%
:
},F ← {(;) ↦→ 1 | ; ∈ !%

:
}

4: if : = +=/2, + 1 break

5: (2: , g:) ←MaxSAT(�, (,F)

6: � ← � '
(∑

;∈!Č
ġ
¬; = 2:

)
7: (2∗, g) ←MaxSAT(�, (,F)

8: (2!, g) ←MaxSAT(� '
∧

;∈! ;, (,F)

9: if2∗ = 2! return g ∩ ¨ else return false

EqUpTog= = Levelg= '¬Moreg= . Here Level
g
:
enforces that all pref-

erences with weight : satis�ed by g are satis�ed,Moreg
:
enforces

that there is a preference with weight : not satis�ed by g but

which is satis�ed, and EqUpTog
:+1

enforces that all preferences

with weight greater than : are satis�ed exactly as in g . Finally,

MorePref(g) states that there is such a weight : via a disjunction.

A PrefSAT call with this additional formula then asks whether there

is a judgment set � ′ {RA � (line 6). If the result is unsatis�able, we

return the candidate truth assignment g as the collective judgment

set which includes !. Otherwise, this iteration was unsuccessful, so

we block all assignments corresponding to judgment sets � ′ which

are at least as preferred as � , i.e., � {RA � ′ or � = � ′ (line 8). Now,

� {RA � ′ is encoded by the constraint

LessPref(g) =

=∨
:=+=/2,+1

(
¬Levelg

:
' ¬Moreg

:
' EqUpTog

:+1

)

stating that there is a weight : for which a strict subset of prefer-

ences is satis�ed (via ¬Levelg
:
' ¬Moreg

:
), while all preferences

with weight greater than : are satis�ed exactly according to the

current assignment (via EqUpTog
:+1

).

4.4 LexiMax

Finally, we consider the �
?
2
-complete outcome determination prob-

lem under the LexiMax rule, and develop a MaxSAT-based lexico-

graphic optimization approach for the problem. An instance of the

Boolean lexicographic optimization (BLO) problem [1, 50] consists

of a formula � and a sequence of objective functions (21, . . . , 2<).

The goal is to �nd a truth assignment g satisfying � and minimizing

(21 (g), . . . , 2< (g)) in the lexicographic sense. This means that there

is no satis�able truth assignment g ′ to � for which 2@ (g
′) < 2@ (g),

where @ = min{: = 1, . . . ,< | 2: (g) ≠ 2: (g
′)}. According to the

following observation, given a judgment aggregation framework,

judgment sets under the LexiMax are in a one-to-one correspon-

dence with a speci�c instance of BLO.

Proposition 4.4. Let (¨, �in, �out, %) be a given judgment ag-

gregation framework. Now � ∈ LexiMax(%) if and only if there

is a solution g to the BLO instance �out with the objective func-

tion (2 +=/2,+1, . . . , 2=), where 2: (g) =
∑
;∈!Č

ġ
(1 − g (;)) for each

: = +=/2, + 1, . . . , =, with g ∩ ¨ = � .

Our algorithm for outcome determination under the LexiMax

rule is an iterative MaxSAT BLO approach [1, 50], presented as

Algorithm 4. We initialize a formula with the output constraint �out
(line 1). Now, starting from : = =, we declare (;) for each ; ∈ !%

:
as

a soft clause with unit weight (line 3), and solve the corresponding

MaxSAT problem (line 5), obtaining an optimal cost 2: . This gives

us the number of soft clauses falsi�ed by the optimal solution on

level : . We add the cardinality constraint
∑
;∈!Č

ġ
¬; = 2: (line 6),

and iteratively continue by decrementing : . We proceed until : is

the smallest possible level +=/2, + 1, when we exit the loop (line 4).

At this point, the optimal solutions to the current MaxSAT instance

correspond exactly to LexiMax judgment sets. Calling the MaxSAT

solver gives such a set (line 7). We call the MaxSAT solver once

more to obtain the optimal cost 2! under the constraint that ! ¦ �

(line 8). If the cost remains the same, we return the obtained truth

assignment as the LexiMax judgment set which includes !, and

otherwise we know that no such set exists (line 9).

5 EMPIRICAL EVALUATION

Our implementation of the algorithms in Sections 3–4, named

SATcha, and empirical data are available at https://bitbucket.org/

coreo-group/satcha. We use the incremental MaxSAT solvers UWr-

MaxSAT [60] and iMaxHS [57], and MiniPref [25] as the PrefSAT

solver for the Condorcet and ranked agenda rules. For encoding

cardinality constraints into CNF, we adjusted the iterative totalizer

encoding [3, 51] from PySAT [40].

We compare the runtimes of our approach to those of the JA-

ASP [22] (https://github.com/rdehaan/ja-asp) disjunctive ASP based

approach using the ASP solver Clingo (v5.6.1).4 However, JA-ASP

supports outcome determination via enumeration of answer sets,

which turned out not to be feasible for almost any of the considered

benchmarks. Hence for JA-ASP we only consider the �rst part of

outcome determination, namely, computation of a single collec-

tive judgment set, and compare its runtimes to the runtimes of

our approach on the full outcome determination task. To support

Young and Dodgson voting rules, we adapted JA-ASP by separating

the input and output constraints in the ASP encoding of JA-ASP

(ja.lp).

For the experiments, we consider preference aggregation as a

widely-studied instantiation of JA [24, 29, 48]. Many of the JA

rules considered in this work generalize speci�c voting rules [30,

35, 43, 45, 54] in the following sense. Let � = {1, . . . ,<} be a

set of candidates and + = ({1, . . . , {=) be a pro�le of = voters.

Construct the preference agenda with issues ?G{~ for G,~ ∈ � ,

G < ~ and let ?~{G = ¬?G{~ for G > ~. Consider the pro�le

% = (�1, . . . , �=) via �8 = {?G{~ | G {8 ~}, and let Transitivity =∧
G,~,I∈�
G≠~≠I

((?G{~ '?~{I) → ?G{I),Winner =
∨

G∈�
∧

~∈�
~≠G

?G{~ .

For �out = �in = Transitivity, the Kemeny and Slater JA rules

correspond to their voting counterparts. For �out = Winner and

�in = Transitivity, the Young and Dodgson JA rules correspond

to their voting counterparts. The winner determination problem for

the aforementioned voting rules is alsoΘ
?
2
-complete [38, 39, 42, 64],

4While an ASP-based approach speci�c to voting rules called Democratix has been
earlier proposed [12], it is not currently available and we were unable to contact the
authors despite our e�orts to do so.

Session 4C: Auctions + Voting

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1417

https://bitbucket.org/coreo-group/satcha
https://bitbucket.org/coreo-group/satcha
https://github.com/rdehaan/ja-asp

0 100 200 300 400

PrefLib

Instances solved

C
P

U
 t

im
e

 (
s
)

0
5

0
0

1
0

0
0

1
5

0
0

Kemeny
Slater
MaxHam.
Young
Dodgson
Condorcet
LexiMax
Rev. sco.
R.A.

Synthetic / Kemeny

Number of candidates

M
e

d
ia

n
 C

P
U

 t
im

e
 (

s
)

10 50 100

0
5

0
0

1
0

0
0

1
5

0
0

MAXSAT

(iMHS)

MaxSAT

(UWR)

JA−ASP

Synthetic / Young

Number of candidates

M
e

d
ia

n
 C

P
U

 t
im

e
 (

s
)

10 50 100 150

0
5

0
0

1
0

0
0

1
5

0
0

Voters

10
25
50
100

Figure 1: Left: Runtime distribution for SAT-based approaches on PrefLib instances under di�erent rules; Middle: median

JA-ASP and MaxSAT runtimes on synthetic instances for Kemeny; Right: scalability of UWrMaxSAT w.r.t. number of voters

under Young.

matching the complexity of outcome determination [32], imply-

ing that focusing the experiments on the Kemeny, Slater, Young,

and Dodgson voting rules gives complexity-wise relevant bench-

marks for our procedures. While the Condorcet, ranked agenda,

and reversal scoring judgment aggregation rules (which are in gen-

eral NP-hard) correspond (with �in = �out = Transitivity) to

polynomial-time computable voting rules (speci�cally, top cycle for

Condorcet, ranked pairs for ranked agenda, and Borda for reversal

scoring), we also consider these in our experiments for a further

comparison with the earlier-proposed ASP-based approach.

As benchmarks, we use both synthetically generated and Pre-

fLib [52] data. For PrefLib instances, we selected all strict total order-

ings available in https://www.pre�ib.org/static/data/types/soc.zip

(as of October 7, 2022) which do not have a (strong) Condorcet

winner, resulting in a total of 405 instances. The synthetic data

was generated using the pre�ibtools package (https://github.com/

PrefLib/pre�ibtools) according to the impartial culture, i.e., = votes

over< candidates are randomly selected from a uniform distribu-

tion over all (<!) possible ballots. For the Kemeny and Slater rules,

we �x = = 1000 voters, and used< = 5, 10, 15, 20, 30, . . . , 100 candi-

dates, generating 100 instances for each<. (Note that the size of the

MaxSAT encoding depends only on<.) For the Young and Dodgson

rules, we used = = 10, 25, 50, 100 and< = 10, 20, 30, 40, 50, 100, 150,

generating 20 instances for each (=,<). We set ! = {?G{~ | G ≠ ~}

as input to outcome determination, where G is the �rst candidate

in the voting instance. The experiments were run on Intel Xeon E5-

2670 CPUs and 57-GBmemory under RHEL 8.5 using a per-instance

30-minute time and 16-GB memory limit.

Results for our approach on PrefLib instances are summarized

in Figure 1 (left) using UWrMaxSat as the MaxSAT solver and

MiniPref as the PrefSAT solver. Note that instances which were not

solved reached resource limits (time or memory). The Young rule

appears the easiest for our approach. More than 93% of instances

are solved also under Kemeny and Slater (most within 2 seconds).

MaxHamming appears to be the hardest empirically with only

15.5% of instances solved. In terms of encoding size over solved

Table 1: SAT vs ASP approach on PrefLib instances: average

runtime (avg. t) in seconds (s), number of solved instances

(#slv), and percentage of solved instances (%slv).

SATcha JA-ASP

Rule avg. t (s) #slv %slv avg. t (s) #slv %slv

Kemeny 157.11 385 95.1 1641.81 37 9.1

Slater 192.36 378 93.3 1038.83 177 43.7

MaxHam. 1555.13 63 15.5 1657.54 35 8.6

Young 19.59 404 99.8 716.93 269 66.4

Dodgson 451.82 338 83.5 1585.87 64 15.8

Rev. sco. 728.73 261 64.4 1800.00 0 0.0

Condorcet 726.81 244 60.2 1482.19 106 26.2

R.A. 144.31 390 96.3 1800.00 0 0.0

LexiMax 220.44 372 91.9 859.37 221 54.6

instances, for example Kemeny and Young resulted in up to 62k

and 3.4M variables, and 43M and 19M clauses, respectively. Our

approach outperforms JA-ASP on each rule, solving 1.5x (Young)

to 10x (Kemeny) the instances (see Table 1) despite the fact that

JA-ASP is actually only solving a subset of the problem (computing

any optimal collective judgment set). For the iterative procedures,

the di�erence to JA-ASP is even more pronounced.

Figure 1 (middle) and Figure 1 (right) demonstrate the scala-

bility of our MaxSAT-based approach under Kemeny and Young,

respectively, on synthetic instances (see supplement for detailed

results under the other rules). Figure 1 (middle) shows that the

SAT-based approach (iMaxHS scaling to 80 candidates) scales no-

ticeably further than JA-ASP (scaling up to 15 candidates); similar

scalability di�erences were observed under Slater. Figure 1 (right)

shows scalability under Young w.r.t. number of candidates. Most

of the instances are solved in under 200 seconds for 25 voters and

up to 150 candidates. In contrast, JA-ASP times out on most of the

instances already for 10 voters and 100 candidates. For 50 voters,

we reach 50 candidates, showing that the empirical hardness of the

Young rule depends heavily on the number of voters.

Session 4C: Auctions + Voting

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1418

https://www.preflib.org/static/data/types/soc.zip
https://github.com/PrefLib/preflibtools
https://github.com/PrefLib/preflibtools

6 MANIPULATION, BRIBERY, AND CONTROL

We brie�y outline how the algorithms described so-far can be

adapted to cover manipulation [4, 35], bribery [4], and control [5] in

judgment aggregation [6]. We focus speci�cally on the Kemeny rule

under which these problems are Σ
?
2
-complete [20], and describe

MaxSAT-based CEGAR algorithms for them. Note that while in the

following de�nitions we consider subset-based preferences where

a better outcome is speci�ed as a subset of the agenda, the algo-

rithms can be adapted to the more general Hamming distance pref-

erences [20]. Furthermore, the main ideas behind the algorithms

can also be applied to other judgment aggregation rules which

allow for direct MaxSAT encodings, such as those considered in

Section 3; for achieving this, the MaxSAT encoding in question

should be adapted to accommodate modi�cations to the pro�le and

the resulting change of the cost function.5

Manipulation. In the manipulation problem, we are given an

agenda ¨, an integrity constraint �, a pro�le % = (�1, . . . , �=) ∈

P(¨, �), and a subset ! ¦ �1. The question is whether there is

a judgment set � ′ ∈ J (¨, �) and a corresponding pro�le % ′ =

(� ′, �2, . . . , �=) ∈ P(¨, �) such that for all � ∗new ∈ Kemeny(% ′) it

holds that ! ¦ � ∗new, i.e., whether a given (w.l.o.g. the �rst) agent

can manipulate the outcome by providing an insincere individual

judgment set to guarantee that a particular outcome is achieved.

We shortly outline aMaxSAT-based CEGAR algorithm for manip-

ulation under the Kemeny rule. As the abstraction, use a MaxSAT

encoding the solutions of which correspond to an individual judg-

ment set � ′ and a Kemeny judgment set � ∗new ∈ Kemeny(% ′). To

construct the abstraction, we �rst form the MaxSAT encoding of

Kemeny(�2, . . . , �=). We represent the judgment set � ′ as Boolean

variables B1, . . . , B< . Now, the constraint � [G 9 ↦→ B 9 | 9 = 1, . . . ,<]

enforces that this judgment set is �-consistent. For each 9 = 1, . . . ,<,

the soft clauses (B 9 → G 9) and (¬B 9 → ¬G 9) with unit weights are

introduced to model the additional Kemeny cost incurred by the

judgment set � ′.

The CEGAR loop begins by querying a MaxSAT solver for a

judgment set � ′ and a corresponding Kemeny judgment set � ∗new §

! by including
∧

;∈! ; to the hard clauses. If no such � ′ and � ∗new
exist, we return false and terminate. If there is such a � ′, we check

whether there is another judgment set � ∗cex ∈ Kemeny(%) which

does not include !. To this end, we remove
∧

;∈! ; from the hard

clauses, �x the judgment set � ′ as hard clauses B 9 for G 9 ∈ � ′ and¬B 9
for¬G 9 ∈ � ′, and query theMaxSAT solver again. If the optimal cost

for this call increases compared to the �rst one, we return � ′ as a

successful manipulation. Otherwise we obtain the counterexample

judgment set � ∗cex and re�ne our abstraction by adding the clause∨
;∈ � ′ ¬; which excludes the judgment set � ′.

Bribery. In bribery the task is to decide whether there is a way to

change up to : judgment sets in % so that a predescribed outcome

! is always achieved in the modi�ed pro�le % ′. We represent the

selection of up to : judgment sets by Boolean variables ~1, . . . , ~=
(similarly as for Young) and a cardinality constraint

∑=
8=1 ~8 f : .

5For example, manipulation under Slater and the cost function on the modi�ed pro-
�le are encoded using variables for issues whose reversal changes the majoritarian
judgment set. For bribery, the cost function can be similarly encoded using cardinal-
ity constraints. The other direct MaxSAT encodings in this work rely on cardinality
constraints whose left-hand sides are changed to consider the modi�ed pro�le.

Further variables G8 9 for each 8 = 1, . . . , = and 9 = 1, . . . ,< are used

to represent how the at most : judgment sets are changed (similarly

as for Dodgson). Constraints � [G 9 ↦→ G8 9 | 9 = 1, . . . ,<] for each 8 =

1, . . . , = ensure that the judgment sets remain consistent.We enforce

that each judgment set not changed (i.e., for each~8 assigned to 0) is

to remain unchanged via ¬~8 →
∧

G Ġ ∈ �ğ G8 9 '
∧
¬G Ġ ∈ �ğ ¬G8 9 for each

8 = 1, . . . , =. To ensure the correct Kemeny cost for solutions, the

soft clauses of the MaxSAT encoding for Kemeny are modi�ed to

(G8 9 → G 9) and (¬G8 9 → ¬G 9) for each 8 = 1, . . . , = and 9 = 1, . . . ,<,

with unit weights.

Using this abstraction, the outline of the CEGAR algorithm for

bribery is the same as the one just outlined for manipulation, with

the following exceptions. In the counterexample call, we �x the

modi�ed pro�le via unit hard clauses over G8 9 variables. Further-

more, we re�ne the abstraction by a clause stating that we either

need a di�erent selection of judgment sets or the currently selected

judgment sets need to be changed in a di�erent way.

Control. In control the task is to decide whether there is a way to

remove issues to arrive at a subset¨′ ¦ ¨ so that a predescribed out-

come ! is always achieved in the modi�ed pro�le % ′. We represent

the issues removed by variables I 9 for each G 9 ∈ ¨ \ (! ∪ ¬!)

(no issues in ! can be removed).6 The soft clauses (;) for ; ∈

�m (%) ∩ (¨ \ (! ∪ ¬!)) of the MaxSAT encoding for Kemeny are

changed to ¬I 9 → ; where I 9 corresponds to the variable+ (;) = G 9 ,

keeping the original weights. Using this abstraction, the general

outline of the CEGAR algorithm for control is the same as for ma-

nipulation and bribery, apart for the following di�erences: when

checking for a counterexample we �x via I 9 variables which issues

to keep in the agenda, and we re�ne the abstraction via a clause

stating that we need to select a di�erent subset of issues.

7 CONCLUSION

We developed novel outcome determination algorithms adhering

to the known complexity bounds for the problem under a range

of aggregation rules via identifying well-suited SAT-based tech-

niques for each setting. We also showed that an implementation of

the approach scales noticeably beyond an earlier-proposed exact

declarative approach to judgment aggregation. Overall, the empiri-

cal results obtained suggest that the approach is viable and could

potentially be employed as a backend e.g. for web-applications

such as Whale (https://whale5.noiraudes.net/) as well as in other

application scenarios such as multiwinner voting [14] and abstract

argumentation [7, 9]. We further outlined how the approach can be

adapted to obtain algorithms for manipulation, bribery, and control.

The approach could also be extended to cover further NP-hard judg-

ment aggregation rules, such as the binomial rule [18], the MaxEq

rule [10], and rules based on geodesic distance [26, 32].

ACKNOWLEDGMENTS

Work �nancially supported by Academy of Finland under grants

322869, 328718, and 347588. The authors thank the Finnish Com-

puting Competence Infrastructure (FCCI) for computational and

data storage resources.

6To also cover the related task of control by introducing additional issues, where we
are additionally given a subset ¨′′ ¦ ¨ which cannot be excluded, we would simply
not declare the I Ġ variables for issues in ¨

′′ .

Session 4C: Auctions + Voting

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1419

https://whale5.noiraudes.net/

REFERENCES
[1] Josep Argelich, Inês Lynce, and João P. Marques Silva. 2009. On Solving Boolean

Multilevel Optimization Problems. In IJCAI. ijcai.org, 393–398.
[2] Fahiem Bacchus, Matti Järvisalo, and RubenMartins. 2021. Maximum Satis�abiliy.

In Handbook of Satis�ability - Second Edition. FAIA, Vol. 336. IOS Press, 929–991.
[3] Olivier Bailleux and Yacine Boufkhad. 2003. E�cient CNF Encoding of Boolean

Cardinality Constraints. In CP (LNCS, Vol. 2833). Springer, 108–122.
[4] Dorothea Baumeister, Gábor Erdélyi, Olivia Johanna Erdélyi, and Jörg Rothe.

2015. Complexity of manipulation and bribery in judgment aggregation for
uniform premise-based quota rules. Math. Soc. Sci. 76 (2015), 19–30.

[5] Dorothea Baumeister, Gábor Erdélyi, Olivia Johanna Erdélyi, Jörg Rothe, and
Ann-Kathrin Selker. 2020. Complexity of control in judgment aggregation for
uniform premise-based quota rules. J. Comput. Syst. Sci. 112 (2020), 13–33.

[6] Dorothea Baumeister, Gábor Erdélyi, and Jörg Rothe. 2016. Judgment Aggregation.
In Economics and Computation, An Introduction to Algorithmic Game Theory,
Computational Social Choice, and Fair Division. Springer, 361–391.

[7] Dorothea Baumeister, Daniel Neugebauer, and Jörg Rothe. 2021. Collective
Acceptability in Abstract Argumentation. FLAP 8, 6 (2021), 1503–1542.

[8] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2021.
Handbook of Satis�ability - Second Edition. FAIA, Vol. 336. IOS Press.

[9] Gustavo Adrian Bodanza, Fernando Tohmé, and Marcelo Auday. 2017. Col-
lective argumentation: A survey of aggregation issues around argumentation
frameworks. Argument Comput. 8, 1 (2017), 1–34.

[10] Sirin Botan, Ronald de Haan, Marija Slavkovik, and Zoi Terzopoulou. 2021. Egal-
itarian Judgment Aggregation. In AAMAS. ACM, 214–222.

[11] Felix Brandt, Guillaume Chabin, and Christian Geist. 2015. Pnyx: A Powerful and
User-friendly Tool for Preference Aggregation. In AAMAS. ACM, 1915–1916.

[12] Günther Charwat and Andreas Pfandler. 2015. Democratix: A Declarative Ap-
proach to Winner Determination. In ADT (LNCS, Vol. 9346). Springer, 253–269.

[13] Weiwei Chen and Ulle Endriss. 2019. Preservation of semantic properties in collec-
tive argumentation: The case of aggregating abstract argumentation frameworks.
Artif. Intell. 269 (2019), 27–48.

[14] Julian Chingoma, Ulle Endriss, and Ronald deHaan. 2022. SimulatingMultiwinner
Voting Rules in Judgment Aggregation. In AAMAS. IFAAMAS, 263–271.

[15] EdmundM. Clarke, OrnaGrumberg, Somesh Jha, Yuan Lu, andHelmut Veith. 2003.
Counterexample-guided abstraction re�nement for symbolic model checking. J.
ACM 50, 5 (2003), 752–794.

[16] Edmund M. Clarke, Anubhav Gupta, and Ofer Strichman. 2004. SAT-based
counterexample-guided abstraction re�nement. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 23, 7 (2004), 1113–1123.

[17] Vincent Conitzer, Andrew J. Davenport, and Jayant Kalagnanam. 2006. Improved
Bounds for Computing Kemeny Rankings. In AAAI. AAAI Press, 620–626.

[18] Marco Costantini, Carla Groenland, andUlle Endriss. 2016. Judgment Aggregation
under Issue Dependencies. In AAAI. AAAI Press, 468–474.

[19] Andrew J. Davenport and Jayant Kalagnanam. 2004. A Computational Study of
the Kemeny Rule for Preference Aggregation. In AAAI. AAAI Press / The MIT
Press, 697–702.

[20] Ronald de Haan. 2017. Complexity Results for Manipulation, Bribery and Control
of the Kemeny Judgment Aggregation Procedure. In AAMAS. ACM, 1151–1159.

[21] Ronald de Haan and Marija Slavkovik. 2017. Complexity Results for Aggregating
Judgments using Scoring or Distance-Based Procedures. In AAMAS. ACM, 952–
961.

[22] Ronald de Haan and Marija Slavkovik. 2019. Answer Set Programming for
Judgment Aggregation. In IJCAI. ijcai.org, 1668–1674.

[23] Franz Dietrich. 2014. Scoring rules for judgment aggregation. Soc. Choice Welf.
42, 4 (2014), 873–911.

[24] FranzDietrich and Christian List. 2007. Arrow’s theorem in judgment aggregation.
Soc. Choice Welf. 29, 1 (2007), 19–33.

[25] Carmine Dodaro and Alessandro Previti. 2019. Minipref: A Tool for Preferences
in SAT. In RCRA (CEUR Workshop Proc., Vol. 2538). CEUR-WS.org.

[26] Conal Duddy and Ashley Piggins. 2012. A measure of distance between judgment
sets. Soc. Choice Welf. 39, 4 (2012), 855–867.

[27] Wolfgang Dvorák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran.
2014. Complexity-sensitive decision procedures for abstract argumentation. Artif.
Intell. 206 (2014), 53–78.

[28] Niklas Eén and Niklas Sörensson. 2003. Temporal induction by incremental SAT
solving. Electron. Notes Theor. Comput. Sci 89, 4 (2003), 543–560.

[29] Ulle Endriss. 2016. Judgment Aggregation. In Handbook of Computational Social
Choice. Cambridge University Press, 399–426.

[30] Ulle Endriss. 2018. Judgment Aggregation with Rationality and Feasibility Con-
straints. In AAMAS. IFAAMAS / ACM, 946–954.

[31] Ulle Endriss and Ronald de Haan. 2015. Complexity of the Winner Determination
Problem in Judgment Aggregation: Kemeny, Slater, Tideman, Young. In AAMAS.
ACM, 117–125.

[32] Ulle Endriss, Ronald de Haan, Jérôme Lang, and Marija Slavkovik. 2020. The
Complexity Landscape of Outcome Determination in Judgment Aggregation. J.
Artif. Intell. Res. 69 (2020), 687–731.

[33] Ulle Endriss and Umberto Grandi. 2017. Graph aggregation. Artif. Intell. 245
(2017), 86–114.

[34] Ulle Endriss, Umberto Grandi, Ronald de Haan, and Jérôme Lang. 2016. Succinct-
ness of Languages for Judgment Aggregation. In KR. AAAI Press, 176–186.

[35] Ulle Endriss, Umberto Grandi, and Daniele Porello. 2012. Complexity of Judgment
Aggregation. J. Artif. Intell. Res. 45 (2012), 481–514.

[36] Patricia Everaere, Sébastien Konieczny, and Pierre Marquis. 2014. Counting votes
for aggregating judgments. In AAMAS. IFAAMAS/ACM, 1177–1184.

[37] Davide Grossi and Gabriella Pigozzi. 2014. Judgment Aggregation: A Primer.
Morgan & Claypool Publishers.

[38] Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. 1997. Exact
analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete
for parallel access to NP. J. ACM 44, 6 (1997), 806–825.

[39] Edith Hemaspaandra, Holger Spakowski, and Jörg Vogel. 2005. The complexity
of Kemeny elections. Theor. Comput. Sci. 349, 3 (2005), 382–391.

[40] Alexey Ignatiev, António Morgado, and João Marques-Silva. 2018. PySAT: A
Python Toolkit for Prototyping with SAT Oracles. In SAT (LNCS, Vol. 10929).
Springer, 428–437.

[41] Mikolás Janota, Radu Grigore, and João Marques-Silva. 2010. Counterexample
Guided Abstraction Re�nement Algorithm for Propositional Circumscription. In
JELIA (LNCS, Vol. 6341). Springer, 195–207.

[42] Michael Lampis. 2022. Determining a Slater Winner Is Complete for Parallel
Access to NP. In STACS (LIPIcs, Vol. 219). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 45:1–45:14.

[43] Jérôme Lang, Gabriella Pigozzi, Marija Slavkovik, Leon van der Torre, and Srd-
jan Vesic. 2017. A partial taxonomy of judgment aggregation rules and their
properties. Soc. Choice Welf. 48, 2 (2017), 327–356.

[44] Jérôme Lang, Gabriella Pigozzi, Marija Slavkovik, and Leendert W. N. van der
Torre. 2011. Judgment aggregation rules based on minimization. In TARK. ACM,
238–246.

[45] Jérôme Lang andMarija Slavkovik. 2013. Judgment Aggregation Rules and Voting
Rules. In ADT (LNCS, Vol. 8176). Springer, 230–243.

[46] Jérôme Lang and Marija Slavkovik. 2014. How Hard is it to Compute Majority-
Preserving Judgment Aggregation Rules?. In ECAI (FAIA, Vol. 263). IOS Press,
501–506.

[47] Vladimir Lifschitz. 2019. Answer Set Programming. Springer.
[48] Christian List. 2012. The theory of judgment aggregation: an introductory review.

Synth. 187, 1 (2012), 179–207.
[49] Christian List and Philip Pettit. 2002. Aggregating Sets of Judgments: An Impos-

sibility Result. Economics and Philosophy 18, 1 (2002), 89–110.
[50] João Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce. 2011. Boolean

lexicographic optimization: algorithms & applications. Ann. Math. Artif. Intell.
62, 3-4 (2011), 317–343.

[51] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce. 2014. Incre-
mental Cardinality Constraints for MaxSAT. In CP (LNCS, Vol. 8656). Springer,
531–548.

[52] Nicholas Mattei and Toby Walsh. 2013. PrefLib: A Library for Preferences
http://www.pre�ib.org. In ADT (LNCS, Vol. 8176). Springer, 259–270.

[53] Marina Meila, Kapil Phadnis, Arthur Patterson, and Je� A. Bilmes. 2007. Consen-
sus ranking under the exponential model. In UAI. AUAI Press, 285–294.

[54] Michael K. Miller and Daniel N. Osherson. 2009. Methods for distance-based
judgment aggregation. Soc. Choice Welf. 32, 4 (2009), 575–601.

[55] Klaus Nehring andMarcus Pivato. 2019. Majority rule in the absence of a majority.
J. Econ. Theory 183 (2019), 213–257.

[56] Klaus Nehring, Marcus Pivato, and Clemens Puppe. 2014. The Condorcet set:
Majority voting over interconnected propositions. J. Econ. Theory 151 (2014),
268–303.

[57] Andreas Niskanen, Jeremias Berg, and Matti Järvisalo. 2022. Incremental Maxi-
mum Satis�ability. In SAT (LIPIcs, Vol. 236). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 14:1–14:19.

[58] Philip Pettit. 2001. Deliberative Democracy and the Discursive Dilemma. Philo-
sophical Issues 11 (2001), 268–299.

[59] Gabriella Pigozzi. 2006. Belief merging and the discursive dilemma: an argument-
based account to paradoxes of judgment aggregation. Synth. 152, 2 (2006), 285–
298.

[60] Marek Piotrów. 2020. UWrMaxSat: E�cient Solver for MaxSAT and Pseudo-
Boolean Problems. In ICTAI. IEEE, 132–136.

[61] Daniele Porello and Ulle Endriss. 2014. Ontology merging as social choice:
judgment aggregation under the open world assumption. J. Log. Comput. 24, 6
(2014), 1229–1249.

[62] Simon Rey, Ulle Endriss, and Ronald de Haan. 2020. Designing Participatory
Budgeting Mechanisms Grounded in Judgment Aggregation. In KR. ijcai.org,
692–702.

[63] Emanuele Di Rosa, Enrico Giunchiglia, and Marco Maratea. 2010. Solving satis�-
ability problems with preferences. Constraints An Int. J. 15, 4 (2010), 485–515.

[64] Jörg Rothe, Holger Spakowski, and Jörg Vogel. 2003. Exact Complexity of the
Winner Problem for Young Elections. Theory Comput. Syst. 36, 4 (2003), 375–386.

Session 4C: Auctions + Voting

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1420

	Abstract
	1 Introduction
	2 Preliminaries
	3 Direct MaxSAT Approaches
	3.1 Kemeny and Slater
	3.2 MaxHamming
	3.3 Young
	3.4 Dodgson

	4 Iterative SAT-based Approaches
	4.1 Reversal Scoring
	4.2 Condorcet
	4.3 Ranked Agenda
	4.4 LexiMax

	5 Empirical Evaluation
	6 Manipulation, Bribery, and Control
	7 Conclusion
	Acknowledgments
	References

