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ABSTRACT
In this paper, we propose Risk-aware Weighted Buffered Voronoi

tessellation, a variant of Generalized Voronoi tessellation, for de-

centralized multi-agent collision-free navigation. Inherited from

the traditional Voronoi tessellation, a safety guarantee in terms

of inter-robot collision avoidance is achieved by partitioning the

joint state space of the multi-agent system into individual cells that

constrain each individual agent’s motion in a distributed manner.

Different from many existing Voronoi tessellations-based collision

avoidance approaches, our Risk-aware Weighted Buffered Voronoi

Cell (Risk-aware WBVC) partition not only takes agent positional

information into account, but also the motion information when

determining the cell boundaries between pairwise robots. Our risk-

aware WBVC relies on the novel use of Control Barrier Functions

(CBF) as a measure of risk evaluation that captures to what extent

the safety constraints are satisfied between pairwise robots. With

that, the cell boundaries of risk-aware WBVC are determined by

(1) the varying levels of relative efforts between pairwise agents to

respond to potential collisions, and (2) the accumulated risk each

agent experiences that is caused by the surrounding agents. This al-

lows for an adaptive constrained space partition among robots that

balances between individual’s efforts in respecting the safety con-

straints and the overall threats due to other agents in the environ-

ment, e.g. an aggressive robot moving with higher speed requires a

relatively larger space for responding to potential collisions, and

a less-threatened robot may be expected to yield and make more

room for those exposed to higher risk. Rigorous proofs of formal

safety guarantees are provided and simulations are demonstrated

on up to 16 robots to show the effectiveness of our method.
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1 INTRODUCTION
Given their ability to accomplish large-scale tasks, multi-agent

systems have been studied in a number of application domains, e.g.
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Figure 1: Our proposed Risk-aware Weighted Buffered
Voronoi Cells v.s. traditional Voronoi Cells.

search and rescue [16], environmental sampling and exploration [10,

20], and precision agriculture [8]. To keep a multi-agent system safe,

a collision-free configuration is required for every pairwise agent

interaction in the system. In [3, 4] reciprocal velocity obstacles are

used to control agents by assuming symmetric collision-avoidance

reasoning of other agents. Safety barrier certificates have been

explored to achieve collision-free motion by characterizing the joint

admissible control space for the robot team [5, 22]. Methods in [6, 9]

use Model Predictive Control-based methods for individual agent

trajectory planning with receding horizons, treating all other agents

as dynamic obstacles. However, these methods rely on an individual

robot controller to constrain their own motion based on assumed

behavior models of the surrounding robots and environments to

achieve collision avoidance.

On the other hand, centralized control methods for multi-agent

systems can be computationally expensive, and inter-agent commu-

nication may not be always available. Therefore, it is favorable to

explore decentralized control approaches for multi-agent collision

avoidance. Different approaches have been explored to translate

centralized control into a decentralized setting, by splitting the con-

straints and separately solving individual optimization problems

with split constraints, so that agents only need to make decisions

based on local information, without the need to predict what others

are going to do.

As a model-based approach, Control Barrier Functions (CBF) [1]

is a powerful tool to ensure robot safety. It is widely applied as a
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constraint in optimization-based controllers to constrain the robot

motion, so that as long as the robot is inside the defined safe set

initially, then CBF can always ensure that the robot stays inside

the safe set with formally provable guarantees [21, 22]. There have

been some efforts in exploring decentralized CBF by splitting the

joint admissible control space in different ways. [21] partitions

the constraints based on agents’ various actuation limits. [14, 19]

demonstrate how to divide the constraints given the known infor-

mation of agent social personalities, egoistic vs. altruistic.

Although decentralized CBF-based methods work well, they

require all robots in the multi-agent system to use decentralized

CBF-based controllers, and do not generalize well. To accommodate

the possibility that agents may use different controllers, Voronoi

Cell-based methods are more suitable. Voronoi Cells [25] have been

extensively studied by partitioning the joint state space of the multi-

agent system into individual cells, representing the admissible state

space for each individual agent to avoid the collision. The space par-

tition is conducted based on the spatial distance from a given point

in the state space to each robot. However, we argue that agents with

different motions should have different-sized cells. In this paper, we

aim to build Risk-aware Weighted Buffered Voronoi Cells, in which

risk refers to the likelihood of possible collision among agents. The

intuition is that simply partitioning the state space based on the

point-to-agent proximity, as existing Weighted Buffered Voronoi

Cells do, cannot reflect the agent motion information well, which

is quite crucial in collision avoidance. In other words, the risk of

collision between any pairwise robots should not only depend on

how close two agents are, but also on how fast they are moving

towards each other. Therefore, our goal is to provide agents that

pose higher risk to their neighboring agents with relatively larger

cells to reflect the heterogeneity among agents, similar to the idea

that a fully-loaded truck with higher speed needs a longer distance

to stop.

To evaluate the risk from possible collision, we propose a Control

Barrier Function (CBF)-inspired risk measurement that gives an

agent situational awareness of the dynamic environment it is in

from the CBF perspective. One advantage of our proposed CBF-

inspired risk measurement is that the informativeness and expres-

siveness of CBF can be leveraged for risk evaluation, which char-

acterizes pairwise agent safety based on various factors including

agent positions, motion, and safety radius without requiring agents

to actually carry the CBF-based controllers. Different from most

existing works in which CBF is merely used as a binary verification

of whether the system is still safe given the nominal control, in this

work, our proposed CBF-inspired risk measurement characterizes

to what extent the system is safe or unsafe, and then it is embed-

ded into the Voronoi Cells partitioning to make the best use of the

information CBF provides.

As a variant of traditional Voronoi Cells, Buffered Voronoi Cells

have been introduced to account for agent safety radius or un-

certainty [19, 23, 25, 26] and are widely applied in multi-agent

collision avoidance. In Weighted Buffered Voronoi Cells (WBVC),

the boundaries of the adjacent cells are biased in a certain way so

that the space between two agents is not divided equally. Since

our focus is to construct the Weighted Buffered Voronoi Cells in a

risk-aware manner, different from other works that only concern

safety between pairwise robots, we argue that in order to better

characterize an agent’s collision risk, only considering the effect of

its neighboring agents is not enough. We also need to consider the

neighbors of the neighbors. An example is, for an agent at the center

of a crowd being surrounded and another agent at the edge of the

crowd, although the pairwise safety requirements are both satisfied,

the agent surrounded by the crowd faces higher risk. Therefore,

another advantage of our CBF-inspired risk measurement is that

it can take the aggregated risk into consideration, so that the cell

boundaries are biased towards agents with less relative aggregated

risk, leaving them a more constrained state space to proceed with

extra caution, with the awareness regarding the existence of its

riskier neighbor.

Our main contributions are: 1) We present a CBF-inspired

risk measurement to quantify the cumulative risk the agents face

in a crowded dynamic environment, especially for multi-agent

interaction scenarios; 2)We propose Risk-aware Weighted Buffered

Voronoi Cells (Risk-aware WBVC), which partitions the joint state

space of the robot teams and biases the cell boundaries based on

CBF-inspired risk measurement, making it generally applicable and

extremely suitable for multi-agent decentralized collision avoidance

maneuvers; 3) We provide rigorous proofs on the formal safety

guarantee our Risk-aware Weighted Buffered Voronoi tessellation

brings, and validate the proposed method in multi-agent collision

avoidance scenarios with up to 16 robots.

2 PRELIMINARIES
2.1 Background of Control Barrier Function
Control Barrier Functions (CBF) [1] are used to define an admissible

control space for the safety assurance of dynamical systems. One

of its important properties is its forward-invariance guarantee of

a desired safety set. Consider a nonlinear system in control affine

form: ¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, where 𝑥 ∈ X ⊂ R𝑛 and 𝑢 ∈ U ⊂ R𝑚
are the system state and control input with 𝑓 and 𝑔 assumed to be

locally Lipschitz continuous. A desired safety setH can be denoted

by a safety function ℎ(𝑥): H = {𝑥 ∈ R𝑛 : ℎ(𝑥) ≥ 0}. Thus the
control barrier function for the system to remain in the safety set

can be defined as follows [1]:

Definition 2.1. (Control Barrier Function) Given the aforemen-

tioned dynamical system and the set H with a continuously differ-

entiable function ℎ : R𝑛 → R, then ℎ is a control barrier function

(CBF) if there exists a class K function for all 𝑥 ∈ X such that

sup

𝑢∈U
{ ¤ℎ(𝑥,𝑢)} ≥ −^

(
ℎ(𝑥)

)
(1)

We selected the same classK function ^ (ℎ(𝑥)) = 𝛾ℎ(𝑥) as in [7, 12,

24], where 𝛾 ∈ R≥0
is a CBF design parameter controlling system

behaviors near the boundary of ℎ(𝑥) = 0. Hence, the admissible

control space in (1) can be redefined as B(𝑥) = {𝑢 ∈ U :
¤ℎ(𝑥,𝑢) +

𝛾ℎ(𝑥) ≥ 0 }. It is proved in [1] that any controller 𝑢 ∈ B(𝑥) will
render the safe state set H forward-invariant, i.e., if the system

starts inside the setH with 𝑥 (𝑡 = 0) ∈ H , then it implies 𝑥 (𝑡) ∈ H
for all 𝑡 > 0 under controller 𝑢 ∈ B(𝑥).

2.2 Weighted Buffered Voronoi Cell
[Summarized from [19]] Consider a bounded, convex environment

𝑄 ⊂ R𝑛 , with individual points 𝑞 ∈ 𝑄 . Within the environment,
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there are 𝑁 agents, with the positions of each agent denoted 𝑝𝑖 ∈ 𝑄

for 𝑖 = {1, ..., 𝑁 }. Each agent is assumed to have integrator dynam-

ics,

¤𝑝𝑖 = 𝑢𝑖 (2)

where 𝑢𝑖 is the nominal control input for agent 𝑖 .

The standard Voronoi Partition is defined as:

𝑉𝑖 = {𝑞 ∈ 𝑄 |∥𝑞 − 𝑝𝑖 ∥2 ≤ ∥𝑞 − 𝑝 𝑗 ∥2,∀𝑗 ≠ 𝑖, 𝑖, 𝑗 ≤ 𝑁 } (3)

where 𝑉𝑖 denotes the cell of each agent 𝑖 . Boundaries between cells

are determined based on the Euclidean distance between 𝑞 and

the agents. Therefore, the boundary perpendicularly and equally

divides the space between the neighboring agents, leaving them

the same distances to the shared boundary.

The Weighted Voronoi Partition is defined as:

𝑉𝑖 = {𝑞 ∈ 𝑄 |∥𝑞 − 𝑝𝑖 ∥2 − 𝜔𝑖 ≤ ∥𝑞 − 𝑝 𝑗 ∥2 − 𝜔 𝑗 } (4)

where 𝜔𝑖 and 𝜔 𝑗 are the weights of each agent, and the Voronoi

boundary is moved towards the agent with the larger weight.

The Buffered Voronoi Partition is defined as:

𝑉𝑖 = {𝑞 ∈ 𝑄 |∥𝑞 − 𝑝𝑖 ∥2 ≤ ∥𝑞 − 𝑝 𝑗 ∥2 − 𝜔𝑖 𝑗 } (5)

where𝜔𝑖 𝑗 defines the cell weightings between agent 𝑖 and neighbors

𝑗 ∈ N𝑖 , creating gaps between agent boundaries as a safety radius

buffer. Buffered Voronoi Cells are usually used to guarantee agents

will not collide when situated on their boundaries [2, 25].

3 METHOD
3.1 Control Barrier Function (CBF)-inspired

Risk Measurement
Since we are interested in pairwise agent safety, we define the

pairwise safety function ℎ𝑖 𝑗 (𝑝) and safety set H as:

H(𝑝) = {𝑝 ∈ P : ℎ𝑖 𝑗 (𝑝) = | |𝑝𝑖 − 𝑝 𝑗 | |2 − 𝑟2

𝑠𝑎𝑓 𝑒
≥ 0,∀𝑖 ≠ 𝑗} (6)

𝑝𝑖 , 𝑝 𝑗 ∈ R2
for 𝑖, 𝑗 = {1, ..., 𝑁 } are the positions of any pair-

wise agents 𝑖 and 𝑗 , and 𝑟𝑠𝑎𝑓 𝑒 = 𝑟𝑖 + 𝑟 𝑗 is the required minimum

pairwise safety distance considering both agents’ safety radius.

The admissible control space for each set of pairwise agents is:

B𝑖 𝑗 (𝑝) = {𝑢 ∈ U :
¤ℎ𝑖 𝑗 (𝑝,𝑢) ≥ −𝛾 (ℎ𝑖 𝑗 (𝑝))}. Inspired by CBF, we

define our pairwise safety loss function 𝐿𝑖 𝑗 (𝑝,𝑢) ∈ R as follows:

𝐿𝑖 𝑗 (𝑝,𝑢) = − ¤ℎ𝑖 𝑗 (𝑝,𝑢) − 𝛾ℎ𝑖 𝑗 (𝑝) − 𝑐 (7)

where 𝑐 as a constant offset is a very large positive value to ensure

𝐿𝑖 𝑗 (𝑝,𝑢) is always negative to prevent unintended cancel-out when
being accumulated later. 𝑢𝑖 , 𝑢 𝑗 ∈ R2

are the agents’ velocities. The

safety loss function 𝐿𝑖 𝑗 (𝑝,𝑢) represents how close the system is

to the boundary of the safe set, or how easily a safety violation

could occur, under the assumption that both agents move with

piecewise-constant velocity [13].

𝐿𝑖 𝑗 (𝑝,𝑢) describes the risk agent 𝑖 faces as the potential safety

loss when interacting with agent 𝑗 . For a multi-agent system, the

aggregated risk agent 𝑖 faces posed by surrounding agents 𝑅𝑖 ∈ R
is therefore defined as:

𝑅𝑖 = 𝜙 (
𝑁∑︁
𝑗=1

𝐿𝑖 𝑗 (𝑝,𝑢)), ∀𝑗 ≠ 𝑖 (8)

where 𝜙 (·) ∈ R ↦→ R is a mapping function that maps the value

of 𝑅𝑖 to the range [0, 1]. The larger 𝑅𝑖 is, the more likely a safety

violation is to occur. The proposed risk measurement is simple yet

effective: 1) 𝑅𝑖 grows with the increased number of agents in the

system, as the environment becomesmore complex and challenging;

2) 𝑅𝑖 varies depending on the changes of states, including positions

and motion of other agents as we expected, as it is important to tell

how much risk agent 𝑖 is exposed to even when a collision has not

happened yet.

Figure 2: Propagated risk evaluation for individuals in a
multi-agent system. Each arrow represents the risk posed by
the pairwise relative movement of the evaluated agent and
its neighboring agent.

Fig. 2 provides an illustrative example of how risk is calculated

for individual agents in amulti-agent interaction scenario. For all six

robots, the risk each individual agent faces consists of the pairwise

risk generated by the surrounding five agents.

Note that the proposed CBF-inspired risk measurement does not

necessarily require the agents to use CBF-based controllers. We

understand that in the real world, agents may use different kinds of

controllers, yet it does not prevent them fromunderstanding the risk

generated from multi-agent interaction from the CBF perspective,

with the mild but reasonable assumption that information about

agent states and safety margins are known or observable.

3.2 Risk-aware Weighted Buffered Voronoi
Cells (Risk-aware WBVC)

To incorporate the risk measurement information in the Voronoi

Cells partition, we extend the Control Barrier Function-inspired

risk measurement to any individual point 𝑞 in the state space being

evaluated, by assuming that it is occupied by a static agent with

zero velocity. In this way, Eq. 7 and 8 can be generalized from the

original agent-to-agent risk measurement to agent-to-point risk

measurement.

Definition 3.1. In a bounded, convex environment 𝑄 ∈ R𝑛 , for
any individual point 𝑞 ∈ 𝑄 and each agent 𝑖 with 𝑝𝑖 ∈ 𝑄 for

𝑖 = {1, ..., 𝑁 }, the cell 𝑉𝑖 of agent 𝑖 is a Risk-aware Voronoi Cell,
if

𝑉𝑖 = {𝑞 ∈ 𝑄 |∥𝐿𝑞𝑖 ∥ ≤ ∥𝐿𝑞𝑗 ∥,∀𝑗 ≠ 𝑖, 𝑖, 𝑗 ≤ 𝑁 } (9)

where 𝐿( ·) is the pairwise safety loss function calculated in Eq.7.

Different from traditional Voronoi Cells, we use agent-to-point

safety loss function 𝐿( ·) instead of point-to-point Euclidean Dis-

tance, to partition the state space based on the amount of risk
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agents 𝑖 and 𝑗 generate on the individual point 𝑞. Therefore, the

agent which brings the surrounding environment higher risk has a

larger cell.

Definition 3.2. In a bounded, convex environment 𝑄 ∈ R𝑛 , for
any individual point 𝑞 with 𝑝𝑞 ∈ 𝑄 and each agent 𝑖 with 𝑝𝑖 ∈ 𝑄

for 𝑖 = {1, ..., 𝑁 }, the cell𝑊𝑖 of agent 𝑖 is a Risk-aware Weighted
Voronoi Cell, if

𝑊𝑖 = {𝑞 ∈ 𝑄 |∥𝐿𝑞𝑖 ∥ − 𝜔𝑖 ≤ ∥𝐿𝑞𝑗 ∥ − 𝜔 𝑗 , ∀𝑗 ≠ 𝑖, 𝑖, 𝑗 ≤ 𝑁 }

𝜔𝑖 =
1

2

(𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 + 𝑢 𝑗 ) +
1

4

(𝑅𝑖 − 𝑅 𝑗 ) · ∥(𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 )∥

𝜔 𝑗 = −𝜔𝑖

(10)

where 𝐿( ·) is the pairwise safety loss function calculated in Eq.7 and
𝑅 ( ·) is the accumulated risk over the individual agents calculated

in Eq.8. 𝑝 ( ·) and 𝑢 ( ·) are agent position and velocity. 𝛾 ∈ R is the

CBF design parameter.

By embedding CBF-inspired accumulated risk measurement into

the weight design, the direction of the weight bias is decided based

on the relative accumulated risk agent 𝑖 and 𝑗 received. Compared

to agent 𝑗 , the larger the relative accumulated risk agent 𝑖 receives

from the rest of the group, the larger weight 𝜔𝑖 it has, and the

further the boundary between agent 𝑖 and 𝑗 is pushed towards 𝑗 .

To take agent safety radius into account, a buffer is added to the

cell boundaries to ensure safety while agents are situated on the

boundaries:

Definition 3.3. In a bounded, convex environment 𝑄 ∈ R𝑛 , for
any individual point 𝑞 with 𝑝𝑞 ∈ 𝑄 and each agent 𝑖 with 𝑝𝑖 ∈ 𝑄

for 𝑖 = {1, ..., 𝑁 }, the cell𝑊𝑖 of agent 𝑖 is a Risk-aware Weighted
Buffered Voronoi Cell, if

𝑊𝑖 = {𝑞 ∈ 𝑄 |∥𝐿𝑞𝑖 ∥ ≤ ∥𝐿𝑞𝑗 ∥ − 𝜔𝑖 𝑗 , ∀𝑗 ≠ 𝑖, 𝑖, 𝑗 ≤ 𝑁 }

𝜔𝑖 𝑗 = ∥𝑟𝑖 + 𝑟 𝑗 ∥ · ∥𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )∥ − (𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 + 𝑢 𝑗 )

+ [1 − 1

2

(𝑅𝑖 − 𝑅 𝑗 )] · ∥(𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 )∥
(11)

where 𝐿( ·) is the pairwise safety loss function calculated in Eq.7 and
𝑅 ( ·) is the accumulated risk over the individual agents calculated

in Eq.8. 𝑟 ( ·) is agent safety radius, 𝑝 ( ·) and 𝑢 ( ·) are agent position
and velocity. 𝛾 is the CBF design parameter.

With the weight design 𝜔𝑖 𝑗 shown in Eq. 11, a gap between cells

with a minimum distance of (𝑟𝑖 + 𝑟 𝑗 ) is added between adjacent

cells. Note that when CBF parameter 𝛾 = 1 and 𝑢𝑖 = 𝑢 𝑗 = 0, the

Risk-aware Weighted Buffered Voronoi Cell and weighting degrade

to the traditional Voronoi Cell and Voronoi weighting [2, 25], which

considers positional information only.

3.3 Safety Guarantee of Risk-aware WBVC
Wepropose that amulti-agent system can achieve formally provable

safety guarantees in collision avoidance by utilizing the proposed

Risk-aware WBVC. In this section, we prove that with Risk-aware

Weighted Buffered Voronoi Cells, agents are guaranteed not to

collide.

Figure 3: A geometric illustration of the inequality in Eq. 12.

Definition 3.4. In a multi-agent system of 𝑁 agents, the config-

uration of agents is collision-free if the distances ∥𝑝𝑖 − 𝑝 𝑗 ∥ of all
pairwise agents 𝑖 and 𝑗 satisfy

∥𝑝𝑖 − 𝑝 𝑗 ∥ ≥ (𝑟𝑖 + 𝑟 𝑗 ), ∀𝑖, 𝑗 ∈ {1, ..., 𝑁 }, 𝑖 ≠ 𝑗 (12)

where 𝑝𝑖 , 𝑝 𝑗 are agent positions and 𝑟𝑖 , 𝑟 𝑗 are agent safety radii.

Now we prove that for any agents in Risk-aware Weighted

Buffered Voronoi Cells in collision-free configurations, 1) the cell of

each agent is guaranteed to be non-empty; 2) the minimum distance

between any two cells is guaranteed to satisfy the collision-free

configuration requirement; and 3) the cells of Risk-aware WBVC

are non-overlapping.

Lemma 3.5. (Non-empty Cells). For each agent 𝑖 with position 𝑝𝑖
and cell𝑊𝑖 ,𝑊𝑖 ≠ ∅ when the agents are in a collision-free configura-
tion.

Proof. To prove the property of cell non-emptiness, we aim to

prove that for any agent 𝑖 , its position 𝑝𝑖 always belongs to𝑊𝑖 . By

Def. 3.3, substitute 𝑞 = 𝑝𝑖 and we have:

− 𝛾 (𝑟𝑖 + 𝑟 𝑗 )2 ≤ 2(𝑝 𝑗 − 𝑝𝑖 )𝑇𝑢 𝑗 + 𝛾 [(𝑝 𝑗 − 𝑝𝑖 )2 − (𝑟𝑖 + 𝑟 𝑗 )2] − 𝜔𝑖 𝑗

⇒ (𝑝𝑖 − 𝑝 𝑗 )𝑇 [𝛾 (𝑝𝑖 − 𝑝 𝑗 ) − 2𝑢 𝑗 ] − 𝜔𝑖 𝑗 ≥ 0

⇒ (𝑝𝑖 − 𝑝 𝑗 )𝑇 [𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 ) − (𝑢𝑖 + 𝑢 𝑗 )] − 𝜔𝑖 𝑗 ≥ 0

(13)

Substituting 𝜔𝑖 𝑗 defined in Def. 3.3 into the equation above, we

have

(𝑝𝑖 − 𝑝 𝑗 )𝑇 [𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (1 +𝑂𝑖 𝑗 ) (𝑢𝑖 − 𝑢 𝑗 )]
≥ (𝑟𝑖 + 𝑟 𝑗 )∥𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )∥

(14)

where 𝑂𝑖 𝑗 = [1 − 1

2
(𝑅𝑖 − 𝑅 𝑗 )] · sign[(𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 )] ∈ R.

It is straightforward that Eq. 14 always holds true. A geometric

illustration is demonstrated in Fig. 3 for easier understanding. The

black arrow on the left denotes the vector 𝛾 (𝑝𝑖 − 𝑝 𝑗 ), and the

black arrows on the right denote the vector (1 +𝑂𝑖 𝑗 ) (𝑢𝑖 −𝑢 𝑗 ) with
possibly different values of (1 +𝑂𝑖 𝑗 ). The dashed circles represent

the regions vector (1+𝑂𝑖 𝑗 ) (𝑢𝑖 −𝑢 𝑗 ) is in corresponding to different

values of (1 +𝑂𝑖 𝑗 ). Since ∥𝑝𝑖 − 𝑝 𝑗 ∥ ≥ (𝑟𝑖 + 𝑟 𝑗 ) always stays true
with the collision-free configuration, it is illustrative that, if we

can prove that the projection magnitude of vector (𝛾 (𝑝𝑖 − 𝑝 𝑗 ) +
(1 +𝑂𝑖 𝑗 ) (𝑢𝑖 −𝑢 𝑗 )) along the direction of vector (𝑝𝑖 − 𝑝 𝑗 ) is always
greater than or equal to that of vector (𝛾 (𝑝𝑖 −𝑝 𝑗 ) + (𝑢𝑖 −𝑢 𝑗 )) along
the direction of vector (𝑝𝑖 − 𝑝 𝑗 ), then the inequality always stays
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true. Note that the two vectors (𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (1 + 𝑂𝑖 𝑗 ) (𝑢𝑖 − 𝑢 𝑗 ))
and (𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )) share the same starting point. The

ending point of (𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )) lies on the grey dashed

circle, and the ending point of (𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (1 +𝑂𝑖 𝑗 ) (𝑢𝑖 −𝑢 𝑗 )) lies
on the red, grey or yellow dashed circle, depending on the value

of (1 + 𝑂𝑖 𝑗 ). Now this problem boils down to the comparison of

two projections. As shown in Fig. 3, when the vector (𝑢𝑖 − 𝑢 𝑗 )
is in the half-plane on the right (when (𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 ) > 0),

𝑂𝑖 𝑗 = [1 − 1

2
(𝑅𝑖 − 𝑅 𝑗 )] · sign[(𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 )] > 1, the ending

point of (𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (1 + 𝑂𝑖 𝑗 ) (𝑢𝑖 − 𝑢 𝑗 )) lies in the right half-

plane of the red dashed circle, and the projection magnitude of

(𝛾 (𝑝𝑖 −𝑝 𝑗 ) + (1+𝑂𝑖 𝑗 ) (𝑢𝑖 −𝑢 𝑗 )) is greater than that of (𝛾 (𝑝𝑖 −𝑝 𝑗 ) +
(𝑢𝑖 −𝑢 𝑗 )). This statement also holds true when the vector (𝑢𝑖 −𝑢 𝑗 )
is in the half-plane on the left (when (𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 ) < 0),

𝑂𝑖 𝑗 = [1− 1

2
(𝑅𝑖 −𝑅 𝑗 )] · sign[(𝑝𝑖 −𝑝 𝑗 )𝑇 (𝑢𝑖 −𝑢 𝑗 )] < 0, meaning the

ending point of (𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (1 +𝑂𝑖 𝑗 ) (𝑢𝑖 −𝑢 𝑗 )) lies in the left half-

plane of the yellow dashed circle. If the vector (𝑢𝑖 − 𝑢 𝑗 ) sits on the

vertical half-planes’ boundary, the two projections’ magnitude is

the same. Thus, it is proved that nomatter where the vector (𝑢𝑖−𝑢 𝑗 )
lies, it is always guaranteed that Eq. 14 stays true. Therefore, the

cells in Risk-aware WBVC𝑊𝑖 ≠ ∅.
□

Lemma 3.6. (Minimum Distance between Cells). For agent 𝑖 and 𝑗

with Cells𝑊𝑖 and𝑊𝑗 , any two random points 𝑝𝑖 ∈𝑊𝑖 and 𝑝 𝑗 ∈𝑊𝑗 ,
∥𝑝𝑖 − 𝑝 𝑗 ∥ ≥ (𝑟𝑖 + 𝑟 𝑗 ).

Proof. Given Def. 3.3, considering 𝑞 = 𝑝𝑖 and 𝑝 𝑗 respectively,

we have

∥−2(𝑝𝑖 − 𝑝𝑖 )𝑇 (𝑢𝑖 − 𝑢𝑖 ) − 𝛾 ((𝑝𝑖 − 𝑝𝑖 )2 − (𝑟𝑖 + 𝑟 𝑗 )2) − 𝑐 ∥ ≤

∥−2(𝑝 𝑗 − 𝑝𝑖 )𝑇 (𝑢 𝑗 − 𝑢𝑖 ) − 𝛾 ((𝑝 𝑗 − 𝑝𝑖 )2 − (𝑟𝑖 + 𝑟 𝑗 )2) − 𝑐 ∥ − 𝜔𝑖 𝑗

∥−2(𝑝 𝑗 − 𝑝 𝑗 )𝑇 (𝑢 𝑗 − 𝑢 𝑗 ) − 𝛾 ((𝑝 𝑗 − 𝑝 𝑗 )2 − (𝑟𝑖 + 𝑟 𝑗 )2) − 𝑐 ∥ ≤

∥−2(𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 ) − 𝛾 ((𝑝𝑖 − 𝑝 𝑗 )2 − (𝑟𝑖 + 𝑟 𝑗 )2) − 𝑐 ∥ − 𝜔 𝑗𝑖

(15)

By adding the two equations together, we have

−2(𝑝𝑖 − 𝑝 𝑗 )𝑇 [𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )] ≤ −(𝜔𝑖 𝑗 + 𝜔 𝑗𝑖 ) (16)

The sum of the two weightings is

𝜔𝑖 𝑗 +𝜔 𝑗𝑖 = 2∥𝑟𝑖 +𝑟 𝑗 ∥ · ∥𝛾 (𝑝𝑖−𝑝 𝑗 )+(𝑢𝑖−𝑢 𝑗 )∥+2∥(𝑝𝑖−𝑝 𝑗 )𝑇 (𝑢𝑖−𝑢 𝑗 )∥
(17)

Substituting this expression into Eq. 16, this reduces to

(𝑝𝑖 − 𝑝 𝑗 )𝑇 [𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )]

≥ ∥𝑟𝑖 + 𝑟 𝑗 ∥ · ∥𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )∥ + ∥(𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 )∥
(18)

For two vectors 𝑎 and 𝑏, it is known that ∥𝑎∥∥𝑏∥ > ∥𝑎𝑇𝑏∥. Let
𝑎 = (𝑝𝑖 − 𝑝 𝑗 ) and 𝑏 = [𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 + 𝑢 𝑗 )]; we can then state

∥𝑝𝑖 − 𝑝 𝑗 ∥ ≥
(𝑝𝑖 − 𝑝 𝑗 )𝑇 [𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )]

∥𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )∥

≥
∥𝑟𝑖 + 𝑟 𝑗 ∥ · ∥𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )∥ + ∥(𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 )∥

∥𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )∥

= (𝑟𝑖 + 𝑟 𝑗 ) (1 +
∥(𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 )∥
∥𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )∥

)

≥ ∥𝑟𝑖 + 𝑟 𝑗 ∥
(19)

thus proving that ∥𝑝𝑖 − 𝑝 𝑗 ∥ ≥ (𝑟𝑖 + 𝑟 𝑗 ) for any two points 𝑝𝑖 ∈ 𝑉𝑖
and 𝑝 𝑗 ∈ 𝑉𝑗 , for all 𝑖 ≠ 𝑗 .

□

Lemma 3.7. (Non-overlapping Cells). For a point 𝑝𝑖 belonging to
𝑊𝑖 , then 𝑝𝑖 ∉𝑊𝑗 for all 𝑗 ≠ 𝑖 , and𝑊𝑖 ∩𝑊𝑗 = ∅.

Proof. For a point 𝑞 ∈𝑊𝑖 , it must satisfy the cell definition in

Def. 3.3:

∥𝐿𝑞𝑖 ∥ ≤ ∥𝐿𝑞𝑗 ∥ − 𝜔𝑖 𝑗 (20)

Assuming 𝑞 ∈𝑊𝑗 is true at the same time, by definition we have

∥𝐿𝑞𝑗 ∥ ≤ ∥𝐿𝑞𝑖 ∥ − 𝜔 𝑗𝑖

≤ ∥𝐿𝑞𝑗 ∥ − 𝜔𝑖 𝑗 − 𝜔 𝑗𝑖

0 ≤ −2∥𝑟𝑖 + 𝑟 𝑗 ∥ · ∥𝛾 (𝑝𝑖 − 𝑝 𝑗 ) + (𝑢𝑖 − 𝑢 𝑗 )∥ − 2∥(𝑝𝑖 − 𝑝 𝑗 )𝑇 (𝑢𝑖 − 𝑢 𝑗 )∥
(21)

From this contradiction, it is proved that 𝑞 ∉𝑊𝑗 . Since any point

within a cell cannot belong to any other cell at the same time, we

conclude that𝑊𝑖 ∩𝑊𝑗 = ∅,∀𝑖 ≠ 𝑗 . □

3.4 Collision-free Navigation with Risk-aware
WBVC

We have proved in the previous section that, with our proposed

Risk-aware WBVC, being collision-free is ensured when agents are

within their own cells. With our three proven Risk-aware WBVC

properties, it is straightforward and has been proved in [19] (Theo-

rem 1) that, for agents navigating towards target positions which

are located outside the cells, projecting the goal positions inside the

cells can always guarantee collision-free navigation performance.

Now we present our algorithm for multi-agent safe navigation

utilizing the proposed Risk-aware Weighted Buffered Voronoi Cells

in Algorithm 1.

where 𝑔𝑖 is the desired goal position of agent 𝑖 , and 𝑔𝑖 is the

projected goal position if the goal is outside the cell𝑊𝑖 . 𝑔
∗
𝑖
is the

goal position fed into a move-to-goal controller or any other kind

of controller that drives the robot to move towards the goal. With

our proposed algorithm, while the goal has not been reached, the

agent will first calculate 𝐿𝑖 𝑗 and 𝑅𝑖 with our CBF-inspired risk mea-

surement. By updating the Risk-aware Weighted Buffered Voronoi

Cells, the heterogeneity among agents in terms of different levels

of risk exposure and risk generation ability is reflected in different

sizes and shapes of the cells.
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Algorithm 1 Safe Navigation in Risk-aware WBVC

Require: Collision-free 𝑝 (𝑡0 ),𝑢 (𝑡0 ), 𝑔, ∀𝑖 ∈ {1, ..., 𝑁 }
while ∥𝑔𝑖 − 𝑝𝑖 ∥ > 0, ∀𝑖 ∈ {1, ..., 𝑁 } do

Calculate pairwise safety loss function 𝐿𝑖 𝑗 (Eq. 7)

Calculate the accumulated risk 𝑅𝑖 (Eq. 8)

Update weights 𝜔𝑖 𝑗 (Def. 3.3)

Update Voronoi Cell Tessellation𝑊𝑖 (Def. 3.3)

if 𝑔𝑖 ∈𝑊𝑖 then
Set 𝑔∗𝑖 = 𝑔𝑖

else
Find intersection 𝑔𝑖 of the cell boundary and the connecting line between 𝑝𝑖
and 𝑔𝑖
Set 𝑔∗𝑖 = 𝑔𝑖

end if
Update control policy ¤𝑝𝑖 = −𝑘 (𝑔∗𝑖 − 𝑝𝑖 )

end while

4 SIMULATION & DISCUSSION
In this section, we demonstrate the validity and effectiveness of the

proposed method in multi-agent swapping games. The goal is for

pairwise agents to switch positions with each other without any

collision. We set the agent safety radius as 0.2𝑚 and the right-hand

heuristic is applied for deadlock resolution [15, 18]. We demon-

strate our method in two scenarios of 6 and 16 agents respectively.

The agents have unicycle dynamics, and we employ a nonlinear

inversion method [17] to map the desired velocity to the unicy-

cle dynamics of mobile robots without compromising the safety

guarantee [11].

4.1 Comparison with Traditional Voronoi Cells
In the first example, we consider a multi-agent system with six

robots. To demonstrate the effectiveness of Risk-aware WBVC, the

difference between our proposed tessellation and the traditional

Voronoi tessellation is compared on a static configuration. The com-

parison is shown in Fig. 1. The three rows correspond to traditional

Voronoi Cells, Risk-aware Voronoi Cells and Risk-aware Weighted

Buffered Voronoi Cells. The cells of the six agents are marked in

different colors and the black arrows indicate the velocity of the

agents with different magnitudes and directions. The agents in all

plots share the same positions, but with different velocity settings

corresponding to the three columns.

In the first row, we can see that since the tessellation is conducted

solely based on positional information and does not take agent mo-

tion into account, no matter where the agents are heading and how

fast they are moving, the cells are equally partitioned. In the second

row, we use the proposed CBF-inspired risk measurement to take

not only agent position but also motion into account for tessellation,

without any weight or buffer. We can see that the sizes and shapes

of the cells change when the agent takes different actions. Since we

are not partitioning the space based on the point-to-agent euclidean

distance, the shared cell boundaries are no longer perpendicular to

the line between neighboring agents. This makes sense, since if we

take agent motion into consideration, the generated risk is higher

in the direction it moves than in the opposite direction, and it is

therefore unnecessary to leave the same large cell space behind the

agent. Our proposed Risk-aware WBVC is presented in the third

row, and we observe that the lower the risk the agent poses to its

surrounding environment compared to its neighboring agents, the

Figure 4: Theminimum inter-robot distance among 6 robots.

Figure 5: The minimum inter-robot distance among 16
robots.

smaller its cell is, warning it of the presence of its dangerous neigh-

bor. The higher the risk the agent is exposed to, the larger cell it is

given to grant it additional space for safe maneuvers. We further

demonstrate the effectiveness of our Risk-aware WBVC in Fig. 7, in

which the positions of all agents are fixed and the agent velocities

are randomized. From the 10 randomized trials, it is shown that our

proposed Risk-aware WBVC can better reflect the risk quantified

via the CBF-based risk measurement, compared to the traditional

Weighted Buffered Voronoi Cells that will have the same and equal

cells.

4.2 Safety Performance in Collision Avoidance
Next, we demonstrate the safety performance of our proposed Risk-

aware WBVC. We first show the six-agent position swapping game

in Fig. 8. The numbers in black are agent indices and the numbers

in red are target position indices, indicating to which agent they

belong. We observe that the agents are able to dynamically compute

and update their Voronoi Cells in a risk-aware manner. The inter-

robot distance over time is recorded in Fig. 4. The y-axis represents

the minimum inter-agent distance. Since we set the safety radius

of individual agents to be 0.2𝑚, the minimum inter-agent distance

should be larger than or equal to 0.4𝑚. The plot shows that the

safety requirement is satisfied in the six-agent position-swapping

game.

In the second example, we consider a more complicated and

challenging environment with 16 robots in total. We ran 3 trials

with randomly assigned pairwise counterparts for agents to swap

positions. Due to the space limit, we only demonstrate the swapping

process of one trial in Fig. 9. For better visualization, we separately

show agent trajectories in Fig. 6. The minimum inter-robot distance

over time of the 3 trials is shown in Fig. 5, with the green line
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Figure 6: Trajectories of sixteen robots.

corresponding to the demo case in Fig. 9. It is observed that no safety

violation happens during the whole process and the agents are able

to safely navigate to their target positions. The risk evaluation is

conducted and the risk measurement is leveraged to update the

Weighted Buffered Voronoi Cells in a risk-aware manner.

4.3 Tunable Overall Risk Sensitivity
Compared to traditional Voronoi Cells that only compute cells based

on positional information, by quantifying risk from a CBF perspec-

tive, our proposed Risk-aware WBVC also characterizes various

levels of the overall risk sensitivity of the multi-agent system.

It is demonstrated in Fig. 10 that for a given set of agent positions

and velocities, by tuning the CBF design parameter 𝛾 , the Risk-

aware WBVC is computed with different levels of risk tolerance.

The smaller 𝛾 is, the more conservative the multi-agent system

behaves, and the larger 𝛾 is, the more aggressive the overall system

is. For higher overall risk sensitivity, extra cautions are taken by

the multi-agent system by adaptively enlarging gaps in between

the cells for enhanced safety performance.

Note that different levels of system aggressiveness or conser-

vativeness in our Risk-aware WBVC are not equivalent to simply

using larger or smaller buffers in traditional Weighted Buffered

Voronoi Cells (WBVC). In our Risk-aware WBVC, the cells’ shapes

and sizes are also different, characterizing the possible heterogene-

ity of the overall risk sensitivity. Mathematically 𝛾 serves as a

balancing parameter between the influence of the positional infor-

mation and the motion information in cell partitioning, and the

larger 𝛾 is, the closer Risk-aware WBVC is to traditional WBVC.

As mentioned previously, our Risk-aware WBVC is a generalized

version of traditional WBVC, and it degrades to traditional WBVC

when 𝛾 = 1 and the agent motion information is set to zero when

computing cells, which is also verified in the proof of Lemma 2

that our Risk-aware WBVC provides a tight lower bound on the

minimum distance between cells compared to that of traditional

WBVC.

5 CONCLUSION
In this paper, we propose the Risk-awareWeighted Buffered Voronoi

Cells (Risk-aware WBVC), which utilizes novel Control Barrier

Function-inspired risk measurement to evaluate the risk each in-

dividual agent faces and the accumulated risk from inter-agent

interaction. Rigorous proofs are provided for formally provable

guarantees for multi-agent collision-free navigation with our Risk-

aware WBVC. The effectiveness and safety performance of the pro-

posed approach is demonstrated in multi-agent position-swapping

games with up to sixteen robots. For future work, we aim to extend

Risk-aware WBVC for safe navigation under uncertainty.
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Figure 7: Risk-aware WBVC with randomized agent velocities at the same positions. The colorful lines represent the randomized agent velocities with different
magnitudes and directions.

Figure 8: Our proposed Risk-aware Weighted Buffered Voronoi Cell in a 6-robot position swapping game.

Figure 9: Our proposed Risk-aware Weighted Buffered Voronoi Cell in a 16-robot position swapping game.

Figure 10: Different levels of multi-agent system’s sensitivity to risk. The smaller 𝛾 is, the more sensitive the multi-agent system is to risk and therefore extra
cautions are taken when computing Risk-aware WBVC.
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