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ABSTRACT
Multi-robot cooperative control has gained extensive research in-

terest due to its wide applications in civil, security, and military

domains. This paper proposes a cooperative control algorithm for

multi-robot systems with general linear dynamics. The algorithm

is based on distributed cooperative optimisation and output regu-

lation, and it achieves global optimum by utilising only informa-

tion shared among neighbouring robots. Technically, a high-level

distributed optimisation algorithm for multi-robot systems is pre-

sented, which will serve as an optimal reference generator for each

individual agent. Then, based on the distributed optimisation algo-

rithm, an output regulation method is utilised to solve the optimal

coordination problem for general linear dynamic systems. The con-

vergence of the proposed algorithm is theoretically proved. Both

numerical simulations and real-time physical robot experiments are

conducted to validate the effectiveness of the proposed cooperative

control algorithms.
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1 INTRODUCTION
Cooperation of multiple robots to accomplish complex and chal-

lenging tasks [33, 43] has been made possible by recent advances in

high-performance computing, fast communication, and affordable

onboard sensors. Nevertheless, it remains a challenge to design

decentralised algorithms for real-world multi-robot systems. In this

paper, we design an output-regulation based distributed optimisa-

tion algorithm to control the physical multi-robot systems.

On distributed multi-agent systems, several research topics, in-

cluding target aggregation, trajectory tracking, containment and
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formation control, can be formulated as consensus problems [27].

However, when it comes to the solutions to the distributed con-

sensus, existing methods are either designed for overly-simplified

problems or based on overly-simplified models of the agents. For

example, in many settings, the consensus value is defined with

respect to the initial states of the agents [11, 18, 35, 42, 46], and

even if this constraint was relaxed, the agents may be modelled as

a single-integrator (see Equation (5) for definition) [5, 14, 44, 48].

While imposing stronger constraints leads to simpler mathematical

proof on the theoretical results (such as convergence and correct-

ness), the unrealistic constraints may result in a significant gap

between theoretical guarantees and practical utility.

In this paper, to address the cooperation between multiple robots,

we relax the constraints from two perspectives. First, we work

with consensus problems whose consensus value is defined over

reference points, instead of initial states. A reference point may

or may not be an initial state. Such generalisation is of practical

importance, because in many applications the agents are initialised

randomly and the agents’ goals might be independent from their

initial states. Second, we consider linear systems, which generalise

the single-integrator model by defining the dynamics of agents

with linear operators (see Equations (1b) and (1c) for definition).

While considering a more general setting, we show that the theo-

retical guarantees are not compromised. That is, our algorithm can

achieve both correctness (Section 4.3.1) and convergence (Sections

4.3.2 and 4.3.3). This is owing to the novel distributed optimisation

algorithms proposed in the paper. Distributed optimisation aims to

solve an optimisation problemwhere the global cost function is com-

posed of a set of 𝑁 local objectives 𝑓𝑖 (𝑦) [16], i.e., min𝑦
∑𝑁
𝑖=1

𝑓𝑖 (𝑦).
Due to limited communication and the requirement of local pri-

vacy protection, the local objective function 𝑓𝑖 (𝑦) is only known

to agent 𝑖 . In distributed optimisation, each agent can only cooper-

ate with its neighbours by exchanging non-sensitive information.

Although this is not a new problem, existing methods [13, 28, 38]

either assume single-integrator models for agents or are based on

continuous systems. For robotic systems, particularly the high-level

control of the robotic systems as we aim to address in this paper, the

discrete-time system and heterogeneous assumption on the robotic

systems are arguably more realistic, while algorithms and their

associated proofs cannot be easily transferred, which motivates our

work. Intuitively, our algorithm proceeds by every agent moving

according to a recursive expression (i.e., considering not only on
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the current time but also the history) about a gradient over its local

objective and the information collected from its neighbours (see

Equation (8)). Also, we utilise distributed output regulation tech-

niques to ensure that the formulated linear multi-robot systems

can track the dynamic references in real-time [6, 7].

The proposed algorithm is implemented for a consensus con-

trol problem using a physical multi-robot system consisting of 4

Turtlebot robots. The communication graph of the physical robots

is designed as an undirected ring. Each robot is controlled and op-

timised only based on the information from itself and connected

neighbours. Although different robots have their respective local

targets, they are eventually moved to the global optimal point since

the final consensus value is generated by solving the real-time

optimisation problems, which is independent of the initial states.

The major contributions of this work are summarised as follows:

(1) A distributed discrete-time cooperative control algorithm is

proposed and the convergence of our algorithm has been

theoretically proved. Different from most existing studies,

e.g., [29, 32] and references therein, which are extensively

concentrated on continuous-time systems, the proposed al-

gorithm in this paper is ready for implementation on digital

robots and platforms.

(2) A composite approach combining distributed optimisation

and output regulation is developed for heterogeneous linear

systems. Different from the initialisation-dependent consen-

sus problems, the proposed approach lays the foundation for

the interaction between optimisation and control.

(3) The proposed algorithm has been successfully validated on

a real multi-robot system, where the errors and noises are

handled by the communication among different agents. Fur-

thermore, the reproducibility and replicability of our work

are guaranteed since all source codes are available on Github

for open access.

2 RELATEDWORK
This paper studies the control algorithm of multi-agent systems.

The distributed algorithm designed in this paper is based on the

consensus problem that requires a distributed protocol to drive a

group of agents to achieve an agreement on states.

Initiated from [24], consensus based distributed cooperative con-

trol problems have been widely studied and tactfully generalised

to different specific sub-problems in recent years, such as finite-

time, event-triggered, time-delayed, and switching-topology based

cooperation problems. Shi and Hong considered the coordination

problem of aggregation to a convex target set for a multi-agent

system [35]. Zou et al. studied the coordinated aggregation prob-

lem of a multi-agent system while considering communication

delays and applying a projection operator to guarantee the final

consensus value within a target area [46]. Martinović et al. pro-
posed a distributed observer-based control strategy to solve the

leader-following tracking problem [18]. Wang et al. presented a dis-
tributed consensus and containment algorithm for the finite-time

control of a multi-agent system based on time-varying feedback

gain [42]. Kuriki and Namerikawa illustrated a consensus-based

cooperative formation control strategy with collision-avoidance

capability for a group of multiple unmanned aerial vehicles [11]. For

Table 1: Scope of the proposed method.

Single Integrator Linear System

Continuous-time Discrete-time Continuous-time Discrete-time

Heterogeneous - - [40, 47] this paper
Non-heterogeneous [11, 18, 22, 23, 28, 35, 42, 46] [19–21] [13, 41, 45] [17]

all the above-mentioned solutions, the consensus value is hinged

on the initial states of the agents, for example, the midpoint of

the agents’ initial locations. This is a severe restriction as in many

practical scenarios, agents are initialised randomly and the goal of

cooperation is without any correlation with the initial states.

To eliminate the initialisation step, the multi-agent consensus

problem becomes a distributed optimisation problem when the con-

sensus value is required to minimise the sum of local cost functions

known to the individual agents. Qiu et al. proposed a distributed

optimisation protocol to minimise the aggregate cost functions

while considering both constraint and optimisation [28]. Li et al.
designed a proportional–integral (PI) controller to solve the optimal

consensus problem and introduced event-triggered communication

mechanisms to reduce the communication overhead [13]. Tran et
al. investigated two time-triggered and event-triggered distributed

optimisation algorithms to reduce communication costs and energy

consumption [38]. Ning et al. studied a fixed-time distributed opti-

misation protocol to guarantee the convergence within a certain

steps for multi-agent system [22].

In practice, it is desirable to realise consensus in discrete-time

domain for real robotic applications. However, the aforementioned

distributed control and optimisation works [8, 9, 13, 17–23, 28, 35,

38, 40–42, 45–47] can only works for either continuous or non-

heterogeneous systems. As a result, it is difficult to guarantee the

convergence of heterogeneous linear systems without initialisa-

tion in practical scenarios. Motivated by the observations above,

in this paper, the aim of this work is to solve distributed optimal

coordination problem for discrete-time and heterogeneous linear

systems. We rigorously prove that consensus of heterogeneous lin-

ear systems can be achieved, while the global costs are minimised.

By the interdisciplinary nature of the target problem, it spans

across different problem specifics including single integrate/linear

system, continuous-time/discrete-time, and heterogeneous/non-

heterogeneous. We summarise and list a few related references

papers to Table. 1 to highlight the scope and position of this paper.

3 PRELIMINARIES
Notations: LetR𝑛 be the set of vectors with dimension𝑛 > 0. Let ∥𝑥 ∥
and 𝑥𝑇 be the standard Euclidean norm and the transpose of 𝑥 ∈ R𝑛 ,
respectively. 𝐼𝑝 is the compatible identity matrix with dimension

𝑝 > 0 and ⊗ denotes the Kronecker product. col(·) represents the
column vector.

3.1 Graph Theory
Following [31], a directed graph G(V, E,A) consists ofV = {𝜈1,

· · · , 𝜈𝑛} as a node set and E ∈ V ×V as an edge set. If the node

𝜈𝑖 is a neighbour of node 𝜈 𝑗 , then (𝜈𝑖 , 𝜈 𝑗 ) ∈ E. A directed graph is

strongly connected if there exists a directed path that connects any

pair of vertices. A is the adjacency matrix and we let [A]𝑖 𝑗 = 𝑎𝑖 𝑗
where 𝑎𝑖 𝑗 > 0 if (𝜈𝑖 , 𝜈 𝑗 ) ∈ E and 𝑎𝑖 𝑗 = 0 otherwise. Let D be
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the degree matrix of graph G(V, E,A) and L = D −A be the

Laplacianmatrix.We let 𝑙𝑖 𝑗 be the element of matrixL. In this paper,

we assume that the information can be shared among the agents

with complete information flow, formally stated in the following

assumption.

Assumption 1. The communication graph is undirected and con-
nected.

Under this assumption, it follows that the Laplacian matrix L is

semi-positive definite, and zero is a simple eigenvalue of L with

an associated eigenvector 1𝑁 . For more detailed properties of the

graph, please refer to [29].

3.2 Optimal Coordination
This paper considers an optimal coordination problem where a

group of network-connected robots are designed to solve the fol-

lowing optimisation problem

min

𝑦∈R𝑝

𝑁∑︁
𝑖=1

𝑓𝑖 (𝑦) (1a)

s.t. 𝑥𝑖 (𝑘 + 1) = 𝐴𝑖𝑥𝑖 (𝑘) + 𝐵𝑖𝑢𝑖 (𝑘) (1b)

𝑦𝑖 (𝑘) = 𝐶𝑖𝑥𝑖 (𝑘) (1c)

for 𝑖 = 1, · · · , 𝑁

where𝑁 is the number of robots and 𝑥𝑖 (𝑘) ∈ R𝑛 is the state variable
of the robot 𝑖 that generally represents its position, speed, force

and other information. 𝑦𝑖 (𝑘) ∈ R𝑞 is the system output of 𝑖th robot,

which can be viewed intuitively as an observation of the robotic

system since the actual state of the robot is invisible in some real

robotic systems. 𝑢𝑖 (𝑘) ∈ R𝑝 is the system control input for robot

𝑖 . For example, the control input can be the torque of a motor or

the force of a robotic system. The equations (1b) and (1c) represent

the discrete-time linear systems, which satisfy both additivity and

homogeneity [4]. 𝐴𝑖 ∈ R𝑛×𝑛, 𝐵𝑖 ∈ R𝑛×𝑝 ,𝐶𝑖 ∈ R𝑞×𝑛 are constant

matrices, which indicate the heterogeneous robotic system dynamics.

The linear system can be reduced to a single-integrator system if

𝐴 = 𝐼𝑛, 𝐵 = 1
𝑇
𝑛×𝑝 and 𝐶 = 1

𝑇
𝑞×𝑛 . 𝑓𝑖 (𝑦) are the smooth convex

function and privately known to the 𝑖th robot.

Under Assumption 1, we can reformulate the optimal coordina-

tion problem. In distributed cooperative control, each individual

agent will be allocated a local decision variable, denoted as 𝑦𝑖 . To

solve the coordination problem (1), it is required that the local de-

cision variables 𝑦𝑖 eventually reach to the same optimal value, i.e.

𝑦𝑖 = 𝑦 𝑗 ,∀𝑖, 𝑗 ∈ V . In a connected graph, it is equivalent to require

(L ⊗ 𝐼𝑞)𝑌 = 0 by noting that the null-space of L is 1𝑁 .

Lemma 1 ([16]). Let Assumption 1 hold. The optimisation prob-
lem (1) can be equivalently reformulated as

min

𝑦𝑖 ∈R𝑞 ,∀𝑖∈V

𝑁∑︁
𝑖=1

𝑓𝑖 (𝑦𝑖 )

s.t. (1b) and (1c)

(L ⊗ 𝐼𝑞)𝑌 = 0

(2)

where 𝑌 = col(𝑦1, 𝑦2 . . . , 𝑦𝑁 ).

Solving problem (1) is equivalent to solving the problem (2) when

the graph is undirected and connected. Let 𝑌 ∗ = col(𝑦∗
1
, · · · , 𝑦∗

𝑁
)

be the optimal solution of the problem (2), which means 𝑦∗
𝑖
= 𝑦∗

𝑗
=

𝑦∗,∀𝑖, 𝑗 ∈ V by (L ⊗ 𝐼𝑞)𝑌 ∗ = 0. Then, we have

∑𝑁
𝑖=1

𝑓𝑖 (𝑦∗𝑖 ) =∑𝑁
𝑖=1

𝑓𝑖 (𝑦∗), which implies 𝑦∗ is also an optimal solution to the

problem (1).

3.3 Problem Formulation
In many real world applications, the objective functions in (1a)

are defined according to the distance between the agent and the

position of interest, for example, robotic swarm problem [36, 37],

source seeking [15, 26, 34], search and rescue [1]. In this paper, we

consider agent 𝑖 has an estimation of the target 𝑟𝑖 . Its local objective

is to track its local belief by optimising

𝑓𝑖 (𝑦𝑖 ) = ∥𝑦𝑖 − 𝑟𝑖 ∥2
(3)

that is, agent 𝑖 intends to minimise the difference between its output

and its local estimated target.

Consequently, the problem is reformulated as

min

𝑦𝑖 ∈R𝑞 ,∀𝑖∈V

𝑁∑︁
𝑖=1

𝑓𝑖 (𝑦𝑖 ) =
𝑁∑︁
𝑖=1

∥𝑦𝑖 − 𝑟𝑖 ∥2

s.t. (1b) and (1c)

(L ⊗ 𝐼𝑞)𝑌 = 0

(4)

Here, we provide a concrete example of the reference 𝑟𝑖 : Assum-

ing there is a pollution source, that several robots collaborate to find.

The robots have limited sensor ranges (3m). The local reference 𝑟𝑖
of robot 𝑖 is the highest concentration pollution point within the 3m

range. Based on our algorithm, the robots will eventually converge

to the pollution source point by communicating with neighbours

and updating local targets.

Remark 1. The formulation in (4) is fundamentally different from
the traditional consensus control in multi-agent systems. Consensus
control [29, 32] aims to drive the states/outputs of all agents to a
consensus value that is determined by the initial values of the agents’
states. The coordination problem in this paper is to operate the robot
states/outputs to the optimal solutions of their joint cost functions (4),
which can be either static or time-varying. It is worth noting that
the references 𝑟𝑖 ,∀𝑖 ∈ V , can be generated by learning/estimation
techniques using sensory information from the local onboard sensors
equipped on agent 𝑖 . For example, the local target could be generated
based on the computer vision algorithms, such as the Yolo [30] and
Apriltag [25, 39]. Here, we assume a reference point 𝑟𝑖 is given or can
be detected during the operation.

4 ALGORITHM DEVELOPMENT AND
CONVERGENCE ANALYSIS

4.1 High Level Decision-Making for Single
Integrator System

Currently, agents in multi-agent systems are usually devised with

effective tracking algorithm to follow the instruction given by high-

level decision-makers. The dynamics of agent 𝑖 can be expressed as

a single integrator system:

𝑦𝑖 (𝑘 + 1) = 𝑦𝑖 (𝑘) + 𝑣𝑖 (𝑘) (5)
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where 𝑦𝑖 (𝑘) ∈ R𝑞 denotes the output of the 𝑖th agent. The control

design can then be given by letting

𝑣𝑖 (𝑘) = −𝛽
[ ∑︁
𝑗∈N𝑖

𝑙𝑖 𝑗𝑦 𝑗 (𝑘) +
∑︁
𝑗∈N𝑖

𝑙𝑖 𝑗𝜆𝑗 (𝑘) + ∇𝑓𝑖 (𝑦𝑖 (𝑘))
]

𝜆𝑖 (𝑘 + 1) = 𝜆𝑖 (𝑘) + 𝛽
∑︁
𝑗∈N𝑖

𝑙𝑖 𝑗𝑦 𝑗 (𝑘)
(6)

where 𝑣𝑖 denotes the control input of the 𝑖th agent for the inte-

grator dynamics, 𝑙𝑖 𝑗 is the element of Laplacian matrix L, 𝜆𝑖 is

the Lagrangian multiplier maintained by agent 𝑖 , and 𝛽 is the opti-

misation gain (equivalently the learning rate in machine learning

algorithms) to be designed. We emphasise that the proposed algo-

rithm only shares the observations 𝑦𝑖 (𝑘) and Lagrangian multiplier

𝜆𝑖 (𝑘) among different agents, whereas the gradient term ∇𝑓𝑖 (𝑦𝑖 (𝑘))
is not transferred, and therefore the objective privacy of local agent

is protected.

Denote the augmented output and Lagrangian multiplier as

𝑌 (𝑘) = col(𝑦1 (𝑘), 𝑦2 (𝑘), . . . , 𝑦𝑁 (𝑘)) andΛ(𝑘) = col(𝜆1 (𝑘), 𝜆2 (𝑘), . . . ,
𝜆𝑁 (𝑘)). Then, the algorithm above can be written in a compact

form as

𝑌 (𝑘 + 1) =𝑌 (𝑘) − 𝛽 [ (L ⊗ 𝐼 )𝑌 (𝑘) + (L ⊗ 𝐼 )Λ(𝑘) + ∇𝐹 (𝑌 (𝑘)) ]
Λ(𝑘 + 1) =Λ(𝑘) + 𝛽 (L ⊗ 𝐼 )𝑌 (𝑘) (7)

where ∇𝐹 (𝑌 (𝑘)) = col(∇𝑓1 (𝑦1 (𝑘)), ∇𝑓2 (𝑦2 (𝑘)), . . . , ∇𝑓𝑁 (𝑦𝑁 (𝑘))) .
As we will delineate later in the convergence analysis, iterative

optimisation algorithms inherently take the form of integrators [3].

To solve distributed optimisation problems for linear systems, we

resort to output regulation techniques by taking algorithm (6) as

an internal reference generator.

4.2 Control Algorithm for Linear Multi-Robot
Systems

The above algorithm can be extended in a nontrivial way as ex-

plained below to work with linear multi-robot systems. A dis-

tributed coordination algorithm to solve the optimal coordination

problem is designed as follows.

𝑢𝑖 (𝑘) = −𝐾𝑖𝑥𝑖 (𝑘) + (𝐺𝑖 +𝐾𝑖Ψ𝑖 )𝜉𝑖 (𝑘)

𝜉𝑖 (𝑘 + 1) =𝜉𝑖 (𝑘) − 𝛽 [
∑︁
𝑗∈N𝑖

𝑙𝑖 𝑗𝜉 𝑗 (𝑘) +
∑︁
𝑗∈N𝑖

𝑙𝑖 𝑗𝜆𝑗 + ∇𝑓𝑖 (𝜉𝑖 (𝑘)) ]

𝜆𝑖 (𝑘 + 1) =𝜆𝑖 (𝑘) + 𝛽
∑︁
𝑗∈N𝑖

𝑙𝑖 𝑗𝜉 𝑗

(8)

where 𝜉𝑖 (𝑘), 𝜆𝑖 (𝑘) are two internal auxiliary variables to generate

tracking reference for the 𝑖th agent.𝐾𝑖 is chosen such that𝐴𝑖 −𝐵𝑖𝐾𝑖
is Schur stable under assumption that the dynamics (𝐴𝑖 , 𝐵𝑖 ) are
controllable. 𝐺𝑖 and Ψ𝑖 are gain matrices, which can be obtained

by solving the following

(𝐴𝑖 − 𝐼 )Ψ𝑖 + 𝐵𝑖𝐺𝑖 = 0

𝐶𝑖Ψ𝑖 − 𝐼 = 0

(9)

Intuitively, the gain matrices 𝐾𝑖 ,𝐺𝑖 ,Ψ𝑖 are designed to track the ref-
erence according to system dynamics 𝐴𝑖 , 𝐵𝑖 ,𝐶𝑖 . For heterogeneous

systems, every robot 𝑖 may have different 𝐴𝑖 , 𝐵𝑖 ,𝐶𝑖 . To ensure the

solvability of (9), we adopt the following assumption 2, which is a

regulation equation in the output regulation literature [10].

Assumption 2. The pairs (𝐴𝑖 , 𝐵𝑖 ),∀𝑖 ∈ V are controllable, and

rank

[
𝐴𝑖 − 𝐼 𝐵𝑖

𝐶𝑖 0

]
= 𝑛 + 𝑞. (10)

Remark 2. The proposed algorithm is in fact a combination of
gradient-descent optimisation and output regulation techniques. The
internal model 𝜉𝑖 (𝑘) is generated by consensus based gradient-descent
optimisation with 𝜆𝑖 (𝑘) being the Lagrangian multiplier. The design
of the control input 𝑢𝑖 is motivated by the classic output regulation
approach [10].

Similarly, the closed-loop system dynamics can be compactly

written as

𝑈 (𝑘) = −𝐾𝑋 (𝑘) + ΠΞ(𝑘)
Ξ(𝑘 + 1) =Ξ(𝑘) − 𝛽 [ (L ⊗ 𝐼 )Ξ(𝑘) + (L ⊗ 𝐼 )Λ(𝑘) + ∇𝐹 (Ξ(𝑘)) ]
Λ(𝑘 + 1) =Λ(𝑘) + 𝛽 (L ⊗ 𝐼 )𝑌 (𝑘)

(11)

where 𝐾 = diag(𝐾1, . . . , 𝐾𝑁 ) and Π = diag(𝐺1 + 𝐾1Ψ1, . . . ,𝐺𝑁 +
𝐾𝑁Ψ𝑁 ).

4.3 Convergence Analysis
The convergence analysis of the proposed algorithm proceeds in

three steps. In the first step 4.3.1, we prove that the equilibrium point

of the proposed algorithm is the optimal solution of the problem (4).

After that, the proposed algorithm can guarantee that both single

integrator and linear system will converge to the equilibrium point,

which are proven in step 4.3.2 and 4.3.3, respectively.

4.3.1 . We begin with the convergence analysis for high-level

decision making in Section 4.1, which will then serve as a reference

generator later in the proof of linear system regulation.

In (7), the equilibrium point, denoted as (𝑌 ∗,Λ∗), satisfy
𝛽 [ (L ⊗ 𝐼 )𝑌 ∗ − (L ⊗ 𝐼 )Λ∗ − ∇𝐹 (𝑌 ∗) ] = 0

𝛽 (L ⊗ 𝐼 )𝑌 ∗ = 0.
(12)

Invoking the properties of L under Assumption 1, (12) yields

1
𝑇
𝑁 ∇𝐹 (𝑌 ∗) = 0 (13)

Since (L ⊗ 𝐼 )𝑌 ∗ = 0 implies 𝑦𝑖 = 𝑦 𝑗 = 𝑦
∗,∀𝑖, 𝑗 ∈ V , it follows from

(13) that

𝑁∑︁
𝑖=1

∇𝑓𝑖 (𝑦∗) = 0. (14)

Note that the uniqueness of 𝑦∗ is guaranteed as the local objective

functions are all strongly convex. According to the primal-dual

theory [12], the solution pair (𝑌 ∗,Λ∗) is in fact a saddle point of

the Lagrangian function of 𝜙 (𝑌,Λ) = ∑𝑁
𝑖=1

𝑓𝑖 (𝑦𝑖 ) + Λ𝑇 (L ⊗ 𝐼𝑞)𝑌 .
Now, we are ready to give the convergence of (7) to the equilib-

rium (𝑌 ∗,Λ∗) for single integrator dynamics. It is noticed that the

equilibrium points of algorithm (6) and (8) are same.

4.3.2 . To give a complete proof, we next show that the proposed

algorithm can make the system asymptotically converge to the

equilibrium point.

Theorem 1. Let Assumption 1 hold. If the step size 𝛽 is chosen
according to 0 < 𝛽 < min{ 1

2𝜆𝑚𝑎𝑥 (L) ,
3

2𝐿
} with 𝜆𝑚𝑎𝑥 (L) being

the maximum eigenvalue of the Laplacian matrix and 𝐿 being the
Lipschitz constant of the cost function, then algorithm (7) converges
to the optimal solution (𝑌 ∗,Λ∗).

Proof. From the second update Equation in (7), we have

Λ(𝑘) − Λ∗ =Λ(𝑘 + 2) − Λ∗ − 𝛽 (L ⊗ 𝐼 ) (𝑌 (𝑘) −𝑌 ∗)
− 𝛽 (L ⊗ 𝐼 ) (𝑌 (𝑘 + 1) −𝑌 ∗)

(15)
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Left-multiplying both sides of (15) yields

(L ⊗ 𝐼 ) (Λ(𝑘) − Λ∗) =(L ⊗ 𝐼 ) (Λ(𝑘 + 2) − Λ∗)
− 𝛽 (L2 ⊗ 𝐼 ) (𝑌 (𝑘) −𝑌 ∗)
− 𝛽 (L2 ⊗ 𝐼 ) (𝑌 (𝑘 + 1) −𝑌 ∗)

(16)

where we have used the property of Kronecker product (𝐴⊗𝐵) (𝐶 ⊗
𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷). Denote 𝑍 (𝑘 + 1) = 𝑌 (𝑘) − 𝛽∇𝐹 (𝑌 (𝑘)) − 𝛽 (L ⊗
𝐼 ) (Λ(𝑘)+𝑌 (𝑘))−𝑌 (𝑘+1) andW = (𝐼−𝛽L+𝛽2L2) ⊗ 𝐼 . Combining

(16) and (7), we have:

𝑌 (𝑘 + 1) −𝑌 ∗

=𝑌 (𝑘) −𝑌 ∗ − 𝛽∇𝐹 (𝑌 (𝑘)) − 𝛽 (L ⊗ 𝐼 ) (Λ(𝑘) +𝑌 (𝑘)) − 𝑍 (𝑘 + 1)
=( (𝐼 − 𝛽L + 𝛽2L2) ⊗ 𝐼 ) (𝑌 (𝑘) −𝑌 ∗) − 𝑍 (𝑘 + 1)
− 𝛽 ( (L ⊗ 𝐼 ) (Λ(𝑘 + 2) − Λ∗) − 𝛽 (∇𝐹 (𝑌 (𝑘)) − ∇𝐹 (𝑌 ∗))
− 𝛽 (∇𝐹 (𝑌 ∗) + (L ⊗ 𝐼 )Λ∗) + 𝛽2 (L2 ⊗ 𝐼 ) (𝑌 (𝑘 + 1) −𝑌 ∗)

(17)

SubstractingW(𝑌 (𝑘 + 1) −𝑌 ∗) from both sides of Equation (17),

a new recursive update law is written as

W(𝑌 (𝑘 + 1) −𝑌 (𝑘)) + 𝛽 (L ⊗ 𝐼 ) (Λ(𝑘 + 2) − Λ∗)
= − (𝛽L ⊗ 𝐼 − 2𝛽2L2 ⊗ 𝐼 ) (𝑌 (𝑘 + 1) −𝑌 ∗) − 𝑍 (𝑘 + 1)
− 𝛽 (∇𝐹 (𝑌 (𝑘)) − ∇𝐹 (𝑌 ∗)) − 𝛽 (∇𝐹 (𝑌 ∗) + (L ⊗ 𝐼 )Λ∗) .

(18)

With this new recursive algorithm, the convergence can be estab-

lished using Lyapunov method and saddle point dynamics.

We formulate a Lyapunov function as follows:

𝑉 (𝑌,Λ) = ⟨𝑌 −𝑌 ∗,W(𝑌 −𝑌 ∗) ⟩ + ⟨Λ − Λ∗,Λ − Λ∗ ⟩ (19)

Here, we use ⟨𝑥,𝑦⟩ to represent the inner product of vectors 𝑥 and

𝑦. Then we have:

𝑉 (𝑌 (𝑘 + 1),Λ(𝑘 + 2)) −𝑉 (𝑌 (𝑘),Λ(𝑘 + 1))
=⟨𝑌 (𝑘 + 1) −𝑌 ∗,W(𝑌 (𝑘 + 1) −𝑌 ∗) ⟩ + ∥Λ(𝑘 + 2) − Λ∗ ∥2

− ⟨𝑌 (𝑘) −𝑌 ∗,W(𝑌 (𝑘) −𝑌 ∗) ⟩ + ∥Λ(𝑘 + 1) − Λ∗ ∥2

= − ⟨𝑌 (𝑘 + 1) −𝑌 (𝑘),W(𝑌 (𝑘 + 1) −𝑌 (𝑘)) ⟩
+ 2⟨𝑌 (𝑘 + 1) −𝑌 ∗,W(𝑌 (𝑘 + 1) −𝑌 (𝑘)) ⟩
− ∥Λ(𝑘 + 2) − Λ(𝑘 + 1) ∥2

+ 2⟨Λ(𝑘 + 2) − Λ(𝑘 + 1),Λ(𝑘 + 2) −𝑌 ∗ ⟩

(20)

Based on the Equations (11) and (12), we can derive the last term

of Equation (20) as:

⟨Λ(𝑘 + 2) − Λ(𝑘 + 1),Λ(𝑘 + 2) −𝑌 ∗ ⟩
=⟨𝛽 (L ⊗ 𝐼 ) (𝑌 (𝑘 + 1) −𝑌 ∗),Λ(𝑘 + 2) − Λ∗ ⟩
=⟨𝛽 (L ⊗ 𝐼 ) (Λ(𝑘 + 2) − Λ∗), 𝑌 (𝑘 + 1) −𝑌 ∗ ⟩

(21)

Therefore, we can obtain:

⟨𝑌 (𝑘 + 1) −𝑌 ∗,W(𝑌 (𝑘 + 1) −𝑌 (𝑘)) ⟩
+ ⟨Λ(𝑘 + 2) − Λ(𝑘 + 1),Λ(𝑘 + 2) −𝑌 ∗ ⟩

=⟨𝑌 (𝑘 + 1) −𝑌 ∗, 𝛽 (L ⊗ 𝐼 ) (Λ(𝑘 + 2) − Λ∗)
+ W(𝑌 (𝑘 + 1) −𝑌 (𝑘)) ⟩

(22)

With Equation (18), we can further derive as:

⟨𝑌 (𝑘 + 1) −𝑌 ∗,W(𝑌 (𝑘 + 1) −𝑌 (𝑘)) ⟩
+ ⟨Λ(𝑘 + 2) − Λ(𝑘 + 1),Λ(𝑘 + 2) −𝑌 ∗ ⟩

= − ⟨𝑌 (𝑘 + 1) −𝑌 ∗, (𝛽L ⊗ 𝐼 − 2𝛽2L2 ⊗ 𝐼 ) (𝑌 (𝑘 + 1) −𝑌 ∗) ⟩
− ⟨𝑌 (𝑘 + 1) −𝑌 ∗, 𝛽 (∇𝐹 (𝑌 (𝑘)) − ∇𝐹 (𝑌 ∗)) ⟩
− ⟨Λ(𝑘 + 2) − Λ(𝑘 + 1), 𝑍 (𝑘 + 1) ⟩
− ⟨𝑌 (𝑘 + 1) −𝑌 ∗, 𝛽 (∇𝐹 (𝑌 ∗) + (L ⊗ 𝐼 )Λ∗) ⟩

(23)

Since 𝑓 (𝑦) is smoothly convex function, then we can derive

based on the optimal condition [2]:

⟨𝑌 (𝑘 + 1) −𝑌 ∗, 𝛽 (∇𝐹 (𝑌 ∗) + (L ⊗ 𝐼 )Λ∗) ⟩ ≥ 0 (24)

By the definition of normal cone, we have:

⟨𝑌 (𝑘 + 1) −𝑌 ∗, 𝑍 (𝑘 + 1) ⟩ ≥ 0 (25)

Substituting (23), (24) and (25) back to (20), we obtain:

𝑉 (𝑌 (𝑘 + 1),Λ(𝑘 + 2)) −𝑉 (𝑌 (𝑘),Λ(𝑘 + 1))
≤ − ⟨𝑌 (𝑘 + 1) −𝑌 (𝑘),W(𝑌 (𝑘 + 1) −𝑌 (𝑘)) ⟩
− ∥Λ(𝑘 + 2) − Λ(𝑘 + 1) ∥2

− 2⟨𝑌 (𝑘 + 1) −𝑌 ∗, (𝛽L ⊗ 𝐼 − 2𝛽2L2 ⊗ 𝐼 ) (𝑌 (𝑘 + 1) −𝑌 ∗) ⟩
− 2⟨𝑌 (𝑘 + 1) −𝑌 ∗, 𝛽 (∇𝐹 (𝑌 (𝑘)) − ∇𝐹 (𝑌 ∗)) ⟩

(26)

From Theorem 1, we have 0 < 𝛽 ≤ 1

2𝜆𝑚𝑎𝑥 (L) . Moreover, L is

symmetric with a zero eigenvalue, and therefore, we could find

an orthogonal matrix P that P𝑇LP = 𝑑𝑖𝑎𝑔{0, 𝜆1, · · · , 𝜆𝑁 } and

P𝑇L2P = 𝑑𝑖𝑎𝑔{0, 𝜆2

1
, · · · , 𝜆2

𝑁
}. Then, the matrix 𝛽L − 2𝛽2L2

is

positive semi-definite.

Furthermore, the cost function is Lipschitz continuous:

⟨𝑌 −𝑌 ∗, ∇𝐹 (𝑌 ) − ∇𝐹 (𝑌 ∗)) ≥ 1

𝐿
∥∇𝐹 (𝑌 ) − ∇𝐹 (𝑌 ∗) ∥2

(27)

Applying Jensen’s inequality to the last term of (26):

− ⟨𝑌 (𝑘 + 1) −𝑌 ∗, ∇𝐹 (𝑌 (𝑘)) − ∇𝐹 (𝑌 ∗)) ⟩
= − ⟨𝑌 (𝑘) −𝑌 ∗, ∇𝐹 (𝑌 (𝑘)) − ∇𝐹 (𝑌 ∗))
+ ⟨−𝑌 (𝑘 + 1) +𝑌 (𝑘), ∇𝐹 (𝑌 (𝑘)) − ∇𝐹 (𝑌 ∗))

≤ − 1

𝐿
∥∇𝐹 (𝑌 (𝑘)) − ∇𝐹 (𝑌 ∗) ∥2 + 𝐿

4

∥𝑌 (𝑘) −𝑌 (𝑘 + 1) ∥2

+ 1

𝐿
∥∇𝐹 (𝑌 (𝑘)) − ∇𝐹 (𝑌 ∗) ∥2

≤𝐿
4

∥𝑌 (𝑘) −𝑌 (𝑘 + 1) ∥2

(28)

Then the Equation (26) can be reformed as:

𝑉 (𝑌 (𝑘 + 1),Λ(𝑘 + 2)) −𝑉 (𝑌 (𝑘),Λ(𝑘 + 1))

≤ − ⟨𝑌 (𝑘 + 1) −𝑌 (𝑘), (W − 𝛽𝐿

2

𝐼 ) (𝑌 (𝑘 + 1) −𝑌 (𝑘)) ⟩

− ∥Λ(𝑘 + 2) − Λ(𝑘 + 1) ∥2

(29)

With Theorem 1, we have 0 < 𝛽 ≤ 3

2𝐿
, which means 1 − 𝛽𝜆 +

𝛽2𝜆2− 𝛽𝐿
2

= ( 1

2
−𝛽𝜆)2+ 3

4
− 𝛽𝐿

2
> 0. Therefore, (W− 𝛽𝐿

2
𝐼 ) is positive

definite. In consequence,𝑉 (𝑌 (𝑘 +1),Λ(𝑘 +2)) ≤ 𝑉 (𝑌 (𝑘),Λ(𝑘 +1)).
Thus, we can conclude that 𝑉 (𝑌,Λ) converges under the condition
of Theorem 1. □

4.3.3 . Before presenting the main result for the distributed opti-

mal cooperative control for general linear systems, we need to apply

a state transformation to (8) by letting 𝑥𝑖,𝑠 (𝑘) = Ψ𝑖𝜉𝑖 (𝑘), 𝑢𝑖,𝑠 (𝑘) =
𝐺𝑖𝜉𝑖 (𝑘). Let 𝑥𝑖 (𝑘) = 𝑥𝑖 (𝑘) − 𝑥𝑖,𝑠 (𝑘) and 𝑢𝑖 (𝑘) = 𝑢𝑖 (𝑘) − 𝑢𝑖,𝑠 (𝑘).
Applying the control input (8), we have the closed-loop dynamics

𝑥𝑖 (𝑘 + 1) = (𝐴𝑖 − 𝐵𝑖𝐾𝑖 )𝑥𝑖 (𝑘) − Ψ𝑖 𝑣𝑖 (𝑘)
𝑒𝑖 (𝑘) = 𝐶𝑖𝑥𝑖 (𝑘) .

(30)

The following lemma can be obtained, which can be regarded as

input-to-output stability.

Session 4E: Robotics
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1425



Lemma 2. Let Assumptions 1 and 2 hold. If 𝐾𝑖 is chosen such that
𝐴𝑖 − 𝐵𝑖𝐾𝑖 is Schur stable and the 𝐺𝑖 and Ψ𝑖 are designed by solving
the regulation Equations in (9), then there exists a positive constant
𝛼 > 0 such that

lim sup

𝑘→∞
∥𝑒𝑖 (𝑘) ∥ ≤ 𝛼 lim sup

𝑘→∞
∥𝑣𝑖 (𝑘) ∥. (31)

Proof. First, we examine the solvability of (9). Encapsulating

(9) into a matrix form leads to[
𝐴𝑖 − 𝐼 𝐵𝑖

𝐶𝑖 0

] [
Ψ𝑖
𝐺𝑖

]
=

[
0

𝐼

]
. (32)

Denoting O𝑖 =
[
𝐴𝑖 − 𝐼 𝐵𝑖
𝐶𝑖 0

]
and𝑇𝑖 =

[
Ψ𝑖
𝐺𝑖

]
, by leveraging the

property of Kronecker product, vec (O𝑖𝑇𝑖 𝐼 ) = (𝐼 ⊗ O𝑖 ) vec(𝑇𝑖 ), we
can obtain a standard linear algebraic equation

(𝐼 ⊗ O𝑖 ) vec(𝑇𝑖 ) = vec

( [
0

𝐼

] )
(33)

of which the solvability is guaranteed under (10) in Assumption 2.

For notational convenience, we denote 𝐴𝑖,𝑐 = 𝐴𝑖 − 𝐵𝑖𝐾𝑖 and
𝐵𝑖,𝑐 = −Ψ𝑖 . Then, we have

𝑥𝑖 (𝑘 + 1) = 𝐴𝑖,𝑐𝑥𝑖 (𝑘) + 𝐵𝑖,𝑐 𝑣𝑖 (𝑘) . (34)

Recursively iterating (34) results in

𝑥𝑖 (𝑘) = 𝐴𝑘
𝑖,𝑐𝑥𝑖 (0) +

𝑘−1∑︁
𝑗=0

𝐴
𝑘−𝑗−1

𝑖,𝑐
𝐵𝑖,𝑐 𝑣𝑖 ( 𝑗) . (35)

Hence, we have

𝑒𝑖 (𝑘) = 𝐶𝑖𝑥 (𝑘) = 𝐶𝑖𝐴
𝑘
𝑖,𝑐𝑥𝑖 (0) −

𝑘−1∑︁
𝑗=0

𝐴
𝑘−𝑗−1

𝑖,𝑐
𝑣𝑖 ( 𝑗) (36)

where 𝐶𝑖Ψ𝑖 − 𝐼 = 0 has been used. Because 𝐴𝑖,𝑐 is Schur, we have

lim𝑘→∞𝐶𝑖𝐴
𝑘
𝑖,𝑐
𝑥𝑖 (0) = 0. In Theorem 1, the convergence of refer-

ence generator has been established, which implies 𝑣𝑖 converges to

zero as 𝑘 → ∞. Denote 𝜛𝑖 := lim sup𝑘→∞ ∥𝑣𝑖 (𝑘)∥. Then, for any
small constant 𝜖 > 0, there exists a positive time index 𝜁 > 0 such

that

∥𝑣𝑖 (𝑘) ∥ < 𝜛𝑖 + 𝜖, ∀𝑘 > 𝜁 . (37)

Based on the time index 𝜁 , the second term in (36) can be separated

into two parts, written as

𝑘−1∑︁
𝑗=0

𝐴
𝑘−𝑗−1

𝑖,𝑐
𝑣𝑖 ( 𝑗) =

𝜁∑︁
𝑗=0

𝐴
𝑘−𝑗−1

𝑖,𝑐
𝑣𝑖 ( 𝑗) +

𝑘−1∑︁
𝑗=𝜁 +1

𝐴
𝑘−𝑗−1

𝑖,𝑐
𝑣𝑖 ( 𝑗) . (38)

Taking the Euclidean norm of (38) and invoking (37):



𝑘−1∑︁
𝑗=0

𝐴
𝑘−𝑗−1

𝑖,𝑐
𝑣𝑖 ( 𝑗)





 = 



 𝜁∑︁
𝑗=0

𝐴
𝑘−𝑗−1

𝑖,𝑐
𝑣𝑖 ( 𝑗) +

𝑘−1∑︁
𝑗=𝜁 +1

𝐴
𝑘−𝑗−1

𝑖,𝑐
𝑣𝑖 ( 𝑗)






≤


𝐴𝑘−𝜁−1

𝑖,𝑐







 𝜁∑︁
𝑗=0

𝐴
𝜁−𝑗
𝑖,𝑐

𝑣𝑖 ( 𝑗)




 + (𝜛𝑖 + 𝜖)





 𝑘−1∑︁
𝑗=𝜁 +1

𝐴
𝑘−𝑗−1

𝑖,𝑐





.
(39)

Therefore, we have

lim sup

𝑘→∞
∥𝑒𝑖 (𝑘) ∥ ≤ 1

1 − ∥𝐴𝑖,𝑐 ∥
(𝜛𝑖 + 𝜀) (40)

where the following two results have been applied

𝑡−1∑︁
𝑗=𝜁 +1

∥𝐴𝑖,𝑐 ∥𝑡−1−𝑗 =
1 − ∥𝐴𝑖,𝑐 ∥𝑡−𝜁

1 − ∥𝐴𝑖,𝑐 ∥
<

1

1 − ∥𝐴𝑖,𝑐 ∥
(41)

lim

𝑘→∞



𝐴𝑘−𝜁−1

𝑖,𝑐



 = 0. (42)

As 𝜖 can be set arbitrarily small, it follows from (40) that

lim sup

𝑘→∞
∥𝑒𝑖 (𝑘) ∥ ≤ 𝛼 lim sup

𝑘→∞
∥𝑣𝑖 (𝑘) ∥. (43)

where 𝛼 = 1

1−∥𝐴𝑖,𝑐 ∥ . □

Theorem 2. Let Assumptions 1 and 2 hold. If 𝐾𝑖 are chosen such
that 𝐴𝑖 − 𝐵𝑖𝐾𝑖 is Schur stable and the 𝐺𝑖 and Ψ𝑖 are designed by
solving the regulation equations in (9), then the proposed algorithm
in (8) solves the optimal coordination problem in (1).

Proof. Let 𝑥𝑖 (𝑘) = 𝑥𝑖 (𝑘) − Ψ𝑖𝑦
∗
, we have

�̃�𝑖 (𝑘 + 1) =𝐴𝑖𝑥𝑖 (𝑘) + 𝐵𝑖 [−𝐾𝑖𝑥𝑖 (𝑘) + (𝐺𝑖 +𝐾𝑖Ψ𝑖 )𝜉𝑖 (𝑘) ] − Ψ𝑖𝑦
∗

=(𝐴𝑖 − 𝐵𝑖𝐾𝑖 )�̃�𝑖 (𝑘) + 𝐵𝑖 (𝐺𝑖 +𝐾𝑖Ψ𝑖 ) (𝜉𝑖 (𝑘) − 𝑦∗) .
(44)

It follows from Theorem 1 and Lemma 2 that 𝜉𝑖 (𝑘) converges to 𝑦∗.
Thus, we can conclude the convergence of the proposed algorithm

(8) by treating 𝐵𝑖 (𝐺𝑖 + 𝐾𝑖Ψ𝑖 ) (𝜉𝑖 (𝑘) − 𝑦∗) as 𝑣𝑖 (𝑘) in Lemma 2. □

It is worthmentioning that recursive updating algorithms usually

have the format of 𝑦𝑖 (𝑘 + 1) = 𝑦𝑖 (𝑘) + 𝑣𝑖 (𝑘), where 𝑣𝑖 is the change
of 𝑦𝑖 (𝑘) at time step 𝑘 . In this paper, we started with this type

of integrator dynamics, and then we extended our algorithm to

general linear systems by using the classic internal model approach

in output regulation where the reference generator has the same

updating mechanism as a single integrator.

Remark 3. In view of the distributed cooperative control literature,
e.g., [29], the classic consensus control problem can be regarded as a
special case of the optimal cooperative optimisation problems studied
in this paper by setting the cost functions as 𝑓𝑖 (𝑦) = (𝑦 −𝑦𝑖 (0))2. The
research problem considered in this paper is initialisation-independent
in the sense that the global optimal solution is obtained by solving a
distributed optimal coordination problem.

Remark 4. In this remark, we discuss the scalability of the so-
lutions. The proposed algorithm is gradient-based, which is easy to
compute. The agents only need to communicate with their neighbours.
The communication complexity for every agent is 𝑂 (𝑛 |𝐸 |), where E
is the set of communication edges and n is the number of iterations,
because in every iteration the agent only needs to send one message
to their neighbours and every message is of constant size 𝑂 (1). The
computational complexity for every agent is also𝑂 (𝑛 |𝐸 |), since every
iteration the agent can process the received messages and update the
local state in a linear way.

5 EXPERIMENT RESULTS
This section presents the experimental results to evaluate the effec-

tiveness of the proposed distributed optimisation algorithm. In the

beginning, numerical case studies are presented to test the proposed

algorithm on multi-robots with linear systems. Then, the proposed

algorithm is validated and applied on real Turtlebot robots, where

all source code, distributed algorithm details and environment set-

ting files are publicly available at our project website
1
.

1
Project website: https://github.com/YD-19/DO4.git
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5.1 Numerical Simulation
We test the algorithm on two multi-robot systems consisting of four

and ten robots, respectively. Each robot only communicates with

its neighbouring robot, and the connected graphs are shown in Fig.

1. For demonstration, we implement the algorithm for a group of

four agents (case A), and then extend it to a network of ten agents

for the scalability test of the proposed algorithm (case B).

Case 1 Case 2

1

2 3

4 1

2

3 4 5

6

7

8910

Figure 1: Ring communication topologies for a group of four
and ten agents, respectively.

Case A. The agents dynamics are specified as 𝐴 = [0, 1; 2, 1], 𝐵 =

[1, 0; 0, 1] and 𝐶 = [1, 0; 0, 1]. The assumptions on the graph con-

nectivity, controllablity and regulation conditions are all met. The

references of the agents are set as 𝑟1 = [10; 1], 𝑟2 = [5; 10]; 𝑟3 =

[10; 2]; 𝑟4 = [3; 5].
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Figure 2: Simulation results for a group of four agents with
static local tracking references.

The simulation results are shown in Fig. 2. The top left figure is

the top view of agents’ trajectories. The black points are the initial

positions of the four agents, and red points are the final positions

of four agents. It can be seen that the agents are driven to the same

optimal location which is independent of their initial states but

related to the optimisation solution of the references specified. To

illustrate more clearly, the convergence processes are shown in

the rest three sub-figures, where the top right figure shows the

convergence of the intermediate variable 𝜆𝑖 and the bottom figures

show the details of the position states 𝑥𝑖 and 𝑦𝑖 , respectively. From

Fig. 2, we can see that the agents reach the consistent goal and the

parameters are converged.
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Figure 3: Simulation results for a group of ten agents with
rescheduled tracking targets.

Figure 4: Communication graph for the Turtlebot network.

Case B. We further examine the scalability of the proposed algo-

rithm by implementing it for a set of ten agents, where each agent

only needs to communicate and cooperate with its neighbours. This

implies that expanding the size of the network does not incur any

additional communication and computation burden, which is one

of the advantageous features of distributed methods.

In addition, we consider a scenario in which the robots’ targets

change over time. For example, when the robots are controlled

to the first target position based on the initial observations, they

may re-scan the environment and make a new goal orientation.

Therefore, we assume that the robots would re-observe their targets

at 1500, 2000, and 2500 steps.

From the simulation results in Fig. 3, it is observed that the

proposed algorithm can optimally track the global optimal tar-

get no matter where and when the agents re-position their local

targets. Therefore, this case study shows both the scalability and

initialisation-independent properties of the proposed algorithm.

5.2 Real Multi-Robot Systems
In this section, we apply the proposed distributed algorithm to the

simulation and the physical environments. The robot simulation is
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Figure 5: Experiment results on real multi-robot systems.

based on the ROS and Gazebo platforms. For the physical environ-

ment, we assemble four Turtlebot3 Waffle Pi robots, together with

a laboratory environment, as shown in the middle of sub-figures

in Fig. 5. The Turtlebot3 robots can only get information and com-

municate with their neighbours, with the communication graph

shown in Fig. 4. They are all driven based on the standard ROS

platform. We applied the distributed optimisation algorithm to gen-

erate an optimal position for every time point. The underlying PID

controller will drive the robot to follow the optimal position based

on the error between the current and optimal positions. After the

top-level optimisation algorithm publishes an optimised reference,

the low-level PID controller will trigger two motors to track the

reference signal based on Raspberry Pi and OpenCR.

In this experiment, the environment is limited to the laboratory

room size, and therefore we design the simulation and real envi-

ronment within a 3.3 × 3.5m2
rectangular space. We limited the

turning speed of the robots between [−0.3, 0.3] rad/s and the linear
speed between [0, 0.1] m/s. The control parameter 𝛽 is set to 0.05.

All the robots know their own initial positions under the same

/𝑤𝑜𝑟𝑙𝑑 frame. The target of the robots are set to 𝑟1 = [1; 0.1], 𝑟2 =

[0.5; 1]; 𝑟3 = [1; 0.2]; 𝑟4 = [0.3; 0.5].
The sub-figures (a) to (j) are the exemplar moments during

the consensus process, and a recorded video is available https:

//youtu.be/a0k4KicX9u4. In each sub-figure, the left simulated graph

provides the high-level reference that is generated by the proposed

distributed optimisation algorithm, while the right two figures show

the tracking performances of the simulated and real robots. It is

noted that the robots approach the optimised reference generated

by cooperative optimisation instead of their local target, and the

stopping distance is set as 0.3m to avoid the collision of robots.

In the real-world experiment, there are errors in the robot system

dynamic information (position) of the vehicle due to the interfer-

ence of external factors, such as different ground friction. Neverthe-

less, the proposed algorithm can deal with them and update its local

information by communicating with adjacent agents to optimise

the global cost. From the figures and video, we observe that the

proposed algorithm always optimises the global optimal position

for each robot. The robots reach the consensus of the final target

by the proposed approach. The problem under our consideration

covers a wider range of cooperative control problems, including

initialisation-dependent consensus problems, and collaborative tar-

get tracking and search problems. The deployment and realisation

of the proposed algorithm on real robotic systems demonstrate its

significant potential for real-world applications.

6 CONCLUSIONS
This paper proposes an output regulation-based distributed optimi-

sation algorithm in the context of multi-agent cooperative control.

It optimises the local objectives of the agents by letting them com-

municate with their neighbours, and in the meantime ensures that

the agents can reach the global optimal. The algorithm can track

the global target, instead of converging to a centre based on initial

positions, and moreover, it can handle multi-agent systems with

linear and heterogeneous dynamics. Both theoretical guarantee and

experimental validations are studies, which will promote the future

deployment of distributed cooperative optimal control to solve real

world applications with guaranteed convergence and optimality.
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