Session 4F: Innovative Applications

Longxiang Shi
Zhejiang University City College
Hangzhou, China
shilx@zucc.edu.cn

Binbin Zhou
Zhejiang University City College
Hangzhou, China
bbzhou@zucc.edu.cn

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Policy Learning

Zilin Zhang
Zhejiang University
Hangzhou, China
zilinzhang@zju.edu.cn

Minghui Wu*
Zhejiang University City College
Hangzhou, China
mhwu@zucc.edu.cn

Efficient Interactive Recommendation via Huffman Tree-based

Shoujin Wang
University of Technology Sydney
Sydney, Australia
shoujin.wang@uts.edu.au

Cheng Yang
Zhejiang University City College
Hangzhou, China
yangc@zucc.edu.cn

Shijian Li
Zhejiang University
Hangzhou, China
shijianli@zju.edu.cn

ABSTRACT

Interactive recommender systems (IRSs) are an essential part of
our daily life, as they can suggest items to persistently satisfy our
demands. Due to the interactive nature, conventional static recom-
mendation methods such as matrix factorization, and content-based
filtering are ineffective to capture the dynamic preferences of users.
Recently, reinforcement learning (RL) has shown great potential
in addressing the challenges in IRSs, since it can capture users’
dynamic preferences and model the long-term profit of user-item
interactions. However, millions of items in real-world IRSs lead to
a large discrete action space in the RL setting, rendering RL-based
IRSs inefficient and hindering their widespread application. Such
an inefficiency issue has not been well addressed in the literature.
In order to address this issue, we propose a novel Huffman Tree
Policy Recommendation (HTPR) framework. Specifically, a novel
policy learning network based on a newly designed Huffman tree is
proposed for policy representation learning, which effectively im-
proves the learning efficiency. Moreover, a novel parameter-sharing
scheme is devised to further reduce unnecessary computations. Ex-
tensive experiments on two real-world benchmark datasets demon-
strate the superiority of HTPR over the state-of-the-art IRS methods
in terms of both recommendation accuracy and efficiency.
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1 INTRODUCTION

Interactive recommender systems (IRSs) aim to recommend pre-
ferred items to users by accurately modeling users’ dynamic prefer-
ences towards items in an iterative manner. As an emerging recom-
mendation paradigm, IRSs have been widely employed in our daily
life. Due to the interactive nature of IRS, recommendation methods
for IRS must be able to effectively model the iterative interactions
between users and RSs so as to capture users’ dynamic preferences
and thus provide recommendations that can satisfy users’ future
needs [30]. Conventional non-interactive recommendation methods
including both shallow (e.g., matrix factorization [8], content-based
filtering [22]) and deep models (recurrent neural networks, convo-
lutional neural networks, and graph neural networks [24]) can not
effectively model such user-RS interactions, and thus they are not
ready for building IRSs.

In recent years, reinforcement learning (RL), as a promising
machine learning method, has been proven to be a powerful method
for modeling the intensive interactions between different agents
while considering the long-term reward of each interaction [19].
Naturally, RL has been widely applied to building IRSs so as to
well model the interactions between the RS and users. [18, 29, 33].
More recently, deep learning has been incorporated into RL to form
deep reinforcement learning (DRL). Particularly, due to its powerful
representation capability, DRL has shown great potential to well
model the intensive RS-user interactions in IRS scenarios [3]. Hence,
DRL has been a mainstream method for building IRSs in recent
years [26, 30, 32].

However, one key challenge for employing DRL in IRSs is the
large action space problem. That is, real-world online IRSs always
have to handle millions of items in an online shopping platform,
leading to an extremely large action space. When facing such a large
action space, conventional RL methods such as deep Q-Network
(DON) [11] and policy gradient methods [19, 20] are ineffective
and inefficient in both policy learning and decision-making. Taking
the DQN-based methods [29, 31] as an example, the computation
involves a maximization operation over all the probable actions and
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may become intractable when the size of action space is large [4]. A
similar problem also exists in some policy gradient methods [13, 28].
To alleviate this issue, one popular strategy is to reduce the large
action space into a considerable one. For instance, DDPG-KNN [4]
has been developed to embed the discrete action space into a contin-
uous space and then to use an approximate nearest-neighbor search
method when making decisions. But this method is inefficient in
the embedding process and suffers from the inconsistency prob-
lem [21]. More recently, TPGR [3] was proposed to organize the
policies into a tree structure in order to improve efficiency in both
policy learning and decision-making stages. However, the balanced
tree structure in TPGR treats the frequent and rare items equally
and thus is inefficient in learning the frequent items since they
have much higher frequencies in the dataset. Due to such common
long-tail issue in recommendations, the balanced tree structure is
not efficient in learning and decision-making [14, 15].

To address the aforementioned significant gap in existing works,
in this paper, we propose a novel Huffman-tree Policy Recommen-
dation (HTPR) framework. To be specific, we devise a novel rec-
ommendation policy learning model based on a newly designed
Huffman tree to greatly improve the learning efficiency. Huffman
tree can greatly speed up the learning process by using very lim-
ited neuron nodes to represent those frequent items in the dataset
during the policy learning. As a result, the computation cost of
our proposed HTPR is largely reduced compared with existing
policy learning methods. Subsequently, the overall learning and
decision efficiency have been greatly improved. In addition, a novel
parameter-sharing scheme is devised to further improve the ef-
ficiency of the learning process by reducing some unnecessary
parameter load.

Our main contributions in this work are summarized below:

(1) To the best of our knowledge, this is the first work to build
an IRS based on Huffman tree structure-based DRL. We de-
sign a novel Huffman-tree Policy Recommendation (HTPR)
framework for building efficient IRSs.

(2) We devise a novel parameter-sharing scheme to further im-
prove the learning efficiency by reducing unnecessary com-
putation load.

(3) We conduct extensive experiments on two real-world bench-
mark datasets to demonstrate that our proposed HTPR can
not only achieve superior recommendation accuracy but
also is more efficient in learning and decision-making than
state-of-the-art IRS methods.

2 RELATED WORKS

For most RL methods, the large discrete action space is an in-
tractable challenge as the learning may become less effective and
inefficient with the growth of the action space. To address this issue,
one common approach to address this problem is simplifying the
action space into a considerable one. For instance, For example,
Sallans et al. [17] proposed a method that can factorize the action
space as negative free energies and then adopt an ensemble method
to learn the policy. Pazis et al. [16] proposed a method that embed-
ded each action in binary format and optimized a value function
associated with each bit. Bellemare et al. [1] demonstrated that
pre-categorizing action spaces can improve the performance of
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RL method. Another approach is to decompose the large discrete
action space into a smaller continuous one and then choose the
corresponding actions based on similarity in the embedding space.
Such methods can be found in DDPG-KNN [4] and Calca [28]. How-
ever, those methods are inefficient when embedding the actions.
More recently, Chandak et al. [2] proposed a method that can learn
the action representations during RL process, which can factorize
the action space into a smaller one. Although this method is ef-
fective for solving tasks with large discrete action spaces, training
such a model is inefficient as it involves integral calculating over
the probability distribution of actions.

Designing specific neural network structures to facilitate learn-
ing the tasks in large discrete action space is another popular strat-
egy. For example, DRN [31] and DEERS [29] adopted a refined
DON [11] network to learn the policies with large action spaces.
However, learning for DQN-based solutions involves a maximum
operation among the actions, whose time complexity grows lin-
early with the number of actions. Moreover, Zhao et al. [28] used
a deconvolution layer that maps the action space into a matrix.
Chen et al. [3] proposed TPGR that uses a balanced clustering al-
gorithm to build a tree-structured policy to simplify the learning
and decision process. However, TPGR adopted a balanced tree in
policy representation and treated all the items equally despite the
occurrence of the items, and is inefficient in learning the common
items as they are frequently encountered. In practice, the overall
efficiency of TPGR may be hindered by the common encountered
items.

In summary, existing methods are mostly inefficient or unpracti-
cal in real-world IRS scenarios. In this paper, we utilize the Huffman
tree in policy representation, which can achieve better efficiency
and effectiveness over several state-of-the-art methods.

3 METHOD

In this section, we first demonstrate the problem definition to de-
scribe the recommendation process using the RL-based method and
then go into details of the proposed Huffman-tree policy method.

3.1 Problem Definition

In this paper, we study the interactive recommendation task in
which the recommendation agent delivers an item to users and
receives feedback from users’ decisions. During the interaction, the
user (aka the environment in RL setting) sequentially selects items
recommended by the recommender. The goal of the recommender
agent is to maximize its cumulative reward. Under these circum-
stances, the interactive recommendation process can be modeled
as a Markov Decision Process (MDP) with the key components as
< S, A, P,R,y > which can be defined as follows:

o State S: A state s € S is defined as the recent interactions
between a user and recommender system. The consecutive
interaction sequence length depends on the reality and the
pre-defined boundary conditions.

e Action A: An action a € A is an item that the recommender
system suggests for the user.

e Transition probability function P: P(s’|s, a) is the tran-
sition function that indicates the new state s’, when the
recommender agent suggests item a at the state of s.
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e Reward function R: R(s, a) is a function that figures out
the immediate reward the recommender agent receives from
the user’s feedback after the agent suggests item a at the
state of s.

e Discount factor y: y € [0, 1] defines the discount factor that
measures the value of present reward and future reward.

Each episode in the MDP denotes a recommendation process and
gets the discounted sum of rewards as the return. For an episode
with length of T, the cumulative reward of the ¢-th step is: G; =
ZiT:t(yi’tR(st, at)). The goal is to find a recommendation policy
7+ S — A that maximizes the cumulative reward for the whole
interactive recommendation process:

1)

7 = arg max E[G;]
acA

3.2 Efficient Recommendation Policy
Framework Based on Huffman Tree
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Figure 1: Huffman-tree policy network for IRS

3.2.1 Improving Efficiency in Forward Pass with Huffman Tree. As
mentioned above, in interactive recommendation settings, one ma-
jor concern for employing DRL is the large-scale action space, which
can lead to an ineffective and inefficient performance in learning
and decision-making. Generally, policy gradient methods are more
popular in dealing with large discrete action spaces than value-
based RL methods, as most value-based RL methods involve maxi-
mization over all the actions in both learning and utilization. For
policy gradient methods, the forward pass of the policy networks
requires the calculation of probabilities for the available items in
action spaces. The output probabilities in the policy network are
often implemented as Softmax layers. Since the forward pass of
Softmax layer needs explicit normalization over the actions, orga-
nizing the output actions with a tree-structured policy network can
substantially improve the efficiency of forward pass. Such works
can be found in hierarchical Softmax [10] and TPGR [3]. However,
existing works that adopted balanced tree policy networks for in-
teractive recommendation need to compute the cumulative product
by traversing the tree from root to leaf for a certain item when
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Algorithm 1 Huffman Tree Policy Structure Build Algorithm
Input: Input item list < iy, iy, ..., i;, > with the corresponding
occurrence frequency list < fi, f2, ..., fm >, number of the branch
of Huffman tree c.

Initialize: A nodes set whose elements are the node with weight
fj the jthitem: Set = {Node(fj,i;)|j € [1,m]}.

1: while length(Set) >= c do
2. Sort Set by the node’s weight to be a non-decreasing se-
quence.
Create a node nodepe., with weights Z?:l fi-
for j from 1 to ¢ do
Assign the jth child of nodepe.y to be the jth node of Set.
Remove the jth node from Set.
end for
Add nodeyeqy into Set.
: end while
. if Set contains more than one node then
Create a node nodepe., with the sum of weights in Set.

R A A

12: for j from 1 to length(Set) do

13: Assign the jth child of nodepe.y to be the jth node of Set.
14: Remove the jth node from Set.

15 end for

16: end if

17: return The set that contains the root node of Huffman tree

Set = {nodenew}.

performing forward pass. Denoting the calculation time for each
node in forward pass as t,,4., as the layer for each leaf-node is
equal to the tree depth d in the balanced tree network, the average
calculation time (ACT) for each item is dt,,,4.. Unfortunately, in
real-world recommendation systems, the distribution of items is
imbalanced as the common items involve most of the ratings and
the unpopular items hold only a few ratings, so-called the long-tail
recommendation effect [14]. Denoting the frequency of each item
is fi, f2, ..., fm, where m is the total number of items, the ACT for
balanced tree policy network can be written as:

dtnode S
ACT = =224 %' @)
moiE

From this equation, we can infer that the long-tail effect itself
may bring a challenge in efficiency for a balanced tree policy net-
work, as it treats all items equally and arranges each item in the
bottom level of the tree. If we arrange the corresponding items of
each leaf in different levels, then the ACT can be written as:

ACT = Inode 5 04 (3)
Where d; denotes the depth of the ith item.

Fortunately, the above equation can be formalized as a minimum
weighted path problem, which can be solved by the well-known
Huffman tree [7]. Huffman tree organizes the leaf note of each item
to different layers according to their occurrence. In the Huffman
tree, the common items are assigned to the low layers while the
rare items are assigned to the high layers. Through the Huffman
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tree architecture, the efficiency of the forward pass can be opti-
mized for learning and utilizing a recommendation policy with
policy gradients. Hence, we adopt the Huffman tree for policy net-
work representation. The probabilities of frequently encountered
items are represented with fewer neurons and vice versa. In this
way, learning and decision efficiency can be improved. Our experi-
ments show that these settings can improve performance as well
as efficiency.

Specifically, we adopt n-ary Huffman tree to reduce the total
number of non-leaf nodes, which are regarded as the decision unit in
the Huffman tree policy. Experiments show that a larger number of
non-leaf nodes leads to higher learning time (refer to the experiment
part). The building algorithm of the n-ary Huffman tree is depicted
in Algorithm 1. We can first estimate the occurrence of all available
recommended items. Based on the occurrence the Huffman tree
can be obtained by Algorithm 1. Then we can organize the tree
nodes (i.e., neural networks) as the Huffman tree structure.

3.2.2
The overall framework of the proposed Huffman policy network is
illustrated in Figure 1. In the Huffman-tree policy network, each
non-leaf node of the Huffman tree policy receives the user histor-
ical item list as input and outputs the probabilities of the branch.
Each non-leaf node is a decision network and contains two parts:
the state representation model and a decision unit. The state rep-
resentation model receives the user’s historical item list as input
and outputs the state representation vector that models the user’s
behavior, and the decision unit receives the state vector and outputs
a probability of the corresponding branch. For each leaf node in
the Huffman tree policy network, the recommendation probability
of each item is computed by traversing the Huffman tree from the
root to the leaf.

During the learning of the Huffman policy network, we obtain
a cumulative product of the tree node network, which contains a
series of parameters. The backpropagation operation in such com-
plicated networks is time-consuming as it contains a large number
of parameters with the increase of nodes. Hence, to further improve
the learning efficiency, we adopt the parameter-sharing strategy,
which is widely used in neural networks to reduce unnecessary
computations. Specifically, we divide the decision node in the Huff-
man tree into two parts: the state representation model and the
decision node. The state representation model receives the user
historical item list as input and outputs the state representation
vector, and the decision unit receives the state vector and outputs a
probability of the corresponding branch. As the state representation
model may be complicated neural networks (i.e, convolutional neu-
ral networks and recurrent neural networks), all the nodes in the
Huffman tree policy network share the same parameter setting. In
addition, to improve the ability of the Huffman tree policy network,
the decision unit of each node holds an unshared parameter setting.
Through this parameter-sharing strategy, we can obtain a balance
of efficiency and performance.

Finally, based on the above settings, the Huffman tree policy
network is shown in Figure 1.

Improving Efficiency in Backpropagation with Parameter-Sharing.
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Figure 2: State representation model

3.3 State Representation Model

In this part, we present the state representation model, as shown
in Figure 2. In this figure, we assume that the recommender agent
is performing tth recommendation. The N previous user selected
items along with their feedbacks (ratings) are used to encode the
state. The user and item features are obtained through matrix factor-
ization on the historical user-rating matrix. Each rating is mapped
to a one-hot vector. We then adopt an attention-based state rep-
resentation model inspired by ATEM [25] to model the state from
user historical interactions. Generally, attention-based models are
more efficient compared to RNN-based models in modeling the
sequential data [23, 24]. Different from ATEM, we add user fea-
tures in the input layer to distinguish different users. The input
features, including user features and item features, are processed by
a fully-connected layer to obtain the feature embeddings. Then we
use the attention-based model to capture the contributions of each
item feature along with the user features. Denoting h; as the ith
preprocessed item feature, hyser as the preprocessed user feature,
the attentive context embedding is calculated as follows:

N
€= (atihi) + ayserhuser

i=1

©)

N
s.t. Z((xti) + ayser =1
i=1

Where a;; is the integration weight of the ith item embedding
vector w.r.t the tth target item, a5 is the integration weight for a
specific user.

The attention weights are calculated through a Softmax layer as
below:

o exp(f ()
SN exp(f(h)) + exp(f(huser))
a _ exp(f(huser)) (5)

S exp(f(hf)) +exp(f (huser))
F(hi) = ReLU(W®hT +b%) Vh; € {hi, huser}
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where W¥ and b* are the weight and bias parameters for the atten-
tion layer respectively.

In the output layer of the state representation model, we concate-
nate the input user feature and the attentive context embedding as
the state embedding vector.

3.4 Learning Process

The learning process of the Huffman tree policy network is depicted
in Figure 3. We first use the historical user-item matrix to extract the
features for each item and user. Specifically, we adopt Funk SVD [5]
to decompose the user-item matrix into an item matrix and a user
matrix. The item matrix and user matrix are used as item features
and user features, respectively. Additionally, the item occurrence
frequency can also be estimated. Based on the item distribution
the Huffman tree policy network can be built using Algorithm 1,
with each leaf node corresponding to a certain recommended item.
Recommendations are provided to the user by mapping the output
action of the policy to the items. During the interaction between
the user and the recommender agent, the Huffman tree policy can
be trained via the policy gradient method.

The policy network can be trained by any policy gradient method.
In this work, we adopt REINCFORCE [27] algorithm as the learning
method of our n-ary Huffman-tree model. Denoting the whole
policy network as g, the purpose of our algorithm is to maximize
the expectation of discounted cumulative rewards. The loss function
is defined as:

T
J(O) =By [ y're] (©)
t=0

According to the policy gradient theorem, each step to update the
parameters 0 is based on the gradient of the loss function which
can be written as:

VoJ (0) o< Exy[Q™ (s,@) Vg log mg(als)] ™
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Algorithm 2 Learning the Huffman tree policy network

Input: learning rate n > 0, discount factor y, episode length n.

Initialize: Policy parameter 6.

1: repeat

2. Sample an episode {(s1, a1, 1), ..., (ST, ar, rr)} from histori-
cal user data or online data.

3 fork=1tondo

& Q™ (g, 5¢) = X1, v~k

5 Calculate 7g(a¢|s;) based on the Huffman tree policy net-
work.

6: 0 — 0 +nQ7™0 (g, si) Vg log mg(als)

7. end for
8: until Coverage
9: Return: 7y

Table 1: Summary Statistics of Datasets.

Dataset Instant Video [ Baby
#Users 122,609 175,826
#Items 8,229 8,256
#Ratings 145,983 228,861
#Users in training set 98,084 140,660
#Users in testing set 24,522 35,166

where 7(als)is an action policy giving the probability of taking
action a at state s, and Q"0 (54) is the action-value function denot-
ing the expected cumulative reward of action a at state s. During
learning steps, 0”54 can be estimated by sampling trajectories
from historical user data under policy 7y. Detailed information of
the learning algorithm is shown in Algorithm 2.

4 EXPERIMENT

In this part, we evaluate the proposed HTPR on 2 benchmark
datasets. We first describe the setup of experiments and then eval-
uate the performance and efficiency of the proposed method. We
intend to answer the following research questions (RQ) through
experiments:

e RQ1: How does HTPR perform compared with the state-of-
the-art IRSs in terms of recommendation accuracy?

e RQ2: Does HTPR improve the efficiency in learning and
decision for IRSs?

e RQ3: How do the different hyper-parameters affect the per-
formance of HTPR?

4.1 Experimental Setting

4.1.1 Datasets. We evaluate the proposed HTPR on 2 real-world
benchmark datasets: Instant Video and Baby, which are commonly
used for evaluating the performance of IRS. The two datasets con-
tain product reviews collected from Amazon [6, 9]. The users’ rat-
ings of those datasets ranged from 0 to 5. We use a quarter of
each dataset for evaluation. Specifically, we use 80% of the data for
training and the left 20% for testing. Five-fold cross-validation is
adopted in the evaluation. The statistics of the two datasets are
listed in Table 1. Due to the interactive nature of IRSs, an ideal
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Table 2: Recommendation accuracy comparison with baselines, *the improvement is significant at p < 0.05.

Dataset Metric | Popularity | SVD DDPG- DDPG- DON-R TPGR HTPR Improv.
KNN(k=1) KNN(k=0.1M
HR@10 | 0.00004 0.00119 0.00336 0.01807 0.05376 0.10801 0.16573" 34.6%
Instant Video MRR@10 | 0.00001 0.00041 0.00165 0.00679 0.02117 0.03970 0.10232"* 61.2%
HR@30 | 0.00016 0.00507 0.00713 0.05137 0.12150 0.18900 0.25362 25.3%
MRR@30 | 0.00002 0.00075 0.00190 0.00884 0.02497 0.04425 0.10807* 59.1%
HR@10 |0 0.00054 0.00019 0.00216 0.05405 0.06201 0.06790" 8.67%
Baby MRR@10 | 0 0.00086 0.00003 0.00057 0.01791 0.02841 0.03047* 6.76%
HR@30 | 0.00003 0.01871 0.00019 0.00381 0.11064 0.12194 0.13050" 6.57%
MRR@30 | 0 0.00220 0.00003 0.00066 0.02142 0.03178 0.03453" 7.96%

Table 3: Efficiency comparison for decision making (in seconds), “the improvement is significant at p < 0.05

‘ Average learning time per step ‘ Average time per- decision

Method

‘ Instant Video ‘ Baby ‘ Instant Video ‘ Baby

DDPG-KNN(k=1) 0.56430 1.42474 0.09974 0.01657
DDPG-KNN(k=0.1M) 0.88891 1.72415 1.20832 1.72455
DOQN-R 0.64808 1.75619 0.10880 0.08240
TPGR 0.42570 0.60594 0.05370 0.06397
HTPR | 0.28766* | 0.33975* | 0.03158" | 0.03448"
Improv. | 324% | 43.9% | 412% | 461%

way for conducting experiments is to directly interact with users.
Unfortunately, online experiments are too expensive and vulner-
able to commercial risks for IRS [3, 32]. Similar to some existing
works, we use an offline environment simulator that is based on
offline datasets to conduct experiments. For each timestep, the en-
vironment simulator provides the historical items and ratings of a
user and releases a reward after the recommender agent suggests
items. The reward function of the environment simulator is set to
the normalized ratings, which linearly normalize the ratings into
[-1,1]:

R(s,a) = —-1+2x rl?J

®
where ry; is the rating for user i for item j.

4.1.2  Evaluation Metrics. We report 2 commonly used evaluation
metrics in the experiments:

e Hit Ratio (HR)@K:HR measures the fraction of items that
user favors in the recommendation list and is calculated as
below:

1
# Users x K

Z i Onit

# Users i=1

HR@K = 9

Here we define 0;; = 1 if the item user selects and fa-
vors (r;j > 3.5) is in the top-K suggested items.

e Mean Reciprocal Rank (MRR)@K: MRR@K measures the
average reciprocal rank of the first relevant item. Denoting
k; as the rank of the first relevant recommendation item,

1500

MRR@K is calculated as below:

1

MRR@K = ————
@ # Users « K

Y (10

# Users i=1

&

4.1.3  Baseline Methods. We compare the proposed HTPR with sev-
eral state-of-the-art IRS methods from different types. The details
are listed below:

Popularity: It ranks the top k frequent items according to
their popularity measured by the number of ratings, which
is a simple but widely adopted baseline method.

SVD: It suggests recommendations based on singular value
decomposition (SVD). For IRS setting, the model is trained
after each interaction with users and gives recommendations
with the predicted highest rating.

DDPG-KNN: It’s a DDPG-based method that maps the dis-
crete action space to a continuous one, then selects K nearest
items in the continuous space with the max Q-value obtained
by the critic network [4]. In our experiment, K value is set
to {1,0.1m}.

DQN-R:It’s a DQN-based method that adopts a refined DQN
to evaluate the Q-values of the items and chooses the item
with the max Q-value[31].

TPGR: It adopts a tree-structured policy and uses the policy
gradient method to optimize the tree-structured policy [3].
This is the state-of-the-art IRS approach and is similar to our
proposed method.
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Table 4: Efficiency evaluation of HTPR on different branch sizes

Dataset ‘ Metric 16 32 64 128 256 512 m
HR@30 0.20463 | 0.20325 | 0.22270 | 0.23673 | 0.22872 | 0.23624 | 0.21453
Instant Video | Average learning time per step | 0.4031 | 0.35103 | 0.27738 | 0.25329 | 0.27081 | 0.26938 | 0.70964
Average time per decision 0.3926 | 0.03904 | 0.02539 | 0.02496 | 0.02859 | 0.02646 | 0.04758
HR@30 0.13084 | 0.13071 | 0.12816 | 0.14561 | 0.14114 | 0.13788 | 0.1404
Baby Average learning time per step | 0.40809 | 0.34899 | 0.33975 | 0.2475 0.2411 | 0.21839 | 1.14037
Average time per decision 0.03055 | 0.03218 | 0.03488 | 0.02289 | 0.02126 | 0.02164 | 0.04894
Table 5: Efficiency evaluation of HTPR on different hidden sizes
Dataset | Metric 8 16 32 64 128

HR@30 0.20296 | 0.2227 | 0.23225 | 0.25362 | 0.2854

Instant Video | Average learning time per step | 0.27562 | 0.27738 | 0.27722 | 0.28438 | 0.29946

Average time per decision 0.02432 | 0.02539 | 0.02539 | 0.02902 | 0.03563

HR@30 0.12782 | 0.12816 | 0.13117 | 0.1305 | 0.13032

Baby Average learning time per step | 0.31829 | 0.33975 | 0.33717 | 0.34982 | 0.34445

Average time per decision 0.02519 | 0.03448 | 0.03256 | 0.03792 | 0.02672

The experimental details including settings of both baseline
methods and our method are presented in the appendix part at the
end of this paper. Our implementations can be found at GitHub !.

4.2 Recommendation Accuracy
Evaluation (RQ1)

We first investigate the recommendation performance of HTPR
against some state-of-the-art baselines w.r.t the aforementioned
evaluation metrics. For the environment simulator, we fixed the
length of each episode to 32. The hyper-parameters of all methods
are tuned by grid search. In addition, to make a fair comparison our
TPGR implemented with the state representation model learned
online. The experiment results are shown in Table 2. In this table,
the best results in each row are highlighted in bold.

From Table 2 We can infer that the proposed HTPR performs
clearly better than the baseline methods on the two Amazon datasets
using the aforementioned metrics. The conventional methods such
as popularity and matrix factorization obtain bad performance
under the three datasets. DDPG-KNN method performs worse in
K =1, and improves at K = 0.1M in both Instant Video and Baby
datasets, here M denotes the total number of items. Specifically,
the proposed HTPR consistently outperforms the best-performing
baselines from 6.57% to 34.6% in hit rate. Compared with TPGR,
HTPR adopts simpler neural network functions to represent the
probabilities of popular items while complicated neural network
functions are used to represent the probabilities of uncommon items.
Through this mechanism, HTPR is more effective for training the
IRS than the balanced tree policy network.

4.3 Efficiency Evaluation (RQ2)

In this part, we evaluate the learning and decision efficiency of the
HTPR compared with some RL-based recommendation methods.

Thttps://github.com/shilx001/HuffmanTreePolicy
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We also fixed the length of each episode in the environment sim-
ulator. We run each method on an AMD Ryzen 3600 6-core CPU
with NVIDIA GeForce RTX2060 GPU. For learning efficiency, we re-
port the average learning time per step (seconds) for HTPR against
three RL-based recommendation methods: DDPG-KNN, DQN-R
and TPGR. For decision efficiency, we report the average time per
decision (seconds) of the same four methods.

The results are shown in Table 3. HTPR consumes much less
time for both learning and decision-making compared with the
3 RL baselines. The overall efficiency of HTPR consistently and
significantly outperforms the best-performing baseline TPGR from
32.4% to 46.1% with an average improvement of 41.9% in learning
and decision. For DDPG-KNN, as the value of K affects the effi-
ciency a lot, we investigate the two settings of K: {1,0.1m}. The
KNN method is very inefficient as K goes big. The proposed HTPR
achieves better efficiency in both learning and decision-making
against state-of-the-art methods.

4.4 Parameter Sensitivity Analysis (RQ3)

In this part, we evaluate the effect of two hyper-parameters: the
branch of the node for Huffman tree policy network, and the hid-
den size for each node. For the branch of each node, it directly
determines the total number of decision nodes of the Huffman tree.
Given an n-ary Huffman tree with m nodes, and the branch is set
to c, then based on the n-ary Huffman tree build algorithm, the
number of decision nodes is m mod ¢ — 1, here ¢ > 2. We report
the performance (HR@30) and efficiency of 7 different branch sizes:
{16, 32, 64, 128, 256, 512, m}. In this experiment, we fixed the hidden
size of the neural networks as 64. The experimental results are
shown in Tabel 4. As the branch size increases, the performance of
HTPR improves at first (The two datasets perform best at ¢ = 128).
Then the performance begins to fall down when ¢ > 128. The learn-
ing time and efficiency time follow a similar pattern to performance.
At ¢ = 128 and the Instant Video dataset achieves the best learning
and decision efficiency, while the Baby dataset obtains the best
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efficiency at ¢ = 512. Specifically, the Huffman tree degenerates
to a single node when ¢ equals the item size. In such settings, the
learning time and decision time become inefficient. Consequently,
when deploying the HPGR into practice, a suitable branch size is
worth tuning.

We also report the performance of different hidden sizes for each
decision node in HTPR. In this experiment, we fix the branch size
as 64. The result is shown in Table 5. For the Amazon instant video
dataset, the performance improves as the hidden size increases.
However, the efficiency is downgraded as the larger hidden size
consumes more computation. In Amazon baby dataset, the per-
formance improves when the hidden size is smaller than 32, but
holds on a similar level when the hidden size is larger than 32. It
means that the hidden size set to 32 is enough to tackle the IRS
tasks. Therefore, in practice, we need to find a hidden size that can
balance performance and efficiency.

5 CONCLUSION

In this paper, we propose a novel Huffman-tree Policy Recommen-
dation (HTPR) framework. HTPR is an efficient policy learning
framework for addressing the large discrete action space problem
in RL-based IRSs, which has not been well addressed in the liter-
ature. HTPR is built on a newly designed Huffman tree structure,
which is highly efficient for policy representation learning by utiliz-
ing different learning strategies on frequent and infrequent items
in the dataset. In addition, a novel parameter-sharing scheme is
designed to further improve learning efficiency by reducing un-
necessary computations. Extensive experiments on two real-world
benchmark datasets demonstrate that HTPR consistently and sig-
nificantly outperforms the state-of-the-art IRS methods in terms
of both recommendation accuracy and efficiency. One deficiency
of HTPR is that it needs to estimate the occurrence of candidate
items, which is not always applicable to online recommendation
tasks where new items may keep coming. In the future, we will
improve HTPR to address this issue.

APPENDIX: EXPERIMENT DETAILS

For the two Amazon datasets, the length of each episode is set to
32 and the discount factor y in RL is searched over {0.6,0.9,0.99, 1}
and we found that y = 1 obtains the best performance for most
methods.

For HTPR, we use a single-layer neural network with 64 neu-
rons as the node of the tree policy network. In the attentive state
representation model, the hidden size for the fully-connected layer
is equal to the hidden size of the decision node of the Huffman tree.
The learning rate is searched over {le — 2,1e — 3,1e — 4, 1e — 5}.
For the matrix factorization method, we decompose the user-item
matrix to obtain 128-dimensional user and item feature vectors.
Additionally, The user rating (with range [a, b]) is mapped to a
one-hot vector with a mapping function as below:

I X (b —rating)

)

onehot_mapping(rating) = onehot(l — floor(

a
where floor(x) returns the largest integer no greater than x and
one_hot(i,[) returns an [-dimensional vector with the ith elements
is set to 1 while others are set to 0.
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For DDPG-KNN, we use 3-layer neural networks to represent
the actor-network and critic network. The hidden size of the neural
network is set to 64 for each layer. The learning rates for both actor
and critic are searched over {1le — 2, 1e — 3, le — 4, 1e — 5} to obtain
the best performance. The size of the experience replay is set to
1,000,000 and the batch size of each learning step is set to 64. The
soft-update parameter 7 for DDPG is set to 0.05. To improve the
search efficiency of KNN, we use FLANN [12] for implementation.

For DQN-R, we also use a 3-layer neural network to represent
the Q-network. The hidden size of the neural network is set to 64
for each layer. The learning rate for Q-network is searched over
{le — 2,1e — 3, 1e — 4, 1e — 5} to obtain the best performance. The
soft-update period is set to 500 steps. In addition, the size of the
experience replay is set to 1,000,000 and the batch size of each
learning step is set to 64.

The implementation of TPGR is similar to [3], except some hyper-
parameters are well-tuned. To make a fair comparison, both state
representation models of TPGR and HTPR are trained online. The
learning rate for TPGR is searched over {le—2, 1e—3, 1e—4, le—5}.
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