
Gathering of Anonymous Agents
Arnhav Datar

∗

IIT Madras

Chennai, India

adatar@cmu.edu

Nischith Shadagopan M N

IIT Madras

Chennai, India

cs18b102@smail.iitm.ac.in

John Augustine
†

IIT Madras

Chennai, India

augustine@cse.iitm.ac.in

ABSTRACT
Motivated by the increasing popularity of mobile agents and swarm

robotics, we study the fundamental and widely studied problem of

gathering 𝑘 autonomous and anonymous agents placed in arbitrary

vertices of a graph comprising 𝑛 nodes. In this work, we present

algorithms that, for the first time, ensure gathering of anonymous

mobile agents in any arbitrary graph. Moreover, our algorithms

are fast. The canonical case where the graph is complete and 𝑘 = 𝑛

runs in expected time that is sublogarithmic in 𝑛.

Importantly, these robot swarms are often deployed in vulnerable

contexts where security may be compromised. Thus, we consider

the case where 𝑓 of the agents are Byzantine (i.e., compromised

and therefore malicious) and can deviate from the protocol in an

adversarial manner. Our main result is a fast gathering algorithm

when the Byzantine agents are controlled by a strongly adaptive

adversary that – in each round – can view all the moves made by the

good agents and then strategically make the moves of all Byzantine

agents in a coordinated fashion. For the canonical case where the

graph is complete and 𝑘 = 𝑛, we provide a gathering algorithm that

runs in time that is polylogarithmic in 𝑛 provided 𝑓 ∈ O(𝑘/log𝑘).
This is the first known result on gathering anonymous agents with

Byzantine failures.

Our results generalize to arbitrary graphs and hold with high

probability. Moreover, we complement our upper boundswith lower

bounds that are tight to within polylog(𝑛) factors.

KEYWORDS
Gathering; Swarm Robotics; Byzantine Faults; Self-Organization

ACM Reference Format:
Arnhav Datar, Nischith Shadagopan M N, and John Augustine. 2023. Gath-

ering of Anonymous Agents. In Proc. of the 22nd International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United

Kingdom, May 29 – June 2, 2023, IFAAMAS, 15 pages.

1 INTRODUCTION
Swarm Robotics envisions groups of mobile robots (or agents as we

call them) self-organizing and cooperating toward the resolution of

common objectives. These smaller agents have various advantages

such as efficiency, robustness, and scalability [22, 27]. There has

been a lot of research in the areas of gathering [1, 28], scattering [40],

exploring [13, 32], and flocking [29]. In many cases, the agents are

deployed in adverse environments [15].

∗
The first two authors are listed alphabetically.

†
John Augustine is associated with and supported by the Cybersecurity Centre set up

under the IIT Madras Institute of Eminence scheme.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,

London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

We study the gathering problem wherein the agents are required

to gather at a single location in the absence of any prior knowledge

or infrastructure (eg. no global positioning) and ensure coordina-

tion despite the presence of faulty/malicious robots. In particular,

we assume that 𝑘 anonymous agents are placed arbitrarily on a

graph𝐺 of 𝑛 nodes. The agents operate synchronously in rounds.

Within each round, the agents co-located in the same node can

communicate with each other via broadcasting messages and then

choose to either stay or move to neighboring nodes. The goal is to

ensure that the agents gather at some node in 𝐺 . Importantly, the

gathering protocol must be able to tolerate up to 𝑓 Byzantine agents

that can deviate arbitrarily from the protocol. This includes omit-

ting to move, moving to arbitrary locations, and sending arbitrary

messages to other agents to prevent good agents (i.e., non-Byzantine

agents) from gathering. Furthermore, the Byzantine agents can col-

lude with each other and coordinate their activities to foil gathering.

To model this colluding behavior, we assume that a single Byzantine

adversary controls all Byzantine agents simultaneously. Moreover,

the adversary is adaptive and can adapt its behavior over time.

1.1 Related Works
Byzantine gathering of non-anonymous agents in networks was ini-

tially explored by Dieudonné et al. [16]. They proved fundamental

bounds for the minimum number of good agents required for gath-

ering in deterministic settings. They showed that gathering could

be achieved when 𝑘 ≥ 2𝑓 + 1 even when Byzantine agents could lie

about their identities. However, this bound worsened to 4𝑓 +1when
the agents did not know 𝑛, the number of nodes in𝐺 . These bounds

were tightened by Bouchard et al. [8]. They showed that 𝑓 + 1 good
agents suffice when 𝑛 is known and the bound only worsens to

𝑓 + 2 when 𝑛 is not known. Unfortunately, the algorithms in [8, 16]

require round complexities that are exponential in 𝑛, and there-

fore practically infeasible. Subsequently, Bouchard et al. [9] gave a

polynomial-time deterministic algorithm using a global knowledge

of size O(log log log𝑛) that gathered agents when 𝑘 ≥ 5𝑓 2 + 6𝑓 + 2.
Hirose et al. [25] gave deterministic algorithms for agents that can-

not lie about their IDs. Their algorithms run in O((𝑓 +Λ𝑎𝑙𝑙) ·𝑋 (𝑛))
time where Λ𝑎𝑙𝑙 represents the length of the maximum ID of agents

and 𝑋 (𝑛) is the number of rounds to explore a network of size 𝑛.

Their algorithm ran when 𝑘 ≥ 4𝑓 2 + 9𝑓 + 4.
Defago et al. [14] used scheduling strategies and visibility in net-

works (the ability to see agents in nodes less than a certain distance

from the current node) to come up with probabilistic gathering algo-

rithms. Miller et al. [36] were able to solve the Byzantine gathering

problem when the visibility was at least the radius of the graph

and provided an O(𝑚𝑛2) deterministic algorithm when 𝑘 ≥ 2𝑓 + 1,
where𝑚 is the number of edges in the graph. Tsuchida et al. [42]

came up with an O(𝑓𝑚) deterministic algorithm, using authenti-

cated whiteboards. Whiteboards are areas prepared on each node

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1457

at which agents can leave information. Authenticated whiteboards

take this a step further where each agent is dedicated a space to

write information along with its digital signature. However, au-

thenticated whiteboards and network visibility are significantly

advanced features usually unavailable to mobile agents.

Many applications require agents to be anonymous owing to

security issues, so it is natural to study the gathering of anonymous

agents. Dieudonné and Pelc [17] gave a comprehensive study of

all deterministically gatherable configurations and present deter-

ministic algorithms that run in time polynomial in the size of the

network. More recently, Bouchard et al. [10] showed that agents

can gather in polynomial in 𝑛 rounds even without any exchange

of messages; in this work, agents cannot identify each other, but

indeed possess unique IDs. See Pelc [38] for a current understand-

ing of deterministic gathering protocols. Memory constraints are

crucial in the context of mobile agents because they tend to be quite

lightweight in terms of hardware. Thus, there has been some work

on understanding the memory requirements of anonymous gath-

ering in arbitrary graphs [12], in trees [24], and rings [33]. There

have also been several works on anonymous gathering of agents in

the asynchronous look-compute-move model on rings [18, 30, 31]

and trees [21].

Randomized approaches for gathering and other related prob-

lems have been studied for many years; see the excellent book by

Alpern and Gal [3]. Surprisingly, there has been very little work

on randomized gathering in the anonymous Byzantine agents set-

ting despite the somewhat obvious power of randomization to

mitigate anonymity and Byzantine behavior. The notion of coa-

lescing random walks [11] by Cooper et al. is quite relevant in

our context. Here, a set of particles perform independent ran-

dom walks on a graph, but whenever more than one of those

particles meet at a node, they coalesce into a single particle. This

notion can be readily implemented in our context because our

model permits co-located agents to generate common random

bits, thereby enabling co-located good agents to coalesce and con-

tinue their random walks in unison. The expected time for all

particles in a graph of 𝑛 nodes to coalesce is called the coales-

cence time and is denoted 𝐶 (𝑛). The coalescence time is analogous

in our context to the time required to gather. Cooper et al. [11]

showed that 𝐶 (𝑛) = O
(

1

1−_2 ·
(
log

4 𝑛 + 𝑛a
))
. Here, _2 is the sec-

ond eigenvalue of the transition matrix of the random walk and

a = 𝑛
4𝑚2

∑
𝑣∈𝑉 𝑑

2 (𝑣), where 𝑑 (.) represents the degree. Meanwhile,

Aldous and Fill [2] showed that 𝐶 (𝑛) ∈ O
(
(𝑟−1)𝑛
𝑟−2

)
for 𝑟 -regular

graphs implying𝐶 (𝑛) ∈ O(𝑛) for complete graphs. Eguchi et al. [19]

worked on fast randomized algorithms for the rendezvous of two

agents in a graph. However, they worked under the limiting as-

sumptions that the agents were initially located in adjacent vertices

and there were only two agents in the graph.

Our goal is to initiate work on fast randomized gathering of

anonymous agents despite the presence of Byzantine agents. In fact,

all our running times are polylog(𝑛) when 𝑘 ∈ Ω(𝑛). We crucially

rely on the ability of agents to toss coins and generate uniform and

independent random bits. Combined with synchrony and broadcast

based communication, we can also ensure that the good agents

co-located at any node can also generate common random bits

using the following primitive procedure. If all co-located agents

broadcast a random string of (say) length 𝑠 synchronously, then all

agents will receive the same strings from each agent and a bitwise

XOR of the strings will allow the agents to compute a common

string that is 𝑠 bits long and is entirely uniform and independent

as long as at least one of the agents is good. We believe this is an

appropriate abstraction for two complementary reasons. Firstly,

this allows us to gain significant ground in producing results that

are a lot more scalable, fast, and resilient to Byzantine failures.

Secondly, we have several technological capabilities that can be

leveraged to provide such a common coin. At a physical level, there

are many algorithms designed to arrange the agents in the form of

a circle [23, 43] or other patterns [41]. Once a suitable formation

is reached, the agents can be forced to display their random bits

collectively and simultaneously through physical mechanisms like

lights. At an algorithmic level, there has been a rich body of work on

collective coin tossing [6, 7, 20, 35, 39]. Regardless of the technology

used, we believe common random bits will prove useful for a variety

of robot coordination problems.

1.2 Our Model
We study the problem of gathering 𝑘 anonymous mobile agents

placed arbitrarily in the nodes of a graph 𝐺 = (𝑉 , 𝐸). The 𝑛 = |𝑉 |
nodes of𝐺 are just containers for agents and cannot compute, com-

municate, or store any information. Edges are conduits for agents

moving between neighboring nodes. Let 𝛿𝑣 denote the degree of a

node 𝑣 ∈ 𝑉 . There are 𝛿𝑣 ports numbered 0 to 𝛿𝑣 − 1 at each 𝑣 (i.e.,
one per incident edge). An edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 bidirectionally con-

nects a port from 𝑢 to a port in 𝑣 . The agents cannot identify/mark

nodes, but they can see the port number from which they entered

a node. Therefore, the sequence of port numbers from 𝑢 to access

node 𝑣 – once learned – can be used to go back to 𝑢 and return to 𝑣 .

The agents operate synchronously. The 𝑘 agents are initially (at

round 𝑟 = 0) placed in arbitrary nodes of the graph. The agents can

compute, store information, and communicate with other agents in

the same node using local broadcast. We focus on the case where

𝑘 is at most 𝑛 to illustrate our ideas. We briefly discuss how our

techniques apply when 𝑘 ≥ 𝑛. Some 𝑓 agents are Byzantine and can

collude and deviate arbitrarily from the protocol. The rest are good

agents. We assume that a malicious adversary (or just adversary)

controls the behavior of all Byzantine agents. The agents are aware

of an upper-bound on the number of Byzantine agents 𝑓 and the

number of agents 𝑘 . The good agents do not know 𝐺 , but the

adversary knows 𝐺 including all the port numbers.

Computation is defined by a finite state machine coupled with

the ability to generate random bits and communicate messages. At

each round 𝑟 > 0, each good agent:

(1) broadcasts (to all other agents in their respective current

node) a message that is a function of its state and includes

public random bits,

(2) receives messages broadcasted by other co-located agents,

(3) transitions to a new state as a function of the current state,

messages received, and random bits,

(4) chooses to either stay in the current location ormove through

one of the ports (based on the chosen state),

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1458

(5) and finally updates the state with port number through

which it entered the new node (if it moved).

All agents must broadcast a message at the start of each round.

Note that this is not a limitation, because agents can send an empty

⊥ message if they have nothing to send. Once all agents broadcast

their messages, the adversary learns all the messages (even if there

are no Byzantine agents co-located with some good agents).

The Byzantine adversary is adaptive in the sense that it can

change its behavior based on the behavior of the good agents as

observed by the Byzantine agents. Under a weakly-adaptive Byzan-

tine adversary, the good agents can use private random bits to

compute their new state (and therefore their new location). This is

disallowed when the Byzantine adversary is strongly-adaptive
1
and

the implication is that – within each round – the strongly-adaptive

Byzantine adversary can predict the new state and the move made

by the good agents after broadcasts are received.

1.3 Our Techniques and Contributions
As is the case with all the foundational work on Byzantine fault tol-

erance in distributed settings [34], we focus our efforts on complete

graphs. This serves us well in that it allows us to focus on essential

gathering strategies without structural concerns. The symmetric

nature of the complete graph however makes the solutions non-

trivial. At a high level, our algorithms work by forming groups that

are initially small. A group is essentially a set of good agents who

have agreed to work collaboratively with each other. It is important

to note that groups may be infiltrated by Byzantine agents, so good

agents will not be able to distinguish between other good agents

who are members of its group from the spurious Byzantine mem-

bers. The groups act in a coordinated fashion to meet other groups

and merge with them to form larger groups until all agents form

one single group. Unlike the coalescing random walks approach

where the groups mechanically perform randomwalks to find other

groups, we employ careful strategies to ensure that groups find

each other fast. For example, our groups are not averse to splitting

and regrouping to maximize their chance of encountering other

groups. In the context of coalescing random walks, all groups that

land on a node can immediately combine to form a new group. In

our context, when a group of agents split, the individual agents can

potentially interact with multiple other groups. The agents must

then decide which groups must coalesce and which ones don’t. This

situation requires strategizing and efficient symmetry breaking.

We provide a series of results for the complete graph comprising

both algorithms with essentially optimal time complexities and

complementary negative results indicating the need for randomiza-

tion. Our algorithms are organized carefully so that the ideas build

on each other.

No Byzantine Agents: We start in Section 2 with an algorithm

that runs in O
(
𝑛
𝑘

√︁
log𝑘

)
expected time. Our goal is to take full

advantage of 𝑓 = 0 to speed up gathering. Our algorithm is a sub-

logarithmic expected-time algorithm when 𝑘 ∈ 𝜔 (𝑛/
√︁
log𝑛); note

that the canonical 𝑘 = 𝑛 case only requires 𝑂 (
√︁
log𝑛) time on

expectation.

1
In non-anonymous settings[8, 16, 25], the terms strong and weak Byzantine adver-

saries refer respectively to whether Byzantine agents can lie about their IDs or not.

We use the terms exclusively in the context of their adaptive nature.

The algorithm works in three parts. In the first part, agents try

to coalesce with each other to form groups of a reasonable size. In

the second part, all groups try to merge with a single group which

has been randomly chosen. The main idea is to introduce some

asymmetry into the gathering process by isolating one group as a

leader group and then growing that group to reach a size that is

linear in 𝑘 . However, this process can take too much time to gather

all agents into the large group. So in the last part, the large group

(that is now of size linear in 𝑘) deterministically sweeps through

the entire graph in 𝑂 (𝑛/𝑘) rounds and locates the other agents.

This algorithm introduces several crucial ideas that prove useful

subsequently (and quite likely to be useful in future works as well).

Firstly, when two good agents become members of the same group,

they remain together in the group. This seemingly simple invariant

greatly facilitates our analysis because we can view the progression

of our algorithms as groups coalescing with each other until a single

group is formed. Secondly, unlike coalescing random walks, the

groups are not always co-located in the same node; the agents in a

group may disperse briefly and regroup and this greatly speeds up

gathering. Thirdly, at each stage of our algorithm, the groups are

partitioned into seekers and settlers. The seekers try to search for

the settlers while the settlers branch out and try to get seekers to

come to their node. The seekers then coalesce with their choice of

settler groups. Finally, it introduces us to the paradigm that once

there is a big enough group we can achieve the gathering quickly

by deterministically scanning the graph.

Weakly-Adaptive Adversary: We then describe in Section 3 a

simple and intuitive gathering algorithm against a weakly-adaptive

adversary, i.e., the setting in which Byzantine agents will need to

decide their move in each round without knowing the moves made

by good agents in the current round. Note that the Byzantine agents

are nevertheless adaptive in the sense that they know all the moves

made by all the agents in prior rounds. This algorithm builds on

ideas developed under the setting without Byzantine agents. It can

tolerate any 𝑓 < 𝑘 and achieve gathering in O
(

𝑛2

(𝑘−𝑓) (𝑛−𝑓) log𝑛
)

whp
2
.

Strongly-Adaptive Adversary: Our algorithm in Section 4 can

tolerate 𝑓 ∈ O(𝑘/log1+𝜖 𝑘) Byzantine agents (for any fixed 𝜖 > 0)

and gather in O
(
𝑛
𝑘
log𝑛 log𝑘

)
rounds whp. The strongly-adaptive

adversary is significantly more powerful because it can predict all

the moves of the good agents and rush in with carefully coordi-

nated moves for the Byzantine agents. Our algorithm proceeds in

two parts. In the first part, we gather majority of the agents using

a slightly more involved seeker-settler algorithm. Among other

adaptations to the previous seeker-settler approach, here we re-

quire both seeker and settler groups to disperse and regroup. Since

there are strongly-adaptive Byzantine agents a simple deterministic

sweep of the graph proves to be ineffective for the second part.

To counter this, we provide an iterative algorithm where the large

group successively doubles the numbers of agents it sends to gather

the agents that did not reach the large group in the previous round.

Arbitrary Graphs: Fortunately, our approaches on the complete

graph lend themselves to arbitrary graphs as well. In Section 4.1,

we extend the complete graph algorithm for the strongly-adaptive

2
whp refers to with high probability or with probability ≥ 1 − 1

𝑛𝑐
for 𝑐 ≥ 0

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1459

Settings Time Complexity Max. Byz.

Coalescing rand. walks [2, 11] O(𝑛)∗ 𝑓 < 𝑘

Weakly-Adaptive Adversary O
(

𝑛2 log𝑛

(𝑘−𝑓) (𝑛−𝑓)

)
𝑓 < 𝑘

Strongly-Adaptive Adversary O
(
𝑛
𝑘
log𝑛 log𝑘

)
𝑓 ∈ O(𝑘

log
1+𝜖 𝑘
)

No Byzantine Agents O
(
𝑛
𝑘

√︁
log𝑘

)∗
𝑓 = 0

Lower bound Ω
(
𝑛
𝑘−𝑓

)
𝑓 < 𝑘 − 13

Table 1: Known results on randomized gathering protocols
for anonymous agents on complete graphs. The results in-
ferred from the literature on coalescing randomwalks [2, 11]
were known previously; all other results are our contribution.
Similar results hold for general graphs as well. The running
times marked with an ∗ are on expectation while all others
hold whp. The ˜O notation is used to hide polylog(𝑛) factors.

adversary to a O(𝜏 · 𝑛
𝑘
log𝑛 log𝑘) round algorithm for any general

graph while being able to withstand O(𝑘/log𝑘) Byzantine agents.
Here, 𝜏 is the mixing time of a lazy random walk on the graph.

Similarly, we are able to extend our algorithm when there are no

Byzantine agents to get an O(𝜏 · 𝑛
𝑘

√︁
log𝑘) algorithm.

Deterministic Impossibility: As we have mentioned before,

randomization is crucial in the context of gathering anonymous

agents (with Byzantine agents only making things worse). To for-

malize this, in Section 5.1 we show that for regular graphs, there

exists a port-numbering such that no deterministic algorithm can

successfully gather even two agents. Our construction crucially

relies on a decomposition of the complete graph into cycles and at

most one perfect matching by Alperns and Gavlas [3].

Lower Bound: In Section 5.2, we show that any gathering algo-

rithm for complete graphs that succeeds with constant probability

must take Ω
(
𝑛
𝑘−𝑓

)
time implying that our algorithms are essen-

tially optimal to within polylog(𝑛 + 𝑘) factors.
The summary of our results can be found in Table 1. Due to space

limitations, some proof details are deferred to the supplementary

material.

2 NO BYZANTINE AGENTS
The fault-free setting with 𝑓 = 0 is of fundamental importance.

Algorithm 3 for the weakly-adaptive adversary already achieves

O
(
𝑛
𝑘
log𝑛

)
time and the lower bound for gathering (Section 5.2)

shows that any algorithmwill require at least Ω
(
𝑛
𝑘

)
time. A natural

question is to ask whether the overhead factor can be reduced to

sub-logarithmic in 𝑛. We answer this affirmatively and provide a

randomized algorithm that gathers in O(𝑛
𝑘

√︁
log𝑘) expected time.

We have divided our algorithm into three parts:

(1) Merging: We use the mergeIteration (cf. Algorithm 3) for

Θ(
√︁
log𝑘) iterations followed by breaking up large groups

to get Θ(𝑘/(𝑒/2)
√
log𝑘) groups with the maximum group

size ≤ (𝑒/2)
√
log𝑘

with probability at least 1/2.

(2) Gathering to half: A leader group is elected randomly and

uniquely with probability at least 1/𝑒 . The groups then split

and go to random nodes and try to find the leader group. We

show that inO
(
𝑛
𝑘

√︁
log𝑘

)
rounds with a constant probability

the leader group will be of size ≥ 𝑘/2.
(3) Search and Rescue: The leader group gets all agents to

itself in O(2𝑛/𝑘) time.

Algorithm 1 Merge Iteration

1: function mergeIteration

2: coin← nodal_rand(2)
3: ⊲ nodal_rand(𝑥) ← random ∈ {0, . . . , 𝑥 − 1}
4: if coin = 0 then ⊲ seeker group

5: All agents traverse e← nodal_rand(𝑛)
6: if the group finds at least one settler agent then
7: Pick a random settler agent 𝑠

8: Ask 𝑠 for edge e′ to traverse to reach its group

9: Traverse e′ and coalesce with agents

10: at that node to form a new group.

11: end if
12: else ⊲ settler group

13: for each agent 𝑎 in the (settler) group do
14: Choose a uniformly random, independent edge e′

15: Traverse e′ in the forward direction.

16: Broadcast the port number to traverse e′ in reverse

17: ⊲ In the round when seekers execute Line 8

18: Traverse the edge(e′) in reverse to

19: return back to starting node

20: end for
21: end if
22: end function

Analysis. The detailed analysis including full proofs can be found

in the Appendix Section A. We will show that every iteration of

Algorithm 2 will succeed with constant probability by showing that

each part will succeed with constant probability. For this purpose,

we prove Lemmas 2 and 3 for parts 1 and 2. We initially state a

useful lemma about mergeIteration. Here in this case 𝑓 = 0.

Lemma 1. After ⌈24 · 𝑛2

(𝑘−𝑓) (𝑛−𝑓) ⌉ rounds of mergeIteration the

number of required group merges in the graph shrinks to 1/𝑒 in

expectancy.

Proof Sketch. In a nutshell, the proof works by arguing that

any group will coalesce with another group with probability ≥
(𝑘−𝑓) (𝑛−𝑓)

24𝑛2
. To prove this, we take advantage of the limitations

of the weakly-adaptive Byzantine adversary in that when settler

agents disperse to random locations, the Byzantine agents cannot

guess their destinations. This ensures that a seeker will only meet

settler agents and no Byzantine agents with a probability of at

least
(𝑘−𝑓) (𝑛−𝑓)

24𝑛2
. We can then conclude that in 𝛼 = ⌈ 24𝑛2

(𝑘−𝑓) (𝑛−𝑓) ⌉
rounds any good group will merge with another group with a

probability of at least 1 − 1/𝑒 . □

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1460

Algorithm 2 Complete Graph Gathering - No Byzantine Agents

1: while not gathered do ⊲ Part 1

2: repeat ⌈48 · 𝑛
𝑘
⌉
√︁
log𝑘 rounds times

3: mergeIteration()

4: end repeat
5: if 𝑠𝑖𝑧𝑒 (𝑔𝑟𝑜𝑢𝑝) > (𝑒

2
)
√
log𝑘 then

6: Split into

⌈
𝑠𝑖𝑧𝑒 (𝑔𝑟𝑜𝑢𝑝)
(𝑒
2
)
√
log𝑘

⌉
small groups of similar size

7: end if
8: leader← True with probability 1/𝑘 else False ⊲ Part 2

9: leader_group← True if leader is present in group else False

10: repeat 𝑇 ⌈𝑛
𝑘
⌉
√︁
log𝑘 +

⌈
43 log

44/43 2
⌉
times

11: All agents move through a random incident edge e
12: All agents broadcasts whether leader or not

13: Leaders send the edge e; others note e′ (if received)
14: All agents return to their groups via their respective e
15: Agents that found leader agents shares

16: a pair of edges (e, e′) to other agents in group

17: Moves to leader group if any (e, e′) pair was shared
18: end repeat
19: if 𝑠𝑖𝑧𝑒 (𝑔𝑟𝑜𝑢𝑝) ≥ 𝑘/2 then ⊲ Part 3

20: Scan the entire graph and ask agents to come to you

21: else
22: Wait ⌈2𝑛/𝑘⌉ rounds for the ≥ 𝑘/2-size group
23: If it arrives at any point merge with the big group

24: end if
25: end while

Lemma 2. With probability at least 1/2 at the end of part 1 there
will be at most 3𝑘/(𝑒/2)

√
log𝑘

groups with each group of size at most

(𝑒/2)
√
log𝑘

.

Proof Sketch. We prove this lemma by usingMarkov’s inequal-

ity on Equation 4 to show that 𝑋 decreases by a factor of 2/𝑒 with
a probability of at least 1/2 after 𝛼 rounds. Therefore in some 𝐶 · 𝛼
rounds (i.e., 𝐶 phases), 𝑋 will decrease by a factor of ≤ 2/𝑒 in at

least 𝐶/2 phases with probability 1/2.
Following this we show that when the larger groups split, asymp-

totically we will not have a lot of new groups. We do this by leverag-

ing the fact that there are at most 𝑘 agents which will go to groups

of size ≥ 0.5 · (𝑒/2)
√
log𝑘

. □

Lemma 3. At the end of Part 2, there will be a unique leader group

with size ≥ 𝑘/2 with probability at least 1/40𝑒 .

Proof Sketch. We can see that with probability 𝑘 ·
(
1 − 1

𝑘

)𝑘−1
·

1

𝑘
≥ 1/𝑒 there will be a unique leader group. We consider 𝑌𝑖 as the

size of the leader group and 𝑔𝑖 as the number of groups after 𝑖 · ⌈𝑛
𝑘
⌉

iterations of the algorithm respectively. We show that:

E [𝑌𝑖+1 |𝑌𝑖] ≥ 𝑌𝑖 +
𝑘

11

𝑌𝑖
4𝑔𝑖

1 + 𝑌𝑖
4𝑔𝑖

From this point we are primarily focused on the case where

𝑌𝑖
4𝑔𝑖
≤ 1.

While we are able to show that 𝑌 increases by a large enough rate

in expectancy it does not imply anything about how frequently it

increases. To prove that it frequently rises by a significant margin

we bound the standard deviation of (𝑌𝑖+1 − 𝑌𝑖 |𝑌𝑖) in Lemma 9.

Following which we show that in 𝑇
√︁
log𝑘 phases the leader group

will either have
𝑌𝑖
4𝑔𝑖
≥ 1 or 𝑌𝑖 ≥ 𝑘/2.

After
𝑌𝑖
4𝑔𝑖
≥ 1, we can show that in a constant number of rounds

we will have 𝑌𝑖 > 𝑘/2 with constant probability. We use Markov’s

inequality to show that 𝑘 −𝑌 shrinks by a constant fraction in each

phase with constant probability. □

Conclusion. Finally, we have a dominant group of size > 𝑘/2. We

can see that it can scan the entire graph of size 𝑛 in ⌈ 2𝑛
𝑘
⌉ rounds and

get all agents to come to its location. Therefore we conclude that

each iteration accomplishes gathering with constant probability.

Since there are no Byzantine agents we can also argue that the

agents will know when they have gathered as they can simply

count the number of agents in its node to affirm that gathering has

been completed. Thus,

Theorem 2.1. Given 𝑘 agents placed arbitrarily on a complete

graph𝐺 of 𝑛 nodes, there exists a randomized gathering protocol that

can gather all agents in O(𝑛
𝑘

√︁
log𝑘) rounds.

3 WEAKLY-ADAPTIVE ADVERSARY
In this section, we present an algorithm that is resilient against

weakly-adaptive Byzantine agents that can tolerate up to any 𝑓 <

𝑘 Byzantine agents. This problem is particularly challenging in

regular graphs as it’s difficult to tell nodes apart from each other as

the agents cannot place anymarkers behind for other agents. Simple

methods such as choosing a leader and the leader agent gathering

all non-leader agents will fail because the Byzantine agents can

pretend to be leaders and distract non-leader agents away from the

leader agent.

Recall that agents can start at arbitrary nodes of the graph. If

a node is occupied in the beginning, the occupant agents form a

group. We present a protocol by which, over time, the groups can

merge into larger groups until there is one group with all good

agents. We maintain the invariant that once two agents become

part of a group, they will continue to be a part of the same group.

Note however that the agents in a group can disperse briefly and

then recombine.

The algorithm (Algorithm 3) works iteratively as follows. In

each iteration, each group 𝐴 (currently at a vertex 𝑣) chooses to

be a seeker or a settler uniformly at random. If 𝐴 is a seeker then

it traverses to a random node. Otherwise, 𝐴 is a settler and each

agent 𝑎 ∈ 𝐴 disperses to a random node 𝑢𝑎 and, upon reaching 𝑢𝑎 ,

broadcasts the port number 𝑝 at 𝑢𝑎 to return to 𝑣 . Subsequently

𝑎 returns to 𝑣 and is reunited with other members of 𝐴. If 𝐴 is a

seeker group and it encounters at least one or more settler agents, it

will (as a group) choose one such settler agent 𝑠 (chosen randomly

and belonging to a settler group 𝐵) and follow 𝑠 as it reunites with

other members of 𝐵;𝐴 will then merge into 𝐵. We defer the analysis

to Appendix Section B.

Theorem 3.1. Given 𝑘 agents placed arbitrarily on a graph𝐺 of 𝑛

nodes, there exists a randomized gathering protocol that is resilient to

3 𝑓 = 𝑘 − 1 achieves instant gathering since there is only one good agent

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1461

Algorithm 3 Complete Graph Gathering - Weakly-Adaptive Ad-

versary

1: All agents form groups with other co-located agents.

2: repeat 𝐶 · ⌈24 · 𝑛2

(𝑘−𝑓) (𝑛−𝑓) · log𝑛⌉ times
3: Call mergeIteration()

4: end repeat ⊲ By Theorem 3.1, good agents gather whp.

a weakly-adaptive Byzantine adversary that can whp gather all good

agents in 𝐶 · ⌈24 · 𝑛2

(𝑘−𝑓) (𝑛−𝑓) · log𝑛⌉ rounds as long as the number

of Byzantine agents 𝑓 is fewer than 𝑘 .

Note. In the analysis of the algorithm, we have assumed that 𝑓

and 𝑘 − 𝑓 are less than 𝑛. This assumption is not limiting. In case

𝑘 − 𝑓 ≥ 𝑛, at the start of the algorithm we can have all good agents

go to random nodes and form super-agents with other agents co-

located in the same node. If we execute this maneuver and run

Algorithm 3 on the super-agents the number of good agents now

becomes less than 𝑛. However, the number of Byzantine agents

remains as 𝑓 . But we see that when 𝑓 ≥ 𝑛, the Byzantine agents can
potentially position themselves on every node in the graph and thus

spread a lot of misinformation making the problem challenging.

Similar techniques for larger values of 𝑓 and 𝑘 are also applicable

for other algorithms discussed subsequently.

4 STRONGLY-ADAPTIVE ADVERSARY
We move on to the strongly-adaptive adversary. Therefore we con-

sider the case where in any round, the Byzantine agents can see

exactly where all agents are heading in the next round and can then

make their moves accordingly.

Why Algorithm 3 won’t work: Suppose at some stage there are

only two groups. Furthermore, let’s consider the optimistic case

where one group is a seeker and another is a settler. When a seeker

group tries to find a settler agent, the Byzantine agents can over-

whelm the seeker group by going to the same random node and

posing as 𝑓 different settler agents. Therefore, just for two groups

to gather the previous algorithm will take at least Ω(𝑓) time. To

counter this we require both seekers and settlers to split. This will

increase the number of meetings between seekers and settlers in

a given iteration. Furthermore, we also make the seeker agents

monitor a settler agent it finds for ⌈𝑛
𝑘
⌉ time. After a seeker agent

successfully meets a settler agent it returns with a proposal path

and a path is randomly chosen from these proposed paths by broad-

casting all proposed paths, storing them in a sorted list(ls), and
choosing one of those paths uniformly at random. The gathering

protocol is described in detail in Algorithms 4 and 5.

Unlike the previous algorithm, it is difficult to gather all agents

(even if there are just two groups) primarily because all 𝑓 Byzantine

agents can pose as good seekers of the same group to a good seeker

agent. Therefore, �̃� (𝑓) time may be required to meet any other

group as there will be 𝑓 + 1 entries in ls, thereby isolating some

good agents for Ω(𝑓) rounds. However, we show that the Byzan-

tine agents cannot isolate more than a fraction of the agents whp,

thereby implying that a large group of good agents must form. After

such a sufficiently large group is formed, it performs the search

and rescue method (cf. Algorithm 5) where it gathers all agents in

Algorithm 4 Complete Graph Gathering - Strongly-Adaptive Ad-

versary : Executed by agent 𝑎

1: repeat 5𝑐 · log𝑛 · log𝑘 times ⊲ 𝑐 is a constant that determines

the success probability

2: coin← nodal_rand(2)
3: All agents traverse e← nodal_rand(𝑛)
4: edge_list← [e]
5: repeat 2 · ⌈𝑛

𝑘
⌉ times

6: if coin = 0 then ⊲ Agent 𝑎 is part of seeker group

7: if settler agent found and stays for ⌈𝑛
𝑘
⌉ rounds then

8: Ask settler for edge to traverse(e′)
9: ⊲ If there are multiple choose arbitrarily

10: else
11: Agent 𝑎 goes to random node through e
12: Agent 𝑎 appends e to edge_list
13: end if
14: else if coin = 1 and finds seeker then
15: tells the seeker the edge to traverse(e)
16: end if
17: end repeat
18: Return to starting node by reverse traversing edge_list
19: if coin = 0 then ⊲ seeker

20: Seeker agents broadcast path edge_list + e′ ⊲ If found

21: Seeker agents read all broadcasted paths

22: Seeker agents store paths in a sorted list ls
23: Seeker agents traverse a random path from ls
24: end if
25: end repeat
26: searchAndRescue() ⊲ Algorithm 5

O
((
𝑛
𝑘
+ log𝑘

)
log𝑛

)
time. The search and rescue is also somewhat

non-trivial and is divided into two parts. In the first part, the large

group randomly searches the graph to find out agents that are not

a part of the large group. In the second part, the large group splits

itself into sub-groups and goes to the remaining agents and brings

them back to the large group’s location while doubling the size of

the sub-groups in each iteration to thwart the Byzantine agents

from pooling their resources to target a few agents. The detailed

algorithm (Algorithm 5) can be found in the Appendix Section C.1.

Analysis. We focus on the seeker’s probability of meeting an

agent. At any round if there are ℎ groups then let the groups be

numbered 𝑐1, . . . 𝑐ℎ . For any seeker group 𝑐𝑖 let us consider the

following variables: (1) 𝑔𝑖 : The number of good agents in the group

(2) 𝑏𝑖 : The number of Byzantine agents in the group (3) 𝑏′
𝑖
: The

number of good agents that encountered Byzantine agents that

posed as settlers.

We now bound the probability that a group 𝑐𝑖 merges with a

settler. We show that

Lemma 4. For any group 𝑐𝑖 :

Pr(𝑐𝑖 merges with a settler | 𝑐𝑖 is a seeker) ≥
(
1 − 𝑒

−|𝑆𝑒𝑡𝑡𝑙𝑒𝑟𝑠 |
𝑘

)
·
1 − 𝑓 ′

𝑖

1 + 𝑓𝑖
where 𝑓 ′

𝑖
:= 𝑏′

𝑖
/𝑔𝑖 , 𝑓𝑖 := 𝑏𝑖/𝑔𝑖 and |𝑆𝑒𝑡𝑡𝑙𝑒𝑟𝑠 | denotes the number of

good settler agents in a round.

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1462

Proof Sketch. The detailed proof of Lemma 4 can be found

in the Appendix C.2. We compute the probability by finding the

number of entries in ls that will lead to a group merge and the

number of maximum entries. It is easy to see that the total number

of entries is upper-bounded by 𝑔𝑖 + 𝑏𝑖 . Meanwhile, we are able to

show that the number of entries are at most 𝑝 ·𝑔𝑖 −𝑏′𝑖 in expectancy,

where 𝑝 =

(
1 − 𝑒

−|𝑆𝑒𝑡𝑡𝑙𝑒𝑟𝑠 |
𝑘

)
. We show this by analyzing case-by-

case as to what may happen to a seeker agent: it may be stopped

from exploring for a sufficient time, a Byzantine agent may pretend

to be a settler, or it actually explored sufficiently. □

From this point onward, we consider phases of 5𝑐 log𝑛 iterations.

Formally, we show that:

Lemma 5. When the Byzantine agents are limited to O
(

𝑘

log
1+𝜖 𝑘

)
for any fixed 𝜖 > 0, in each phase there can be at most 𝑘/(3 log𝑘)
agents that did not merge with a group (abandoned agents).

Proof Sketch. The detailed proof of Lemma 4 can be found

in the Appendix C.2. We show that in a phase, for a group to be

stopped from merging with another group whp, it either needs to

have a high

∑
𝑓𝑖 or

∑
𝑓 ′
𝑖
in that phase. However, the sums of 𝑓𝑖 and

𝑓 ′
𝑖
are bounded when we sum them over all good agents. We prove

this using Lemma 10. We are able to leverage the fact that since

there are few Byzantine agents, they can only fool O (𝑘/log𝑘) good
seeker agents in an iteration(i.e. only O(log𝜖 𝑘) agents fooled per

Byzantine agent). Therefore, we conclude that at most 𝑘/(3 log𝑘)
agents can be stopped from merging with another group. □

The non-abandoned groups would have merged with a group in

all phases. Therefore, the number of non-abandoned groups would

have gone down by at least half in any phase. We can also conclude

that in log𝑘 such phases, there will at most be 𝑘/3 agents that

have not merged with a group in some phase because of Lemma 5.

Therefore, the non-abandoned agents would have formed a large

group of size ≥ 2𝑘/3 − 𝑓 ≥ (𝑘 + 𝑓)/2. This threshold of (𝑘 + 𝑓)/2
is necessary because now every good agent in the large group will

definitely know it is a part of a group that has more than half of the

total good agents. Furthermore, every agent not in the large group

will know that it not a part of the large group. Following this we

simply use the searchAndRescuemethod to gather all agents to the

large node of size ≥ 𝑘/2 in O
((
𝑛
𝑘
+ log𝑘

)
log𝑛

)
rounds. Formally,

we show that

Lemma 6. At the 𝑖th iteration of O
(
𝑛
𝑘
+ log𝑘

)
rounds of the

searchAndRescuemethod the expected number of abandoned agents(𝑍𝑖)

follow:

E[𝑍𝑖] ≤ 0.8 · E[𝑍𝑖−1]

Considering 𝑖∗ = 𝐶′′ log𝑛 and applying Markov’s inequality, we

can see that Pr(𝑍𝑖∗ ≥ 1) ≤ 1

𝑛𝐶
′′−1 . Thus we conclude that:

Theorem 4.1. Given 𝑘 agents placed arbitrarily on a graph 𝐺 of

𝑛 nodes, there exists a randomized gathering protocol that is resilient

to a strongly-adaptive Byzantine adversary that can whp gather all

good agents in O
(
𝑛
𝑘
log𝑛 log𝑘

)
rounds as long as the number of

Byzantine agents 𝑓 ∈ O
(

𝑘

log
1+𝜖 𝑘

)
for any fixed 𝜖 > 0.

4.1 Extension to general graphs
We extend our algorithms for the complete graphs to general (con-

nected and undirected) graphs. We note that we cannot use our

complete graph algorithm against a weakly-adaptive adversary.

This is because when an agent moves to a random location in the

complete graph the Byzantine agents did not have a better alterna-

tive than to randomly guess. However, for a graph 𝐺 = (𝑉 , 𝐸) with
lower degrees, the Byzantine adversary can accurately predict the

location of an agent to one of (𝛿𝑢 + 1) nodes. However, we can use

the algorithms we developed for the strongly-adaptive adversary.

We note that Algorithm 4 can directly be applied to a general graph

if we can go to a random node in bounded time. We assume that

all agents know an upper bound Δ on the maximum-degree of 𝐺 .

We can then virtually add Δ − 𝛿𝑣 self-loops for all nodes 𝑣 ∈ 𝑉 .
This will facilitate lazy random walks on𝐺 with a stationary distri-

bution of 1/𝑛 for all 𝑣 ∈ 𝑉 . We assume that the agents know the

mixing time 𝜏 of this lazy random walk. Therefore we can conclude

that gathering can be achieved in O
(
𝜏 · 𝑛

𝑘
log𝑛 log𝑘

)
time. For the

case when there are no Byzantine nodes, we can gather faster. We

can naturally extend Algorithm 2 for when there are no Byzantine

agents in the complete graph to get an algorithm for gathering on

𝐺 that runs in O
(
𝜏 · 𝑛

𝑘

√︁
log𝑘

)
expected time.

5 NEGATIVE RESULTS
As we mentioned before, despite its importance, there has been

very little work on gathering anonymous agents in graphs. We

now formally present our negative results that shed light on this

paucity of work in this area. Specifically, we begin by showing

that deterministic gathering is impossible. Subsequently, we show

a lower bound on randomized gathering that essentially implies

that all our algorithms are optimal to within polylog(𝑛 + 𝑘) factors.

5.1 Impossibility of Deterministic Algorithms
The algorithms presented in this work are all randomized for good

reason. We now show that there exists a port-numbering such that

it is impossible for any deterministic algorithm to gather for any

2 ≤ 𝑘 ≤ 𝑛 agents in a complete graph; we extend it subsequently

to regular graphs of arbitrary degree. Formally, we show that:

Theorem 5.1. For any complete graph, there exists a port-numbering,

such that no deterministic algorithm can gather any 2 ≤ 𝑘 ≤ 𝑛 agents
that are initially located on different vertices of the graph.

Beforewe prove Theorem 5.1, we provide a useful lemma (Lemma

7). The proof can be found in the Appendix Section D. Given a graph,

a port numbering takes each edge (𝑢, 𝑣) and assigns a unique port

number from 0 to 𝛿𝑢 − 1 (where 𝛿𝑢 is the degree of 𝑢) at 𝑢 and a

unique port number from 0 to 𝛿𝑣 − 1 at 𝑣 for the edge (𝑢, 𝑣), i.e., no
two distinct edges incident to the same vertex 𝑢 can share the same

port number at 𝑢.

Lemma 7. For any graph𝐺 that is the union of 𝑐 mutually edge-wise

disjoint Hamiltonian cycles and at most one perfect-matching, there

exists a port-numbering, such that there is no deterministic algorithm

that can gather any 2 ≤ 𝑘 ≤ 𝑛 agents that are located on different

vertices of the graph.

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1463

Proof of Theorem 5.1. There are two cases to consider:

(1) 𝑛 is odd:We consider𝐺 as the union of (𝑛−1)/2mutually edge-

wise disjoint Hamiltonian cycles. We know such a decomposition

exists because of Theorem 1.2
4
in Alspach and Gavlas [4].

(2) 𝑛 is even: In this case, we assign the port numbers in 𝑃∗ by
considering (𝑛 − 2)/2 Hamiltonian cycles of length 𝑛 and 1 perfect

matching. We know that such a decomposition exists because of

Theorem 1.1
5
in Alspach and Gavlas [4].

Since 𝐺 is now the union of mutually edge-wise disjoint cycles

and at most one matching, we can use Lemma 7 to conclude that no

deterministic algorithm can successfully gather the 𝑘 agents. □

The same idea can be extended to 𝑟 -regular graphs as well.

Theorem 5.2. For any 𝑟 ∈ [2, 𝑛 − 1] (where 𝑛 · 𝑟 ≡ 0 (mod 2)),
there exists an 𝑟 -regular graph and a port-numbering for this 𝑟 -regular

graph, such that there is no deterministic algorithm that can gather 𝑘

agents, 2 ≤ 𝑘 ≤ 𝑛, that are located on different vertices of the graph.

Proof. We again provide a constructive proof that leverages

Lemma 7. We consider the construction of the complete graph 𝐺

described in the proof of Theorem 5.1. We again consider two cases:

(1) 𝑛 is odd. We can see that when 𝑛 is odd, 𝑟 must be even.

Let the cycle decomposition of 𝐾𝑛 be 𝐶 = [𝐶1, . . .𝐶 (𝑛−1)/2].
Since the 𝐾𝑛 has degree 𝑛 − 1, we can simply arbitrarily

delete the edges of any of the (𝑛 − 1 − 𝑟)/2 cycles in 𝐶 . This
will ensure that the graph is connected and is made out of

mutually edge-wise disjoint cycles

(2) 𝑛 is even. Let the cycle decomposition of 𝐾𝑛 − 𝐼 be 𝐶 =

[𝐶1, . . .𝐶 (𝑛−2)/2], where 𝐼 is the perfect matching. We con-

sider two subcases here:

(a) 𝑟 is odd. We arbitrarily delete the edges of any of the

(𝑛 − 1 − 𝑟)/2 cycles in 𝐶 .
(b) 𝑟 is even. We delete the edges of any of the (𝑛 − 2 − 𝑟)/2

cycles in 𝐶 and delete 𝐼 .

We once again see that the resulting graph is a union of mutually

edge-wise disjoint cycles and at most one perfect matching. We

can again apply lemma 7 to see that it is impossible for 𝑘 agents to

gather under a deterministic algorithm. □

5.2 Lower bound for Complete Graphs
We now show that Ω(𝑛/(𝑘 − 𝑓)) is a lower bound for gathering 𝑘

agents in a complete graph of 𝑛 nodes even when the 𝑓 Byzantine

agents, 0 ≤ 𝑓 < 𝑘 − 1, just crash at the beginning. Formally:

Theorem 5.3. Consider a complete graph𝐺 on 𝑛 vertices on which

𝑘 agents are placed arbitrarily with 0 ≤ 𝑓 ≤ 𝑘 −2 agents being faulty
(i.e., they just don’t move or communicate). Consider any protocol

Π(𝑛, 𝑘, 𝑓) that runs for 𝑟∗ = ⌊𝑛/(2𝑘 − 2𝑓)⌋ rounds and is designed
for gathering the 𝑘 − 𝑓 good agents. With probability at least 1/2, Π
will fail to gather the 𝑘 − 𝑓 good agents even when 𝑘 − 𝑓 − 1 agents
are centrally controlled by a single entity 𝐶 that can coordinate their

movements.

4
Theorem 1.2 in [4] states that for positive odd integers𝑚 and 𝑛 with 3 ≤ 𝑚 ≤ 𝑛,
the graph 𝐾𝑛 can be decomposed into cycles of length𝑚 if and only if the number of

edges in 𝐾𝑛 is a multiple of𝑚.

5
Theorem 1.1 in [4] states that for positive even integers𝑚 and 𝑛 with 4 ≤ 𝑚 ≤ 𝑛,
the graph𝐾𝑛 − 𝐼 can be decomposed into cycles of length𝑚 if and only if the number

of edges in 𝐾𝑛 − 𝐼 is a multiple of𝑚. See [5] for a minor correction.

Proof. Let 𝑘′ = 𝑘 − 𝑓 denote the number of non-faulty agents.

Consider a complete graph on 𝑛 vertices with port numbering 𝑃∗ as
described in the proof of Lemma 7 based on the mutually edge-wise

disjoint cycle decomposition with at most one matching described

in the proof of Theorem 5.1. 𝐶 controls 𝑘′ − 1 agents, which leaves

us with one non-faulty agent ℓ that is not controlled by 𝐶; we call

ℓ the lost agent. For this lower bound, ℓ is initially placed in 𝑢∗

chosen uniformly at random; note that 𝐶 is unaware of 𝑢∗. The
𝑓 faulty agents can be colocated in a node chosen uniformly at

random; they will neither help nor deter the efforts of 𝐶 .

Since the lost agent also executes Π, which is known to 𝐶 , we

assume that 𝐶 knows the sequence 𝑆 of port numbers taken by ℓ .

Note that Π may be randomized with decisions based on random

bits generated by ℓ . By revealing 𝑆 to𝐶 , we have essentially revealed

those private random bits, which is acceptable in the context of a

lower bound proof. The position of ℓ in each round 𝑟 is a function

𝑝𝑟 (𝑢∗) that maps each possible 𝑢∗ to the set of vertices in 𝐺 .

We claim that for a fixed 𝑟 ≥ 0 and fixed 𝑆 , 𝑝𝑟 is a bijection

on the vertices of 𝐺 . Clearly, the bijection holds when 𝑟 = 0. To

complete the inductive proof, we assume that the bijection has held

up to round 𝑟 − 1 (for 𝑟 ≥ 1). At round 𝑟 , the agent can either (i)

take a step in one of the cycles and in one of the two directions, or

(ii) it can take a step along the matching (if it exists). Regardless,

the bijection continues to hold.

The above claim implies that the position of ℓ at round 𝑟 can

be deduced from 𝑢∗ and vice versa and this bijection is known to

𝐶 . Thus, the task at hand for 𝐶 can be viewed as finding the exact

starting point 𝑢∗ of ℓ . There are 𝑛 choices for 𝑢∗ and in ⌊𝑛/2𝑘′⌋
rounds, 𝐶 can eliminate fewer than 𝑛/2 of the 𝑛 choices. Since 𝑢∗

is chosen uniformly at random, the correct starting node will be

missed with probability at least a 1/2. □

6 CONCLUSION
We studied the role played by randomization in foiling the adver-

sary to give fast gathering algorithms that are resilient to harsh

forms of failures. Mirroring research in other fundamental global

symmetry breaking problems [26, 34], our primary focus was on

complete graphs. Our algorithms and analysis techniques are quite

non-trivial and indicate to us the need for developing this theory

further. Our work raises many questions. For example, we believe

that the canonical and elementary setting on complete graphs with

𝑘 = 𝑛 and 𝑓 = 0 is of fundamental interest. Our algorithm takes

O(
√︁
log𝑛) rounds on expectation. Can this bound be optimized

further? Can we get sub-logarithmic bounds with (perhaps weaker

forms of) Byzantine adversaries or crash failures?

Another important question is whether we can tolerate larger

bounds on 𝑓 against strongly-adaptive adversaries? Or, is 𝑓 ∈
O(𝑘/log𝑘) a fundamental limit? Furthermore, when we consider

values of 𝑘 ≫ 𝑛, even a small 𝑓 (as a function of 𝑘) can be quite

challenging because the Byzantine agents can essentially spread

throughout the graph. While our work deals with anonymous

agents, it is conceivable that there is interest in non-anonymous

versions as well, which is in fact, the subject of study in earlier

works like [16]. The natural question is whether randomization can

provide us with more efficient bounds.

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1464

REFERENCES
[1] Noa Agmon and David Peleg. 2006. Fault-Tolerant Gathering Algorithms for

Autonomous Mobile Robots. SIAM J. Comput. 36, 1 (July 2006), 56–82. https:

//doi.org/10.1137/050645221

[2] David Aldous and James Allen Fill. 2002. Reversible Markov Chains and Random

Walks on Graphs. Unpublished monograph, recompiled 2014, available at

http://www.stat.berkeley.edu/~aldous/RWG/book.html.

[3] Steve Alpern and Shmuel Gal. 2006. The theory of search games and rendezvous.

Vol. 55. Springer Science & Business Media.

[4] Brian Alspach and Heather Gavlas. 2001. Cycle Decompositions of 𝐾𝑛 and

𝐾𝑛–𝐼 . Journal of Combinatorial Theory, Series B 81, 1 (2001), 77–99. https:

//doi.org/10.1006/jctb.2000.1996

[5] Brian Alspach and Heather Jordon. 2021. Corrigendum to “Cycle decompositions

of 𝐾𝑛 and 𝐾𝑛–𝐼 ” [J. Combin. Theory Ser. B 81 (1) (2001) 77—99]. Journal of

Combinatorial Theory, Series B 146 (2021), 532–533. https://doi.org/10.1016/j.jctb.

2020.09.002

[6] James Aspnes. 1998. Lower bounds for distributed coin-flipping and randomized

consensus. Journal of the ACM (JACM) 45, 3 (1998), 415–450.

[7] Michael Ben-Or and Nathan Linial. 1985. Collective coin flipping, robust voting

schemes andminima of Banzhaf values. In 26th Annual Symposium on Foundations

of Computer Science (FOCS). IEEE, 408–416.

[8] Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. 2016. Byzan-

tine Gathering in Networks. Distrib. Comput. 29, 6 (Nov. 2016), 435–457.

https://doi.org/10.1007/s00446-016-0276-9

[9] Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. 2018. Byzantine

Gathering in Polynomial Time. In 45th International Colloquium on Automata,

Languages, and Programming (ICALP 2018) (Leibniz International Proceedings

in Informatics (LIPIcs), Vol. 107), Ioannis Chatzigiannakis, Christos Kaklamanis,

Dániel Marx, and Donald Sannella (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, Dagstuhl, Germany, 147:1–147:15. https://doi.org/10.4230/LIPIcs.

ICALP.2018.147

[10] Sébastien Bouchard, Yoann Dieudonné, and Andrzej Pelc. 2020. Want to Gather?

No Need to Chatter!. In Proceedings of the 39th Symposium on Principles of Dis-

tributed Computing (Virtual Event, Italy) (PODC ’20). Association for Comput-

ing Machinery, New York, NY, USA, 253–262. https://doi.org/10.1145/3382734.

3405693

[11] Colin Cooper, Robert Elsässer, Hirotaka Ono, and Tomasz Radzik. 2012. Co-

alescing Random Walks and Voting on Graphs. In Proceedings of the 2012

ACM Symposium on Principles of Distributed Computing (Madeira, Portugal)

(PODC ’12). Association for Computing Machinery, New York, NY, USA, 47–56.

https://doi.org/10.1145/2332432.2332440

[12] Jurek Czyzowicz, Adrian Kosowski, and Andrzej Pelc. 2012. How to meet when

you forget: log-space rendezvous in arbitrary graphs. Distributed Computing 25,

2 (2012), 165–178.

[13] Shantanu Das et al. 2013. Mobile agents in distributed computing: Network

exploration. Bulletin of EATCS 1, 109 (2013).

[14] Xavier Défago, Maria Gradinariu, StéphaneMessika, and Philippe Raipin-Parvédy.

2006. Fault-Tolerant and Self-stabilizing Mobile Robots Gathering. In Distributed

Computing, Shlomi Dolev (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

46–60.

[15] Xavier Défago, Maria Potop-Butucaru, and Philippe Raipin Parvédy. 2020. Self-

stabilizing gathering of mobile robots under crash or Byzantine faults. Distributed

Comput. 33, 5 (2020), 393–421. https://doi.org/10.1007/s00446-019-00359-x

[16] Yoann Dieudonné, Andrzej Pelc, and David Peleg. 2014. Gathering Despite

Mischief. ACM Trans. Algorithms 11, 1, Article 1 (Aug. 2014), 28 pages. https:

//doi.org/10.1145/2629656

[17] Yoann Dieudonné and Andrzej Pelc. [n.d.]. Anonymous Meeting

in Networks. 737–747. https://doi.org/10.1137/1.9781611973105.53

arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611973105.53

[18] Gianlorenzo D’Angelo, Gabriele Di Stefano, and Alfredo Navarra. 2014. Gathering

on rings under the look–compute–move model. Distributed Computing 27, 4

(2014), 255–285.

[19] R. Eguchi, N. Kitamura, and T. Izumi. 2020. Fast Neighborhood Rendezvous.

In 2020 IEEE 40th International Conference on Distributed Computing Systems

(ICDCS). IEEE Computer Society, Los Alamitos, CA, USA, 168–178. https://doi.

org/10.1109/ICDCS47774.2020.00030

[20] Uriel Feige. 1999. Noncryptographic selection protocols. In 40th Annual Sympo-

sium on Foundations of Computer Science (FOCS). IEEE, 142–152.

[21] Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. 2010. Remem-

bering without memory: Tree exploration by asynchronous oblivious robots.

Theoretical Computer Science 411, 14-15 (2010), 1583–1598.

[22] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. 2019. Distributed Com-

puting by Mobile Entities, Current Research in Moving and Computing. Lecture

Notes in Computer Science, Vol. 11340. Springer. https://doi.org/10.1007/978-3-

030-11072-7

[23] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni Viglietta. 2017.

Distributed computing by mobile robots: uniform circle formation. Distributed

Comput. 30, 6 (2017), 413–457. https://doi.org/10.1007/s00446-016-0291-x

[24] Pierre Fraigniaud and Andrzej Pelc. 2013. Delays induce an exponential memory

gap for rendezvous in trees. ACM Transactions on Algorithms (TALG) 9, 2 (2013),

1–24.

[25] Jion Hirose, Junya Nakamura, Fukuhito Ooshita, and Michiko Inoue. 2021.

Gathering with a Strong Team in Weakly Byzantine Environments. In Inter-

national Conference on Distributed Computing and Networking 2021 (Nara, Japan)

(ICDCN ’21). Association for Computing Machinery, New York, NY, USA, 26–35.

https://doi.org/10.1145/3427796.3427799

[26] Daniel S. Hirschberg and James B Sinclair. 1980. Decentralized extrema-finding

in circular configurations of processors. Commun. ACM 23, 11 (1980), 627–628.

[27] Zool Hilmi Ismail and Nohaidda Sariff. 2019. A Survey and Analysis of Coopera-

tive Multi-Agent Robot Systems: Challenges and Directions. In Applications of

Mobile Robots, Efren Gorrostieta Hurtado (Ed.). IntechOpen, Rijeka, Chapter 1.

https://doi.org/10.5772/intechopen.79337

[28] Taisuke Izumi, Tomoko Izumi, Sayaka Kamei, and Fukuhito Ooshita. 2013. Feasi-

bility of Polynomial-Time Randomized Gathering for Oblivious Mobile Robots.

IEEE Transactions on Parallel and Distributed Systems 24, 4 (2013), 716–723.

https://doi.org/10.1109/TPDS.2012.212

[29] Gangshan Jing, Yuanshi Zheng, and Long Wang. 2016. Consensus of Multiagent

Systems With Distance-Dependent Communication Networks. IEEE Transactions

on Neural Networks and Learning Systems PP (08 2016). https://doi.org/10.1109/

TNNLS.2016.2598355

[30] Ralf Klasing, Adrian Kosowski, and Alfredo Navarra. 2010. Taking advantage

of symmetries: Gathering of many asynchronous oblivious robots on a ring.

Theoretical Computer Science 411, 34-36 (2010), 3235–3246.

[31] Ralf Klasing, Euripides Markou, and Andrzej Pelc. 2008. Gathering asynchronous

oblivious mobile robots in a ring. Theoretical Computer Science 390, 1 (2008),

27–39.

[32] Evangelos Kranakis and Danny Krizanc. 2016. Mobile Agents and Exploration.

Springer New York, New York, NY, 1338–1341. https://doi.org/10.1007/978-1-

4939-2864-4_242

[33] Evangelos Kranakis, Danny Krizanc, and Pat Morin. 2011. Randomized ren-

dezvous with limited memory. ACM Transactions on Algorithms (TALG) 7, 3

(2011), 1–12.

[34] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine

Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (jul 1982), 382–401.

https://doi.org/10.1145/357172.357176

[35] Silvio Micali and Tal Rabin. 1990. Collective coin tossing without assumptions

nor broadcasting. In Conference on the Theory and Application of Cryptography.

Springer, 253–266.

[36] Avery Miller and Ullash Saha. 2020. Fast Byzantine Gathering with Visibility

in Graphs. In Algorithms for Sensor Systems: 16th International Symposium on

Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2020,

Pisa, Italy, September 9–10, 2020, Revised Selected Papers (Pisa, Italy). Springer-

Verlag, Berlin, Heidelberg, 140–153. https://doi.org/10.1007/978-3-030-62401-

9_10

[37] Roger B. Nelsen. 2020. Titu’s Lemma. Mathematics Magazine

93, 1 (2020), 70–70. https://doi.org/10.1080/0025570X.2020.1682745

arXiv:https://doi.org/10.1080/0025570X.2020.1682745

[38] Andrzej Pelc. 2019. Deterministic Rendezvous Algorithms. InDistributed Comput-

ing by Mobile Entities, Current Research in Moving and Computing, Paola Flocchini,

Giuseppe Prencipe, and Nicola Santoro (Eds.). Lecture Notes in Computer Science,

Vol. 11340. Springer, 423–454. https://doi.org/10.1007/978-3-030-11072-7_17

[39] Michael Saks. 1989. A robust noncryptographic protocol for collective coin

flipping. SIAM Journal on Discrete Mathematics 2, 2 (1989), 240–244.

[40] Masahiro Shibata, Toshiya Mega, Fukuhito Ooshita, Hirotsugu Kakugawa, and

Toshimitsu Masuzawa. 2016. Uniform Deployment of Mobile Agents in Asynchro-

nous Rings. In Proceedings of the 2016 ACM Symposium on Principles of Distributed

Computing (Chicago, Illinois, USA) (PODC ’16). Association for Computing Ma-

chinery, New York, NY, USA, 415–424. https://doi.org/10.1145/2933057.2933093

[41] Ichiro Suzuki and Masafumi Yamashita. 1999. Distributed Anony-

mous Mobile Robots: Formation of Geometric Patterns. SIAM J. Com-

put. 28, 4 (1999), 1347–1363. https://doi.org/10.1137/S009753979628292X

arXiv:https://doi.org/10.1137/S009753979628292X

[42] Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue. 2017. Byzantine Gath-

ering in Networks with Authenticated Whiteboards. InWALCOM: Algorithms

and Computation, Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen

(Eds.). Springer International Publishing, Cham, 106–118.

[43] Xiaoping Yun, Gokhan Alptekin, and Okay Albayrak. 1997. Line and circle

formation of distributed physical mobile robots. J. Field Robotics 14, 2 (1997),

63–76.

Session 4E: Robotics

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1465

https://doi.org/10.1137/050645221
https://doi.org/10.1137/050645221
http://www.stat.berkeley.edu/~aldous/RWG/book.html
https://doi.org/10.1006/jctb.2000.1996
https://doi.org/10.1006/jctb.2000.1996
https://doi.org/10.1016/j.jctb.2020.09.002
https://doi.org/10.1016/j.jctb.2020.09.002
https://doi.org/10.1007/s00446-016-0276-9
https://doi.org/10.4230/LIPIcs.ICALP.2018.147
https://doi.org/10.4230/LIPIcs.ICALP.2018.147
https://doi.org/10.1145/3382734.3405693
https://doi.org/10.1145/3382734.3405693
https://doi.org/10.1145/2332432.2332440
https://doi.org/10.1007/s00446-019-00359-x
https://doi.org/10.1145/2629656
https://doi.org/10.1145/2629656
https://doi.org/10.1137/1.9781611973105.53
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973105.53
https://doi.org/10.1109/ICDCS47774.2020.00030
https://doi.org/10.1109/ICDCS47774.2020.00030
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/s00446-016-0291-x
https://doi.org/10.1145/3427796.3427799
https://doi.org/10.5772/intechopen.79337
https://doi.org/10.1109/TPDS.2012.212
https://doi.org/10.1109/TNNLS.2016.2598355
https://doi.org/10.1109/TNNLS.2016.2598355
https://doi.org/10.1007/978-1-4939-2864-4_242
https://doi.org/10.1007/978-1-4939-2864-4_242
https://doi.org/10.1145/357172.357176
https://doi.org/10.1007/978-3-030-62401-9_10
https://doi.org/10.1007/978-3-030-62401-9_10
https://doi.org/10.1080/0025570X.2020.1682745
https://arxiv.org/abs/https://doi.org/10.1080/0025570X.2020.1682745
https://doi.org/10.1007/978-3-030-11072-7_17
https://doi.org/10.1145/2933057.2933093
https://doi.org/10.1137/S009753979628292X
https://arxiv.org/abs/https://doi.org/10.1137/S009753979628292X

	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Our Model
	1.3 Our Techniques and Contributions

	2 No Byzantine Agents
	3 Weakly-Adaptive Adversary
	4 Strongly-Adaptive Adversary
	4.1 Extension to general graphs

	5 Negative results
	5.1 Impossibility of Deterministic Algorithms
	5.2 Lower bound for Complete Graphs

	6 Conclusion
	References

