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ABSTRACT
We consider the problem of fair allocation of indivisible chores

under additive valuations. We assume that the chores are divided

into two types and under this scenario, we present several results.

Our first result is a new characterization of Pareto optimal alloca-

tions in our setting and a polynomial-time algorithm to compute

an envy-free up to one item (EF1) and Pareto optimal allocation.

We then turn to the question of whether we can achieve a stronger

fairness concept called envy-free up any item (EFX). We present a

polynomial-time algorithm that returns an EFX allocation. Finally,

we show that for our setting, it can be checked in polynomial time

whether an envy-free allocation exists or not.
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1 INTRODUCTION
How to make allocation decisions fairly is a fundamental ques-

tion that has been examined in many fields including computer

science, economics, operations research and mathematics. We con-

sider this question in the context of allocating indivisible chores

among agents where each agent has additive valuations over the

chores.

There are several formal criteria of fairness (see e.g., [9, 21]).

Among the criteria, envy-freeness is referred to as the ‘gold-

standard’ [11]. It requires that no agent prefers another agent’s

bundle to their own bundle. Although envy-freeness is a highly-

desirable fairness concept, it poses several challenges. An envy-free

allocation may not exist, and furthermore, it is NP-complete to

check whether an envy-free allocation exists under additive valua-

tions [3, 8]. For this reason, a major focus on fair allocation is to find

relaxations of envy-freeness. A particularly attractive relaxation of

envy-freeness is called envy-freeness up to any item (EFX) [2, 11].
However, the existence of EFX is a major open problem for goods

and for chores. EFX requires that if an agent is envious of another

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
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agent, ignoring any item that lessens the envy results in the envy

disappearing. A weaker concept is envy-freeness up to one item (EF1)
that requires that if an agent is envious of another agent, then there

exists some item such that ignoring the item results in the envy

disappearing. It is open whether an EF1 and Pareto optimal (PO)
allocation always exists for chores.

In view of the open problem concerning the existence of EFX as

well as EF1+PO allocations and the absence of positive algorithmic

results regarding envy-free allocations, we turn our attention to

a natural scenario of chore allocation in which there are at most

two types of chores. We assume that the items can be divided into

two groups 𝐴 and 𝐵. Chores within the same group are identical

and hence a given agent has the same value for the identical items.

A natural motivating example could be a group of 4 housemates

allocatingmonthly household chores consisting of 18 room cleaning

chores and 15 cooking chores.

There are several reasons for considering the case of two chore

types. Firstly, it is natural to consider restrictions on the general

chore allocation under which we can achieve positive algorithmic

results. For example, there are many papers that assume that agents

have binary valuations for items (see, e.g., [6, 7, 13]): 0 or 1 in the

case of goods and 0 and -1 in the case of chores.
1
There are also some

recent papers where agents have exactly two values in the valuation

functions (bi-valued utilities) [14, 15] . In contrast, we allow the

set of all agents to possibly have 2𝑛 different values for the set of

items. Finally, two chore-types is a natural subclass of personalized
bi-valued instances (see, e.g., [14]) in which each agent subjectively

divides the items into two classes and has a corresponding value

for items in each of the classes.

Contributions
We give a polynomial time algorithm for computing an EF1+fPO

allocation for two chore type instances (Theorem 4.7) where fPO

(fractional Pareto optimal) is a property stronger than Pareto opti-

mality and requires Pareto optimality among all fractional outcomes.

Since there are very few results known on the existence of EF1+PO

allocation for chores - as the general additive valuation setting is

a major open problem - we make concrete progress towards the

problem by providing an affirmative answer in a restricted case. En

route to our result, we also give a novel characterization of all fPO

allocations in our setting.

1
Our assumption of two chore types does not assume that agents have zero as one of

the two valuations. Zero valuations make many problems considerably easier.
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We prove that for two chore type instances an EFX allocation

exists and can be computed in polynomial time (Theorem 5.1).

Our algorithm differs significantly from the natural adaptation

of the goods algorithm of Gorantla et al. [16] and other existing

approaches as they fail to produce an EFX allocation in our setting.

Since the existence of EFX allocations for chores is not known even

in the restricted setting of three agents with additive valuations,

we remark that our work contributes towards the body of literature

which explores this question in restricted settings.

In the full paper [4], we show that there exists a polynomial-time

algorithm to checkwhether an envy-free allocation exists in the two

chore types setting. Note that this problem is NP-hard for general

additive instances of indivisible chores [8]. Table 1 summarizes

existence and complexity results under additive valuations and

Figure 1 summarizes the logical relations and compatibility of the

key concepts that we consider.

fairness efficiency

EFX

EF1

fPO

PO

Figure 1: Logical relations between fairness and efficiency
concepts. An arrow from (A) to (B) denotes that (A) implies (B).
For our setting of 2 chore types, the properties in a connected
solid green shape can be simultaneously satisfied, and the
combined properties in connected dotted pink are impossible
to simultaneously satisfy.

2 RELATEDWORK
Given that an envy-free allocation may not exist, Budish [10] pro-

posed a relaxation of envy-freeness called envy-free up to one item
(EF1). An allocation satisfies EF1 if it is envy-free or any agent’s

envy for another agent can be removed if some item is ignored.

Under additive utilities, EF1 can be achieved by a simple algorithm

called the round-robin sequential allocation algorithm. Agents take

turn in a round-robin manner and pick their most preferred un-

allocated item. The interest in EF1 was especially piqued when

Caragiannis et al. [11] proved that for positive additive utilities, a

rule based on maximizing Nash social welfare finds an allocation

that is both EF1 and Pareto optimal.

For negative additive valuations, the existence of an EF1 and PO

allocation is a major open problem that Moulin [21] highlighted in

his survey (page 436). Except for a limited number of cases such

as binary utilities, bi-valued utilities ([14, 15]) and lexicographic

valuations [17], the guaranteed existence of EF1 and PO allocations

has not been established.

In their paper Caragiannis et al. [11] also presented the concept

of EFX for goods which is strictly stronger than EF1. EFX requires

that if an agent 𝑖 is envious of another agent 𝑗 , the envy can be

removed by removing any item of 𝑗 that is desirable to 𝑖 . The

concepts have been adapted for the case of chores or generalized to

the case of mixed goods and chores (see e.g., [2, 5]). Procaccia [22]

writes that the existence of EFX allocations is the biggest problem

in fair division.

There are several papers that have explored the question con-

cerning the existence of EFX allocations and have provided partial

results. It is well-understood that EFX allocations exists for identical

valuations. Chaudhury et al. [12] proved that an EFX allocation ex-

ists for the case 3 agents and goods. Mahara [19] showed that when

items are goods and the agents have at most 2 types of valuation

functions, then there exists an EFX allocation. Some of the results

on sufficient conditions for the existence of EFX allocations have

been extended to more general valuations [20]. On the other hand,

Hosseini et al. [17] showed that when there are mixed goods and

chores, then an EFX allocation may not exist. In this paper, we focus

on EFX allocation of chores and identify conditions under which

an EFX allocation exists. Zhou and Wu [23] presented algorithms

that provide approximation of EFX for chores. Li et al. [18] consid-

ered PROPX which is a weaker property than EFX in the context

of chores and they proposed algorithms for PROPX allocation of

chores. One particular paper [16] focusses on positive valuations

and among other results, presents an algorithm to compute an EFX

allocation when there are at most two item types. The approach

does not extend to the case of chores and our corresponding result

requires a different approach and argument.

Garg et al. [15] and Ebadian et al. [14] examine problems in

which agents have negative bi-valued valuations
2
, and they both

present a polynomial-time algorithm to compute an EF1 and Pareto

optimal allocation. Ebadian et al. [14] also showed that for a subclass

of personalised bi-valued allocations an MMS fair allocation can

always be computed. Previously, Aziz et al. [1] characterized Pareto

optimal allocations for positive bi-valued valuations.

3 PRELIMINARIES
Let 𝑀 be a set of𝑚 indivisible chores, and 𝑁 be a set of 𝑛 agents.

Each agent 𝑖 ∈ 𝑁 has a valuation function 𝑣𝑖 : 𝑀 → R≤0, where
𝑣𝑖 (𝑟 ) indicates 𝑖’s value for chore 𝑟 ∈ 𝑀 . Throughout the paper we

assume that the valuation functions are additive, i.e., for each agent

𝑖 ∈ 𝑁 and for each set of chores 𝑆 ⊆ 𝑀 , 𝑣𝑖 (𝑆) =
∑
𝑟 ∈𝑆 𝑣𝑖 (𝑟 ). Our

main focus is to study the following class of instances:

Definition 3.1. A fair division instance 𝐼 = (𝑁,𝑀, 𝑣) is two chore
types if the item set can be partitioned into two sets 𝐴 and 𝐵 with

𝑀 = 𝐴 ∪ 𝐵, such that for each 𝑖 ∈ 𝑁 we have 𝑣𝑖 (𝑟 ) = 𝑣𝑖 (𝑟 ′) for all
𝑟, 𝑟 ′ ∈ 𝐴, and 𝑣𝑖 (ℎ) = 𝑣𝑖 (ℎ′) for all ℎ,ℎ′ ∈ 𝐵.

In plain English, an instance is two chore types if there are at

most two item types such that each agent is indifferent among items

of the same type. Denote 𝑣𝐴
𝑖
as agent 𝑖’s value for an item of type𝐴,

and 𝑣𝐵
𝑖
as value for an item of type 𝐵. For notational convenience,

we order the agents so that

𝑣𝐴
𝑖

𝑣𝐵
𝑖

≤ 𝑣𝐴
𝑖+1
𝑣𝐵
𝑖+1

for all 1 ≤ 𝑖 < 𝑛, where we

2
Each agent 𝑖 and item 𝑜 , the valuation is either some value 𝑎 or 𝑏.
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EF1 & PO EFX

Chores: general existence open existence open

Chores: personalised bi-valued existence open existence open

Chores: bi-valued in P, exists [14, 15] existence open

Chores: binary in P, exists in P, exists

Chores: 2 item types in P, exists (Theorem 4.7) in P, exists (Theorem 5.1)

Table 1: Existence and complexity results under additive valuations

consider

𝑣𝐴
𝑖

0
to be∞.3 More formally, this condition can be restated

as 𝑣𝐴
𝑖
𝑣𝐵
𝑖+1 ≤ 𝑣𝐴

𝑖+1𝑣
𝐵
𝑖
. Informally, this means that agents who prefer

type 𝐴 items have smaller indices, and agents who prefer type 𝐵

items have larger indices. We divide the agents into two sets 𝑁𝐴

and 𝑁𝐵 , where agents in 𝑁𝐴 prefer type 𝐴 items and agents in 𝑁𝐵

prefer type 𝐵 items. In particular, if 𝑣𝐴
𝑖
≥ 𝑣𝐵

𝑖
then 𝑖 ∈ 𝑁𝐴 , and

otherwise 𝑖 ∈ 𝑁𝐵 . We say that an agent 𝑖 ∈ 𝑁𝐴 strongly prefers 𝐴 if

2𝑣𝐴
𝑖
≥ 𝑣𝐵

𝑖
, and define it similarly for agents in 𝑁𝐵 .

A valuation function is called bi-valued if there exist 𝑎, 𝑏 ∈ R
such that 𝑣𝑖 (ℎ) ∈ {𝑎, 𝑏} for all 𝑖 ∈ 𝑁 and ℎ ∈ 𝑀 . There have

been several works which focus on bi-valued valuations [14, 15].

We remark that bi-valued valuations are incomparable to two

chore types valuations. Two chore type instances allow the set of

agents to have 2𝑛 different values across agents and items whereas

bi-valued instances allow for exactly two. A generalization of

both bi-valued and two chore type instances is called personalized
bi-valued, where for each agent 𝑖 ∈ 𝑁 there exist 𝑎𝑖 , 𝑏𝑖 ∈ R such

that 𝑣𝑖 (ℎ) ∈ {𝑎𝑖 , 𝑏𝑖 } for all ℎ ∈ 𝑀 . For personalized bi-valued in-

stances, the existence of EF1+PO or EFX allocations are not known.

Allocation: An allocation is a partition 𝑋 = (𝑋1, ..., 𝑋𝑛) of the
item set 𝑀 , where 𝑋𝑖 ⊆ 𝑀 is the bundle allocated to agent 𝑖 ∈ 𝑁 .

An allocation is called partial if
⋃

𝑖∈𝑁 𝑋𝑖 ≠ 𝑀 . We say that the

allocation is fractional if items are allocated (possibly) fractionally

such that no more than one unit of each chore is allocated. In a

fractional allocation, the valuation that an agent derives from an

item is directly proportional to the fraction of that item that they

are allocated. Observe that for two chore type instances any bundle

can be succinctly represented by the number of items of each type

in the bundle. Thus we denote 𝑋𝑖 = (𝛼𝑖 , 𝛽𝑖 ) where 𝛼𝑖 is the number

of type 𝐴 items and 𝛽𝑖 is the number of type 𝐵 items in agent 𝑖’s

bundle. We write (𝛼, 𝛽) ⊎ (𝛼 ′, 𝛽′) to denote the set (𝛼 + 𝛼 ′, 𝛽 + 𝛽′)
for convenience.

Fairness Notions: An allocation 𝑋 = (𝑋1, ..., 𝑋𝑛) is envy-free (EF)
if for any agents 𝑖, 𝑗 ∈ 𝑁 , we have 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ). It is easy
to see that EF allocations may not exist in general

4
. As a result

weaker fairness notions EF1 and EFX have been introduced. An

allocation 𝑋 is envy-free up to one chore (EF1) if for any agents

𝑖, 𝑗 ∈ 𝑁 , where 𝑋𝑖 ≠ ∅, there exists a chore ℎ ∈ 𝑋𝑖 such that

𝑣𝑖 (𝑋𝑖 \ ℎ) ≥ 𝑣𝑖 (𝑋 𝑗 ). An allocation 𝑋 is envy-free up to any chore

3
We assume that no agent values both item types at 0, as otherwise we can simply

allocate all the chores to that agent.

4
Consider an instance where there is one chore and two agents who have negative

values for the chore

(EFX) if for any agents 𝑖, 𝑗 ∈ 𝑁 , and for any chore ℎ ∈ 𝑋𝑖 with

𝑣𝑖 (ℎ) < 0, we have 𝑣𝑖 (𝑋𝑖 \ ℎ) ≥ 𝑣𝑖 (𝑋 𝑗 ).
Observe that EFX implies EF1, but not vice versa. We say that

an agent 𝑖 EF1-envies (respectively EFX-envies) another agent 𝑗 if 𝑖
envies 𝑗 and this envy is not EF1 (respectively EFX).

Efficiency Notions: An allocation 𝑌 Pareto dominates another
allocation 𝑋 if 𝑣𝑖 (𝑌𝑖 ) ≥ 𝑣𝑖 (𝑋𝑖 ) for all agents 𝑖 and there ex-

ists an agent 𝑗 such that 𝑣 𝑗 (𝑌𝑗 ) > 𝑣 𝑗 (𝑋 𝑗 ). An allocation is

Pareto optimal (PO) if it is not Pareto dominated by any allo-

cation. An allocation is fractionally Pareto optimal (fPO) if it is
not Pareto dominated by any fractional allocation. Note that an

fPO allocation is also PO, but a PO allocation is not necessarily fPO.

For the remainder of the paper, we assume that all agents have

strictly negative valuations for both item types. We make this as-

sumption since if there is at least one agent who values a chore

at zero then both EF1+fPO and EFX allocations can be found in a

straightforward way. To see this, observe that if there is an agent 𝑖

with 𝑣𝐴
𝑖
= 0 and an agent 𝑗 with 𝑣𝐵

𝑗
= 0, then we can give all type𝐴

items to agent 𝑖 and all type 𝐵 items to agent 𝑗 . In this case, every

agent values their bundle at 0 and so this is trivially EF1+fPO and

also EFX. On the other hand, without loss of generality, if there

exists an agent 𝑖 with 𝑣𝐴
𝑖
= 0, but 𝑣𝐵

𝑗
< 0 for all agents 𝑗 then we

assign all type 𝐴 items to agent 𝑖 and we assign the type 𝐵 items in

a round-robin way to all the agents. This gives an EFX allocation

because each agent has at most one more type 𝐵 item than any

other agent. Additionally, this allocation is fPO since all type 𝐴

items were allocated to an agent who values them at zero, and so

redistributing these items cannot lead to a Pareto improvement.

Furthermore, if any agent were to receive fewer type 𝐵 items (pos-

sibly fractionally), a different agent must receive more type 𝐵 items,

and hence no Pareto improvements are possible.

4 EF1+ fPO
In this section, we present a polynomial-time algorithm that

computes an EF1 and fPO allocation for the fair division problem

with two chore type instances. En route, we give a novel character-

ization of fPO allocations in our setting.

Characterization of fPO Allocations
We begin by providing a new characterization of structure of

fPO allocations by showing Lemma 4.1. Due to space constraints

we defer the proof of Lemma 4.1 to the full paper [4].
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Lemma 4.1. Given a two chore types instance where all agents
have strictly negative valuations, an allocation 𝑋 = (𝑋1, ..., 𝑋𝑛) is
fPO if and only if there exists an agent 𝑖 such that:

• For all agents 𝑗 where
𝑣𝐴
𝑗

𝑣𝐵
𝑗

<
𝑣𝐴
𝑖

𝑣𝐵
𝑖

, the bundle 𝑋 𝑗 only contains

type 𝐴 items.

• For all agents 𝑗 where
𝑣𝐴
𝑗

𝑣𝐵
𝑗

>
𝑣𝐴
𝑖

𝑣𝐵
𝑖

, the bundle 𝑋 𝑗 only contains

type 𝐵 items.

We remark that Lemma 4.1 allows us to restrict our attention

to allocations that obey the structure outlined in the lemma. In

Figure 2, we give a visualisation of this structure.

𝑣𝐴
1

𝑣𝐵
1

≤ ... ≤ 𝑣𝐴
𝑖−1
𝑣𝐵
𝑖−1

<
𝑣𝐴
𝑖

𝑣𝐵
𝑖

= ... =
𝑣𝐴
𝑗

𝑣𝐵
𝑗

<
𝑣𝐴
𝑗+1

𝑣𝐵
𝑗+1
≤ ... ≤ 𝑣𝐴𝑛

𝑣𝐵𝑛

Only type 𝐴 No restrictions Only type 𝐵

Figure 2: The general form of allocations that satisfy
Lemma 4.1.

Algorithm for EF1+fPO
To find an EF1 and fPO allocation, it is sufficient to consider only a

subset of the allocations that satisfy Lemma 4.1. In particular, we

consider a set of allocations with the following structure.

Definition 4.2. An allocation 𝑋 = (𝑋1, ..., 𝑋𝑛) is ordered with
respect to agent i (or ordered for short) if there exists some agent 𝑖

where:

• For all agents 𝑗 where 𝑗 < 𝑖 , the bundle 𝑋 𝑗 only contains

type 𝐴 items.

• For all agents 𝑗 where 𝑗 > 𝑖 , the bundle 𝑋 𝑗 only contains

type 𝐵 items.

We remark that all ordered allocations satisfy Lemma 4.1, but the

converse does not necessarily hold (in particular, it does not always

hold when there are multiple agents with identical preferences).

First, we consider an even more restricted class of allocations,

namely split-round-robin.

Definition 4.3. Let 𝑖 be an agent such that 1 ≤ 𝑖 < 𝑛. The allo-

cation split-round-robin(i) is the allocation formed by distributing

the type 𝐴 items to agents 1 through 𝑖 in a round-robin way, and

distributing the type 𝐵 items to agents 𝑖 + 1 through 𝑛 in a round-

robin way. In both cases, we allocate to agents with smaller indices

first.

By Lemma 4.1, the allocation split-round-robin(i) is fPO for all 𝑖 .

We introduce terminology to describe whether a split-round-robin
allocation is EF1. Let 𝑖 be an agent such that 1 ≤ 𝑖 < 𝑛. We say that

the allocation split-round-robin(i) has 𝐴-envy if there is an agent

𝑗 ≤ 𝑖 who has EF1-envy towards another agent 𝑘 > 𝑖 . Similarly, we

say that the allocation split-round-robin(i) has 𝐵-envy if there is an

agent 𝑗 > 𝑖 who has EF1-envy towards another agent 𝑘 ≤ 𝑖 .

Observe that split-round-robin(i) is EF1 if and only if it does

not have 𝐴-envy nor 𝐵-envy. We can now begin describing our

algorithm for finding an EF1 and fPO allocation. Algorithm 1 begins

by checking whether split-round-robin(i) is EF1 for any 1 ≤ 𝑖 < 𝑛.

If so, then the algorithm has found an EF1 and fPO allocation.

Otherwise, we create an allocation which is ordered with respect

to a carefully chosen agent, who we call a split-agent.

Definition 4.4. An agent 𝑖 is a split-agent if both of the following

conditions hold:

• Either 𝑖 = 1 or split-round-robin(i-1) has 𝐴-envy, and
• Either 𝑖 = 𝑛 or split-round-robin(i) has 𝐵-envy.

Lemma 4.5. If split-round-robin(i) is not EF1 for all 1 ≤ 𝑖 < 𝑛,
then there exists a split-agent.

Proof. Observe that if split-round-robin(i) is not EF1 (for any
1 ≤ 𝑖 < 𝑛), it must have 𝐴-envy or 𝐵-envy. If neither 1 nor 𝑛 are

split-agents, then split-round-robin(1) has 𝐴-envy and split-round-
robin(n-1) has 𝐵-envy. Hence, there must exist some 1 < 𝑖 < 𝑛 such

that split-round-robin(i-1) has 𝐴-envy and split-round-robin(i) has
𝐵-envy. □

We select a split-agent 𝑖∗, and will create an instance that is

ordered with respect to 𝑖∗. We now explore a useful property of

ordered allocations.

Lemma 4.6. Let 𝐼 = (𝑁,𝑀, 𝑣) be a two chore types instance and 𝑋
be an allocation that is ordered with respect to agent 𝑖∗. Consider a
modified valuation profile 𝑣 , where 𝑣 𝑗 = 𝑣𝑖∗ for all 𝑗 ∈ 𝑁 . If 𝑋 is EF1
with respect to the modified valuation profile 𝑣 then it is EF1 in the
original valuation profile 𝑣 .

Proof. As𝑋 is ordered with respect to agent 𝑖∗, any agent 𝑗 < 𝑖∗

has only type 𝐴 items i.e., 𝑋 𝑗 = (𝛼 𝑗 , 0). Consider now some other

agent 𝑘 ∈ 𝑁 . We show that if agent 𝑗 does not EF1-envy 𝑘 under

a modified valuation 𝑣 𝑗 = 𝑣𝑖∗ , then 𝑗 does not EF1-envy 𝑘 in the

original instance.

Observe that if 𝛼 𝑗 = 0, then agent 𝑗 is not allocated any chores,

and thus she does not have envy towards any other agent. Hence

we assume that 𝛼 𝑗 > 0. Since𝑋 is EF1 under the modified valuation

profile, agent 𝑗 does not EF1-envy 𝑘 when 𝑣 𝑗 = 𝑣𝑖∗ . It follows that,

𝑣 𝑗 (𝛼 𝑗 − 1, 0) = (𝛼 𝑗 − 1)𝑣𝐴𝑖∗
≥ 𝛼𝑘𝑣

𝐴
𝑖∗ + 𝛽𝑘𝑣

𝐵
𝑖∗ (1)

Recalling 𝑗 < 𝑖∗, we have

𝑣𝐴
𝑗

𝑣𝐵
𝑗

≤ 𝑣𝐴
𝑖∗
𝑣𝐵
𝑖∗
. Rearranging we have that

𝑣𝐴
𝑗

𝑣𝐴
𝑖∗
≤

𝑣𝐵
𝑗

𝑣𝐵
𝑖∗
. As both sides of Equation (1) are non-positive, it follows

that (𝛼 𝑗 − 1)𝑣𝐴𝑗 ≥ 𝛼𝑘𝑣
𝐴
𝑗
+ 𝛽𝑘𝑣𝐵𝑗 , and hence 𝑗 does not EF1-envy 𝑘

under the original valuation function.

We can apply a similar argument for agents 𝑗 > 𝑖∗. □

Theorem 4.7. Given a two chore types instance, Algorithm 1 finds
an allocation that is EF1 and fPO in polynomial-time.

Proof. First observe that the algorithm only outputs an ordered

allocation and thus fPO by Lemma 4.1. Furthermore if split-round-
robin(i) is EF1 for some 𝑖 then the algorithm returns an allocation

that is both EF1 and fPO immediately. Thus the main challenge is

to analyse the algorithm on instances where split-round-robin(i) is
not EF1 for any 1 ≤ 𝑖 < 𝑛. In the remainder of the proof we restrict

our attention to these instances.
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Algorithm 1: Computing an EF1 and fPO allocation

Input :A fair allocation instance with two chore types,

where all agents have strictly negative valuations

Output :An allocation which is EF1 and fPO

1 for 𝑖 ← 1 to 𝑛 − 1 do
2 if split-round-robin(i) is EF1 then
3 return split-round-robin(i)
4 𝑖∗ ← a split agent ; ⊲ Note that such an agent is

guaranteed to exist by Lemma 4.5.

5 𝑋 = (𝑋1, ..., 𝑋𝑛) ← an allocation where 𝑋𝑖∗ = 𝑀 and 𝑋 𝑗 = ∅
for all 𝑗 ≠ 𝑖∗.

6 while 𝑋 is not EF1 do
7 𝑗 ← an agent in argmax𝑗∈𝑁 \𝑖∗ 𝑣𝑖∗ (𝑋 𝑗 )
8 if 𝑗 < 𝑖∗ then
9 Transfer a type 𝐴 item from 𝑋𝑖∗ to 𝑋 𝑗

10 else
11 Transfer a type 𝐵 item from 𝑋𝑖∗ to 𝑋 𝑗

12 return 𝑋

Recall that by Lemma 4.5 there exists a split agent 𝑖∗. At a high
level the algorithm transfers items from the split agent to other

agents until the allocation becomes EF1 whilst maintaining that

the allocation is ordered with respect to 𝑖∗.
Consider now a modified valuation 𝑣 𝑗 = 𝑣𝑖∗ for all 𝑗 ∈ 𝑁 . We

show that the algorithm outputs an EF1 allocation with respect to

the modified instance. By Lemma 4.6, the same allocation is also

EF1 with respect to the original instance. In the modified instance,

there is no EF1-envy among all agents other than 𝑖∗ since their

bundles are formed by repeatedly transferring an item to the agent

with the highest valuation. In particular, if 𝑋 is not EF1, this must

be due to EF1-envy that agent 𝑖∗ has for another agent, or EF1-envy
that another agent has towards agent 𝑖∗.

Let 𝑋𝐿
be the earliest allocation 𝑋 encountered in Algorithm 1

where 𝑣𝑖∗ (𝑋𝑖∗ ) ≠ min𝑗∈𝑁 𝑣𝑖∗ (𝑋 𝑗 ) holds (assuming that Algorithm 1

does not terminate prior to this). If Algorithm 1 terminates prior to

𝑋𝐿
, for simplicity we say that every allocation in the algorithm

is prior to 𝑋𝐿
. We show that for all allocations 𝑋 prior to (and

including) 𝑋𝐿
, no agent has EF1-envy towards 𝑖∗. The statement

holds for all allocations prior to 𝑋𝐿
from the definition of 𝑋𝐿

.

We now prove that in the allocation 𝑋𝐿
, no agent has EF1-envy

towards 𝑖∗. Let 𝑋 ′ be the allocation immediately prior to 𝑋𝐿
. Note

that𝑋 ′ is not EF1, or otherwise Algorithm 1 would have terminated.

By definition of 𝑋 ′, we have 𝑣𝑖∗ (𝑋 ′𝑖∗ ) = min𝑗∈𝑁 𝑣𝑖∗ (𝑋 ′𝑗 ). Since 𝑋
′

is not EF1 it follows that agent 𝑖∗ must EF1-envy agent 𝑗 , where

𝑗 ∈ argmax𝑗∈𝑁 \{𝑖∗ } 𝑣𝑖∗ (𝑋 ′𝑗 ). Note that 𝑗 is the agent who was

transferred an item in Algorithm 1 when the allocation 𝑋𝐿
was

created. Since the bundle 𝑋𝐿
𝑖∗ has one less item than 𝑋 ′

𝑖∗ and agent

𝑖∗ had EF1-envy towards 𝑗 when the allocation was 𝑋 ′, it follows
that 𝑣𝑖∗ (𝑋𝐿

𝑖∗ ) < 𝑣𝑖∗ (𝑋 ′𝑗 ). For all agents 𝑘 ≠ 𝑗, 𝑖∗, their bundle is

unchanged between𝑋 ′
𝑘
and𝑋𝐿

𝑘
. Because agent 𝑘 does not EF1-envy

the bundle 𝑋 ′
𝑗
they do not EF1-envy the even worse bundle 𝑋𝐿

𝑖∗ .

Therefore in the allocation 𝑋𝐿 , no agent has EF1-envy towards 𝑖∗.

Claim 1: For all allocations 𝑋 prior to and including 𝑋𝐿
, we have

that 𝑋𝑖∗ contains at least one item of each type.

Proof of Claim 1. Recall that no agent has EF1 envy towards

𝑖∗ and thus every agent other than 𝑖∗ has no EF1-envy towards any

agent.

We first prove that𝑋𝑖∗ has at least one type𝐴 item. If 𝑖∗ = 1, then

this is immediately true. Otherwise, assume 𝑖∗ > 1. We proceed by

contradiction. Assume that 𝑋𝑖∗ has no type 𝐴 items. Then, agents

1 through 𝑖∗ − 1 have all the type 𝐴 items, and agents 𝑖 through

𝑛 have all the type 𝐵 items, just as in the allocation split-round-
robin(𝑖∗ − 1). However, because 𝑖∗ is a split-agent, we know that

split-round-robin(𝑖∗ − 1) has 𝐴-envy. Thus there must exist some

agent 𝑗 < 𝑖∗ who has EF1-envy towards another agent 𝑘 ≥ 𝑖∗ in 𝑋

which is a contradiction.

We now prove that there is at least one type 𝐵 item. If 𝑖∗ = 𝑛, it

follows immediately. Otherwise, if 𝑖∗ < 𝑛, we can use a symmetrical

argument to the type 𝐴 item case. □

In the next paragraph, we will show that the algorithm termi-

nates (i.e. returns an EF1 allocation) prior to or at allocation 𝑋𝐿
.

Therefore, by Claim 1, whenever Line 9 is reached, 𝑋𝑖∗ has at least

one type 𝐴 item, and whenever Line 11 is reached, 𝑋𝑖∗ has at least

one type 𝐵 item.

If the algorithm terminates prior to 𝑋𝐿
then we are done. Other-

wise, if every allocation prior to 𝑋𝐿
is not EF1 then we show that

𝑋𝐿
must be EF1. By the definition of 𝑋𝐿

, there exists some agent

𝑘 such that 𝑣𝑖∗ (𝑋𝐿
𝑘
) < 𝑣𝑖∗ (𝑋𝐿

𝑖∗ ). Since no agent in 𝑁 \ 𝑖∗ has any
EF1-envy towards any other agent in 𝑁 , it follows that 𝑘 does not

EF1-envy any agent i.e., there exists some chore 𝑟 ∈ 𝑋𝐿
𝑘
such that

𝑣𝑖∗ (𝑋𝐿
𝑘
\ 𝑟 ) ≥ 𝑣𝑖∗ (𝑋𝐿

𝑙
) for all agents 𝑙 . By Claim 1, 𝑋𝐿

𝑖∗ contains at

least one item of each type, and therefore contains an item 𝑟 ′ of the
same type as 𝑟 . Therefore 𝑣𝑖∗ (𝑋𝐿

𝑖∗ \ 𝑟
′) > 𝑣𝑖∗ (𝑋𝐿

𝑘
\ 𝑟 ) ≥ 𝑣𝑖∗ (𝑋𝐿

𝑙
) for

all 𝑙 ∈ 𝑁 . Hence 𝑋𝐿
is EF1 with respect to the modified instance.

As for time complexity, the algorithm runs in polynomial-time

since the while loop on Line 6 can only run at most𝑚 times. □

EFX and fPO are not always compatible
A natural extension of Theorem 4.7 is to ask whether an alloca-

tion always exists that is EFX and fPO. Here, we disprove this by

providing an instance with no allocation that is both EFX and fPO.

Consider an instance with 3 agents, where 𝑣𝐴
1
= −10, 𝑣𝐴

2
= −11,

𝑣𝐴
3
= −12, and 𝑣𝐵

1
= 𝑣𝐵

2
= 𝑣𝐵

3
= −1. There are 3 type 𝐴 items and 2

type 𝐵 items. For the allocation to be EFX, each agent must receive

one type𝐴 item. Otherwise, one agent would receive at least 2 type

𝐴 items and another agent would receive no type 𝐴 items, which

cannot be EFX. However, if the allocation is fPO it must satisfy

Lemma 4.1 and so agent 3 must receive both type 𝐵 items. However,

this is not EFX. Hence, in this instance, there does not exist any

allocation that is both EFX and fPO.

Due to this nonexistence result, we instead consider the question

of whether an EFX allocation always exists.

5 EFX
In this section, we give an algorithm to compute an EFX allocation

of chores when there are two item types. Our first observation

is that important algorithms for chore allocation as well natural
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adaptations for fair allocation of goods to the case of chores do not

give EFX guarantees even for two item types. These include two

algorithms (“The Top-trading Envy Cycle Elimination Algorithm”

and “The Bid-and-Take Algorithm”) for PROPX allocations by Li

et al. [18] as well as an adaptation the algorithm of Gorantla et al.

[16] to the case of chores. This is detailed in the full paper [4].

The main result of this section is Theorem 5.1, which we use the

remainder of this section to prove.

Theorem 5.1. For two chore type instances, an EFX allocation
always exists and can be found in polynomial-time.

5.1 Allocation algorithm when |𝐴| ≤ |𝑁𝐴 | or
|𝐵 | ≤ |𝑁𝐵 |

The main algorithm in Section 5.2 requires |𝐴| > |𝑁𝐴 | and |𝐵 | >
|𝑁𝐵 |, and so we begin with an algorithm for when this does not

hold. This case is detailed in the full paper [4].

5.2 Allocation algorithm when |𝐴| > |𝑁𝐴 | and
|𝐵 | > |𝑁𝐵 |

In this section, we prove that Algorithm 2 always finds an EFX

allocation in polynomial time. We assume without loss of generality

that |𝑁𝐴 | ≥ |𝑁𝐵 |.
We begin with an overview of Algorithm 2. Algorithm 2 starts

by computing an EFX partial allocation 𝑋 ∗ on Line 3. In this initial

allocation, all type 𝐵 (and potentially some type 𝐴) items are allo-

cated. Algorithm 2 then applies one of following two update rules

until all type 𝐴 items are allocated:

• Rule 1 (Line 8). Let 𝑎 be the number of unallocated type

𝐴 items and let 𝑋 ′ = (𝑋 ′
1
, ..., 𝑋 ′𝑛) be an allocation where

𝑋 ′
𝑖
= 𝑋𝑖 for all 𝑖 ∈ 𝑁𝐴 and 𝑋 ′

𝑗
= 𝑋 𝑗 ⊎ (1, 0) for all 𝑗 ∈ 𝑁𝐵 . If

𝑎 ≥ |𝑁𝐵 | and 𝑋 ′ is EFX, then set 𝑋 to be 𝑋 ′. We refer to the

condition “𝑋 ′ is EFX” as the “EFX condition of Rule 1”.

• Rule 2 (Line 11). If Rule 1 does not apply, then let 𝑖 ∈ 𝑁𝐴 be

an agent who is envy-free (we will prove that such an agent

always exists under our choice of 𝑋 ∗). We allocate a type 𝐴

item to 𝑖 .

Note that both rules preserve EFX. In particular, Rule 1 preserves

EFX by definition, and Rule 2 preserves EFX because any envy

that agent 𝑖 has will disappear if a single type 𝐴 item is removed

from their bundle. Hence, if Algorithm 2 returns, then the returned

allocationwill be EFX. Additionally, Algorithm 2 runs in polynomial

time because the update rules will be applied at most𝑚 times.

However, it is not guaranteed that the updates rules can always

be applied for every choice of 𝑋 ∗: Example 5.2 demonstrates a case

where neither rule can be applied. Therefore, the initial allocation

𝑋 ∗ must be chosen carefully so that a situation similar to Exam-

ple 5.2 never occurs. In particular, for the chosen initial allocation

𝑋 ∗ we must show that whenever Line 10 is reached, there always

exists an agent 𝑖 ∈ 𝑁𝐴 where 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ) for all 𝑗 ∈ 𝑁 . We

introduce some terminology to reason about this: if there exists

such an agent 𝑖 , we say that “Rule 2 can be applied”. If it is possible

to apply Rule 2 𝑘 times consecutively, then we say that “Rule 2

can be applied 𝑘 times”. Note that we use these terms regardless of

whether Rule 1 can be applied.

Agents 𝑣𝐴
𝑖

𝑣𝐵
𝑖

𝑋𝑖

1 −1 −5 (1, 1)
2 −5 −1 (0, 1)
3 −5 −1 (0, 2)

Example 5.2. An instance with an EFX allocation 𝑋 . If there is

𝑎 = 1 unallocated type 𝐴 item, then neither update rule can be

applied. In particular, Rule 1 cannot be applied because there are

insufficient unallocated items. Rule 2 cannot be applied because

agent 1 would EFX-envy agent 2 if the rule were to be applied.

Algorithm 2: Computing an EFX allocation

Input :A fair allocation instance with two chore types,

where all agents have strictly negative valuations

and |𝑁𝐴 | ≥ |𝑁𝐵 |
Output :An EFX allocation

1 if |𝐴| ≤ |𝑁𝐴 | or |𝐵 | ≤ |𝑁𝐵 | then
2 return the allocation described in Section 5.1

3 𝑋 = (𝑋1, ..., 𝑋𝑛) ← 𝑋 ∗, an initial partial EFX allocation,

described in Section 5.3

4 while 𝑋 is a partial allocation do
5 𝑎 ← the number of unallocated type 𝐴 items

6 𝑋 ′ = (𝑋 ′
1
, ..., 𝑋 ′𝑛) ← an allocation where 𝑋 ′

𝑖
= 𝑋𝑖 for all

𝑖 ∈ 𝑁𝐴 and 𝑋 ′
𝑗
= 𝑋 𝑗 ⊎ (1, 0) for all 𝑗 ∈ 𝑁𝐵

7 if 𝑎 ≥ |𝑁𝐵 | and 𝑋 ′ is EFX then
8 𝑋 ← 𝑋 ′ ⊲ Rule 1

9 else
10 𝑖 ← an agent in 𝑁𝐴 where 𝑣𝑖 (𝑋𝑖 ) ≥ 𝑣𝑖 (𝑋 𝑗 ) for all

𝑗 ∈ 𝑁
11 𝑋𝑖 ← 𝑋𝑖 ⊎ (1, 0) ⊲ Rule 2

12 return 𝑋

The remainder of this section is structured as follows: We begin

by introducing some results in Lemma 5.3-5.6 that are helpful later

in the section. We then provide conditions for 𝑋 ∗ under which
Algorithm 2 always finishes and returns an allocation. In particular,

both Lemma 5.7 and Lemma 5.9 give sufficient conditions for 𝑋 ∗.
Finally, in Section 5.3, we show how to compute the initial allocation

𝑋 ∗. To do this, we must consider several cases that together cover

every possible input instance for Algorithm 2. In every case, we

show that we can find an initial allocation 𝑋 ∗ that satisfies the
criteria of Lemma 5.7 or Lemma 5.9.

Due to space constraints, the proofs of Lemma 5.3-5.9 are de-

ferred to the full paper [4].

Lemma 5.3. Let 𝑖 and 𝑗 be two agents, and let 𝑋 be an allocation.
If 𝑖 > 𝑗 and 𝑋𝑖 has at least as many type 𝐵 items as 𝑋 𝑗 , then 𝑖 and
𝑗 cannot both envy each other. That is, if 𝑖 envies 𝑗 , then 𝑗 does not
envy 𝑖 .

Lemma 5.4. Let 𝑖 ∈ 𝑁𝐴 and 𝑗 ∈ 𝑁𝐵 be two agents, and let 𝑋𝑖 and
𝑋 𝑗 be their bundles. If 𝑋 𝑗 has strictly more type 𝐵 items than 𝑋𝑖 and
𝑗 EFX-envies 𝑖 , then |𝑋𝑖 | < |𝑋 𝑗 | − 1.
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Lemma 5.5. Let 𝑋 be an EFX allocation where all agents 𝑗 ∈ 𝑁𝐵

have strictly more type 𝐵 items than all agents 𝑖 ∈ 𝑁𝐴 . If there exists
an agent 𝑖 ∈ 𝑁𝐴 such that |𝑋𝑖 | < |𝑋 𝑗 | for all 𝑗 ∈ 𝑁𝐵 , then for all
𝑖′ ∈ 𝑁𝐴 and 𝑗 ′ ∈ 𝑁𝐵 it holds that agent 𝑖′ does not envy agent 𝑗 ′.

Lemma 5.6. Let 𝑋 be an EFX partial allocation where all type 𝐵
items are allocated. Assume that Algorithm 2 applies Rule 2 to 𝑋 to
create a new allocation 𝑋 ′, and then applies Rule 1 to 𝑋 ′ to create
𝑋 ′′. Then, the EFX condition of Rule 1 does not hold for 𝑋 ′′.

We are now ready to state our first set of sufficient conditions

for the initial allocation 𝑋 ∗.

Lemma 5.7. Let 𝑋 ∗ be an EFX partial allocation where all type 𝐵
items are allocated. If 𝑋 ∗ satisfies the following conditions, then the
update rules can be applied until all items are allocated:

(1) The EFX condition of Rule 1 does not hold for 𝑋 ∗, and
(2) Consider a partial allocation 𝑌 formed by applying the update

rules 0 or more times to 𝑋 ∗. Whenever the EFX condition of
Rule 1 does not hold for 𝑌 , Rule 2 can be applied |𝑁𝐵 | times to
𝑌 .

The proof of Lemma 5.7 uses Lemma 5.6 and is in the full paper [4].

We now present Lemma 5.8, that gives a set of conditions under

which the second condition of Lemma 5.7 is satisfied.

Lemma 5.8. Let 𝑋 be an EFX partial allocation. If 𝑋 satisfies the
following conditions, then Rule 2 can be applied |𝑁𝐵 | times:

(1) For all agents 𝑖 ∈ 𝑁𝐴 and 𝑗 ∈ 𝑁𝐵 , 𝑋 𝑗 has strictly more type 𝐵
items than 𝑋𝑖 ,

(2) For all agents 𝑖 ∈ 𝑁𝐴 and 𝑗 ∈ 𝑁𝐵 , 𝑖 does not envy 𝑗 , and
(3) Consider a partial allocation 𝑌 formed by applying the update

rules 0 or more times to 𝑋 . For any such allocation 𝑌 and any
nonempty subset 𝑆 ⊆ 𝑁𝐴 , there exists some agent 𝑖 ∈ 𝑆 who
does not envy any other agent in 𝑆 .

Finally, we provide a result which gives an alternate set of con-

ditions for the initial allocation 𝑋 ∗.

Lemma 5.9. Let 𝑋 ∗ be an EFX partial allocation where all type 𝐵
items are allocated. If 𝑋 ∗ satisfies the following conditions, then the
update rules can be applied until all items are allocated:

(1) The EFX condition of Rule 1 does not hold for 𝑋 ∗,
(2) |𝑋 ∗

𝑖
| = |𝑋 ∗

𝑖′ | for all 𝑖, 𝑖
′ ∈ 𝑁𝐵 ,

(3) For all agents 𝑖 ∈ 𝑁𝐴 and 𝑗 ∈ 𝑁𝐵 , 𝑋 ∗𝑗 has strictly more type 𝐵
items than 𝑋 ∗

𝑖
, and

(4) Consider a partial allocation 𝑌 formed by applying the update
rules 0 or more times to 𝑋 ∗. For any such allocation 𝑌 and any
nonempty subset 𝑆 ⊆ 𝑁𝐴 , there exists some agent 𝑖 ∈ 𝑆 who
does not envy any other agent in 𝑆 .

The proof of Lemma 5.9 uses Lemma 5.5, Lemma 5.7 and

Lemma 5.8 and is in the full paper [4].

5.3 Computing 𝑋 ∗

In this section, we describe how to compute 𝑋 ∗ and justify how

this initial allocation is sufficient for Algorithm 2 to output an

EFX allocation. We consider several cases, depending on the input

instance.

Let 𝑎 and 𝑏 be the number of unallocated type 𝐴 and 𝐵 items

respectively. Initially, 𝑎 = |𝐴| and 𝑏 = |𝐵 |.

Let 𝑘 =

⌊
𝑏−|𝑁𝐵 |

𝑛

⌋
. We begin by assigning 𝑘 type 𝐵 items to all

agents in 𝑁𝐴 and 𝑘 + 1 to all agents in 𝑁𝐵 . In particular,

𝑋 ∗𝑖 =

{
(0, 𝑘) for 𝑖 ∈ 𝑁𝐴 ,

(0, 𝑘 + 1) for 𝑖 ∈ 𝑁𝐵 .

Now, 0 ≤ 𝑏 < 𝑛. We consider two cases, depending on 𝑏.

5.3.1 Case 1: 𝑏 ≥ |𝑁𝐵 |. Let 𝑁 ′𝐴 = { 𝑖 ∈ 𝑁𝐴 : 𝑖 > 𝑛 − 𝑏 }. Note that
|𝑁 ′

𝐴
| = 𝑏 − |𝑁𝐵 |. We allocate one more type 𝐵 item to all agents

in 𝑁𝐵 ∪ 𝑁 ′
𝐴
, so that 𝑏 = 0. We also allocate one type 𝐴 item to all

agents in 𝑁𝐴\𝑁 ′𝐴 . In particular, the partial allocation is:

𝑋 ∗𝑖 =


(1, 𝑘) for 𝑖 ∈ 𝑁𝐴\𝑁 ′𝐴 ,
(0, 𝑘 + 1) for 𝑖 ∈ 𝑁 ′

𝐴
,

(0, 𝑘 + 2) for 𝑖 ∈ 𝑁𝐵 .

We use Lemma 5.9 to show that the update rules can be applied

until all items are allocated. First, note that the partial allocation is

EFX and the first three conditions of Lemma 5.9 clearly hold. For

the fourth condition, consider a partial allocation 𝑌 as described

in Lemma 5.9, and some nonempty subset 𝑆 ⊆ 𝑁𝐴 . If 𝑆 ⊆ 𝑁 ′
𝐴

or 𝑆 ⊆ 𝑁𝐴 \ 𝑁 ′𝐴 , then the fourth condition holds as any agent

𝑖 ∈ argmin𝑗∈𝑆 |𝑌𝑗 | does not envy any other agents in 𝑆 . Other-

wise, let 𝑖 be an agent in argmin𝑗∈𝑆∩𝑁 ′
𝐴
|𝑌𝑗 | and 𝑖′ be an agent in

argmin𝑗∈𝑆∩(𝑁𝐴\𝑁 ′𝐴 )
|𝑌𝑗 |. By Lemma 5.3 these agents cannot both

envy each other, and so assume without loss of generality that 𝑖

does not envy 𝑖′. Then, 𝑖 does not envy any agents in 𝑆 . Hence this

allocation satisfies all the conditions of Lemma 5.9.

5.3.2 Case 2: 𝑏 < |𝑁𝐵 |. Let 𝑁 ′𝐵 = { 𝑖 ∈ 𝑁𝐵 : 𝑖 > 𝑛 − 𝑏 }. Note that
|𝑁 ′

𝐵
| = 𝑏. We assign one more type 𝐵 item to all agents in 𝑁 ′

𝐵
, so

that 𝑏 = 0. This gives us the following partial allocation that is not

EFX:

𝑋 ∗𝑖 =


(0, 𝑘) for 𝑖 ∈ 𝑁𝐴 ,

(0, 𝑘 + 1) for 𝑖 ∈ 𝑁𝐵\𝑁 ′𝐵 ,
(0, 𝑘 + 2) for 𝑖 ∈ 𝑁 ′

𝐵
.

If |𝐴| ≤ 2|𝑁𝐴 |, then we allocate the type 𝐴 items to agents in

𝑁𝐴 in a round-robin way. Note that each agent in 𝑁𝐴 will receive 1

or 2 type 𝐴 items (since |𝑁𝐴 | < |𝐴| ≤ 2|𝑁𝐴 |). In particular, let 𝑁 ′
𝐴

be the agents who receive 1 type 𝐴 item. Then we will have the

following EFX allocation:

𝑋 ∗𝑖 =


(1, 𝑘) for 𝑖 ∈ 𝑁 ′

𝐴
,

(2, 𝑘) for 𝑖 ∈ 𝑁𝐴\𝑁 ′𝐴 ,
(0, 𝑘 + 1) for 𝑖 ∈ 𝑁𝐵\𝑁 ′𝐵 ,
(0, 𝑘 + 2) for 𝑖 ∈ 𝑁 ′

𝐵
.

Since there are no unallocated items, this case is complete. Other-

wise, we know that |𝐴| > 2|𝑁𝐴 |. We consider three final subcases.

Case 2.1: For all 𝑗 ∈ 𝑁𝐵\𝑁 ′𝐵 , agent 𝑗 does not strongly prefer 𝐵
(recall that 𝑗 strongly prefers 𝐵 if 2𝑣𝐵

𝑗
≥ 𝑣𝐴

𝑗
). In this case, we allocate

one type 𝐴 item to all agents in 𝑁𝐴 ∪ 𝑁𝐵\𝑁 ′𝐵 , resulting in the

following EFX partial allocation:
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𝑋 ∗𝑖 =


(1, 𝑘) for 𝑖 ∈ 𝑁𝐴 ,

(1, 𝑘 + 1) for 𝑖 ∈ 𝑁𝐵\𝑁 ′𝐵 ,
(0, 𝑘 + 2) for 𝑖 ∈ 𝑁 ′

𝐵
.

This partial allocation is EFX because agents in 𝑁𝐵\𝑁 ′𝐵 prefer 1

type 𝐴 item over 2 type 𝐵 items. We use Lemma 5.9 to show that

the update rules can be applied until all items are allocated. The

first three conditions of Lemma 5.9 clearly hold. For the fourth

condition, consider a partial allocation 𝑌 as described in Lemma 5.9

and a nonempty subset 𝑆 ⊆ 𝑁𝐴 . Then, any agent 𝑖 ∈ argmin𝑗∈𝑆 |𝑌𝑗 |
does not envy any other agents in 𝑆 . Hence this allocation satisfies

all the conditions of Lemma 5.9.

Case 2.2: There are at least |𝑁𝐵 | agents 𝑖 ∈ 𝑁𝐴 who strongly prefer
𝐴. In this case, we give one type𝐴 item to all agents in𝑁𝐴 , resulting

in the following EFX partial allocation:

𝑋 ∗𝑖 =


(1, 𝑘) for 𝑖 ∈ 𝑁𝐴 ,

(0, 𝑘 + 1) for 𝑖 ∈ 𝑁𝐵\𝑁 ′𝐵 ,
(0, 𝑘 + 2) for 𝑖 ∈ 𝑁 ′

𝐵
.

We use Lemma 5.7 to show that the update rules can always be

applied. The first condition clearly holds. For the second condition,

consider a partial allocation 𝑌 as described in Lemma 5.7, and

assume that the EFX condition of Rule 1 does not hold for 𝑌 . Then,

there must exist some agent 𝑗 ∈ 𝑁𝐵 who would EFX-envy some

agent 𝑖 ∈ 𝑁𝐴 if Rule 1 were to be applied. Then, by Lemma 5.4, we

know that |𝑌𝑖 | < |𝑌𝑗 |. However, observe that |𝑌𝑗 | ≤ |𝑌𝑗 ′ | + 1 for all
𝑗 ′ ∈ 𝑁𝐵 and so |𝑌𝑖 | < |𝑌𝑗 | ≤ |𝑌𝑗 ′ |+1 implying that |𝑌𝑖 | ≤ |𝑌𝑗 ′ | for all
𝑗 ′ ∈ 𝑁𝐵 . Additionally, since all agents in 𝑁𝐴 have the same number

of type 𝐵 items and𝑌 is EFX, it follows that |𝑌𝑖′ | ≤ |𝑌𝑖 | +1 ≤ |𝑌𝑗 ′ | +1
for all 𝑖′ ∈ 𝑁𝐴 and 𝑗 ′ ∈ 𝑁𝐵 .

We can therefore apply Rule 2 at least |𝑁𝐵 | times to 𝑌 as follows:

• While there exists an agent 𝑖 ∈ 𝑁𝐴 where |𝑌𝑖 | ≤ |𝑌𝑗 | for all
𝑗 ∈ 𝑁𝐵 , apply Rule 2 to such an agent with the smallest |𝑌𝑖 |.
This maintains EFX as 𝑖 did not envy any agent prior to the

rule being applied.

• After doing the above step one or more times, all agents

𝑖 ∈ 𝑁𝐴 have identical bundles (with |𝑌𝑖 | ≤ |𝑌𝑗 | + 1 for all

𝑗 ∈ 𝑁𝐵 ). We can apply Rule 2 once to all agents who strongly

prefer 𝐴. This maintains EFX as these agents will not EFX-

envy any 𝑗 ∈ 𝑁𝐵 because they prefer two type 𝐴 items over

a type 𝐵 item.

Case 2.3: Cases 2.1 and 2.2 do not hold. Since Case 2.2 does not
hold, there are less than |𝑁𝐵 | agents 𝑖 ∈ 𝑁𝐴 who strongly prefer 𝐴.

Since Case 2.1 does not hold, there exists some agent 𝑗 ∈ 𝑁𝐵\𝑁 ′𝐵
who strongly prefers 𝐵 and so all agents 𝑗 ′ ∈ 𝑁 ′

𝐵
must strongly

prefer 𝐵.

Let 𝑁 ′
𝐴

= { 𝑖 ∈ 𝑁𝐴 : 𝑖 ≤ |𝑁𝐵 | }. Note that |𝑁 ′
𝐴
| = |𝑁𝐵 |. We

transfer one type 𝐵 item from each agent in 𝑁 ′
𝐴
to the agents in

𝑁𝐵 , allocate 2 type 𝐴 items to all agents in 𝑁 ′
𝐴
and allocate 1 type

𝐴 item to all agents in 𝑁𝐴\𝑁 ′𝐴 . In particular,

𝑋 ∗𝑖 =


(2, 𝑘 − 1) for 𝑖 ∈ 𝑁 ′

𝐴
,

(1, 𝑘) for 𝑖 ∈ 𝑁𝐴\𝑁 ′𝐴 ,
(0, 𝑘 + 2) for 𝑖 ∈ 𝑁𝐵\𝑁 ′𝐵 ,
(0, 𝑘 + 3) for 𝑖 ∈ 𝑁 ′

𝐵
.

Since there are less than |𝑁𝐵 | agents 𝑖 ∈ 𝑁𝐴 who strongly prefer 𝐴,

all these agents must be in 𝑁 ′
𝐴
and so no agent in 𝑁𝐴\𝑁 ′𝐴 strongly

prefers 𝐴. Thus, there is no EFX-envy from any agent 𝑖 ∈ 𝑁𝐴

towards any other agent in 𝑁 . Additionally, since all agents in 𝑁 ′
𝐵

strongly prefer 𝐵 there is no EFX-envy from any agent 𝑗 ∈ 𝑁𝐵

towards any other agent in 𝑁 . Therefore, 𝑋 ∗ is EFX.
We use Lemma 5.7 to show that this initial allocation is sufficient

for Algorithm 2. The first condition of Lemma 5.7 clearly holds. For

the second condition, consider a partial allocation 𝑌 as described in

Lemma 5.7, and assume that the EFX condition of Rule 1 does not

hold for 𝑌 . We use Lemma 5.8 to show that the second condition of

Lemma 5.7 holds.

(1) The first condition of Lemma 5.8 holds for 𝑌 because it holds

for 𝑋 ∗.
(2) For the second condition of Lemma 5.8, note that the EFX

condition of 𝑌 does not hold by the definition of 𝑌 . Hence,

there exists some 𝑖 ∈ 𝑁𝐴 and 𝑗 ∈ 𝑁𝐵 such that 𝑗 would

EFX-envy 𝑖 if Rule 1 was applied. By Lemma 5.4, |𝑌𝑖 | < |𝑌𝑗 |.
If 𝑗 ∈ 𝑁𝐵\𝑁 ′𝐵 , then |𝑌𝑖 | < |𝑌𝑗 ′ | for all 𝑗

′ ∈ 𝑁𝐵 . Therefore, by

Lemma 5.5 we know that for all agents 𝑖′ ∈ 𝑁𝐴 and 𝑗 ′ ∈ 𝑁𝐵 ,

agent 𝑖′ does not envy agent 𝑗 ′.
If 𝑗 ∈ 𝑁 ′

𝐵
, then we show that |𝑌𝑖 | < |𝑌𝑗 | − 1, by proving that

|𝑌𝑖 | ≠ |𝑌𝑗 | − 1. Let 𝑌𝑗 = (𝛼 𝑗 , 𝑘 + 3) and assume |𝑌𝑖 | = |𝑌𝑗 | − 1.
Then,

𝑌𝑖 =

{
(𝛼 𝑗 + 3, 𝑘 − 1) if 𝑖 ∈ 𝑁 ′

𝐴
,

(𝛼 𝑗 + 2, 𝑘) if 𝑖 ∈ 𝑁𝐴\𝑁 ′𝐴 .
If Rule 1 was applied, 𝑌𝑗 would be (𝛼 𝑗 + 1, 𝑘 + 3). However,
if this occurred, 𝑗 would not EFX-envy 𝑖 in either case (since

𝑗 strongly prefers 𝐵) and so |𝑌𝑖 | < |𝑌𝑗 | − 1. This implies that

|𝑌𝑖 | < |𝑌𝑗 ′ | for all 𝑗 ′ ∈ 𝑁𝐵 and so we can apply Lemma 5.5.

(3) For the third condition of Lemma 5.8, we can use the same

argument that is used in Section 5.3.1.

This completes our proof of Theorem 5.1.

6 DISCUSSION
The existence of EF1 and PO allocations or EFX allocations for the

case of chores are major open problems in fair division. In this

paper, we identified a natural setting or valuation restriction under

which not only can we guarantee the existence of allocations that

satisfy EF1 and PO, and EFX respectively, but such allocations can be

computed in polynomial time. A related question is the complexity

of checking whether there exists an envy-free allocation. Whereas

this problem is NP-complete for chores in general, there exists a

dynamic program for two chore types instances that can solve the

problem in polynomial time (details are in the full paper [4]). There

are several relevant problems that remain open. The existence and

complexity of EF1 and PO allocations or EFX allocations is open

for personalized bi-valued utilities. It is also open whether there

always exists a PO and EFX allocation for our setting.
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