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ABSTRACT
Themain goal of active voltage control is to keep the voltage of each
bus in the grid within a safe range. With the increasing penetration
of renewable and distributed energy sources in the grid, grow-
ing complexity, increasing uncertainty, and aggravating volatility
bring great challenges to voltage control in modern power sys-
tems. Traditional algorithms can hardly guarantee real-time safe
control to cope with these challenges. In recent years, substantial
attention has been paid to the application of multi-agent reinforce-
ment learning algorithms (MARL) to coordinate the control units in
each area of the grid in real time for active voltage control in com-
plex scenarios. However, these MARL algorithms do not explicitly
guarantee that the power system satisfies the security constraints.
There is a little in-depth study on safe multi-agent policy learning
in multi-agent-based voltage control, especially the direct correc-
tion of unsafe actions. In this paper, we formalize the active voltage
control problem as a Constrained Markov Game and approach
it with a centralized data-driven safety layer that requires global
observations and maps unsafe actions to safe actions. In order to
make the policy network rely on local observations for decentral-
ized execution, we introduce two novel components into the policy
network: action correction penalty loss and action correction sub-
networks. Notably, our approaches are easily extendable to other
MARL algorithms for continuous actions. In the experiments, we
evaluate our methods in the power distribution network simulation
environment and demonstrate the capability of the safety layer to
correct unsafe actions and the effectiveness of the safety layer to
improve the performance of the policy itself.
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1 INTRODUCTION
The utilization of renewable and distributed energy sources (solar
energy, wind power, etc.) in the power grid is important to alleviate
the current energy shortage and environmental protection prob-
lems [11], it also poses significant challenges to the safe operation
of the grid. Control problems in power systems can be broadly clas-
sified into three categories: frequency regulation, voltage control,
and energy management [7]. In this paper, we focus on the problem
of voltage control. More specifically, we refer to the problem of
reducing the possible overvoltage and undervoltage situations by
adjusting the existing controllable devices such as static var com-
pensators (SVCs) in the grid according to the current state of the
grid, which is also called the active voltage control problem [31].

In recent decades, the deployment of various advanced commu-
nication and measurement devices in the power system, such as
wide area monitoring systems (WAMS) [16], has led to continuous
reduction in the cost of obtaining grid data. Traditional voltage con-
trol algorithms, such as optimal power flow [3, 13, 36], suffer from
heavy calculation burden, the need for accurate physical models
and a large number of manually designed parameters, making it dif-
ficult to efficiently utilize a large amount of data to adapt to today’s
real-time changing grid dispatch scenarios. Meanwhile, deep rein-
forcement learning (DRL) algorithms have demonstrated impres-
sive performance due to their successful application in real-world
scenarios such as data cooling centers [25], robotics [10, 19], and
autonomous driving [26]. Therefore, data-driven and fast inference
DRL algorithms for active voltage control are gaining attention [7].

Since control units are usually distributed, active voltage control
problems are often solved by MARL algorithms. In prior works, re-
searchers have improved the performance of voltage control policy
learned by MARL from the perspectives of critic network design
and gradient computation [5, 30], reward function design [34, 39]
and so on. These methods only indirectly affect the actions given
by the agents’ policies and do not take into account the nonlinear
relationship between actions and the bus voltage in the grid. These
algorithms still have a high number of trial-and-errors to implicitly
learn the effect of actions on voltage.
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To address the limitations of the above algorithms, we propose
a centralized safety layer-based MARL algorithm in a constrained
Markov game framework, which can be combined with any con-
tinuous action MARL algorithms. Inspired by [9], We pre-train the
voltage prediction network with the data from the interaction of
the agents with stochastic policy. Based on the first-order approxi-
mation of this network, we construct a safety layer that corrects
unsafe actions when dangerous scenarios will arise. Experiments
on MAPDN [31] environment show that the safety layer helps the
agents substantially improve the control rate in all grid scenarios.

Besides, we propose two components to improve the perfor-
mance of the multi-agent policies that rely only on local obser-
vations during decentralized execution. The first component is
inspired by the Trust Region Policy Optimization (TRPO) [27] and
Proximal Policy Optimization algorithms (PPO) [28]. As we can get
the corrected safe action by the safety layer, the Kullback-Leibler
divergence of the action before and after correction is calculated,
which can be used as a penalty term for the policy loss. The second
component is inspired by [37]. We connect an action correction sub-
network after the policy network and use the output of the safety
layer to construct an auxiliary task to train the policy sub-network.
The policy sub-network maps the unsafe actions given by the origi-
nal policy network of the agents to safe actions. Experiments on
MAPDN [31] demonstrate that the above two components can
improve the performance of the agents’ policies in some scenarios.

In summary, this paper has the following three contributions:
(1) We propose a safety layer approach in the multi-agent Con-

strained Markov Game framework for the active voltage
control task, which effectively reduces the voltage out of the
safe range.

(2) We propose the action correction penalty loss. It can be added
directly to the policy loss to guide the policy closer to the
safe action distribution suggested by the safety layer during
training.

(3) We propose the action correction sub-network, which can
efficiently exploit the local observations of the agent to cor-
rect dangerous actions instantly. The policy with the sub-
network even learns safer actions than the safety layer under
the guidance of the safety layer.

The remainder of this paper is organized as follows. Section
2 describes the work related to active voltage control with rein-
forcement learning. Section 3 will specify the active voltage control
problem and model it as a multi-agent Constrained Markov Game.
The methodology is described in detail in Section 4. The results of
the simulation environment are presented and discussed in Section
5. Finally, we summarize our work in Section 6.

2 RELATEDWORK
2.1 Safe RL for Active Voltage Control
Safe RL builds on ConstrainedMarkov Decision Process (CMDP) [4]
framework that requires the agent to maximize discounted cumula-
tive returns while satisfying security constraints. A convenient way
to implement safe RL is to perform reward function design which
is equivalent to the Lagrangian multiplier method [18]. According
to the prior knowledge of the grid, the reward function is carefully
designed to guide the agents to maintain the bus voltage in a safe

range [40]. In [35], the Constrained Policy Optimization [1] for solv-
ing the CMDP problem was directly used for Volt-Var control in the
grid. They limit single-step policy updates to growth directions that
do not violate constraints by means of local policy search [24] and
trust region optimization [27]. Based on the core idea of Lyapunov-
based policy learning [23], [29] constructs a Lyapunov function for
the voltage control problem to guide the policy learning and ensure
the global security of the policy during training and deployment.
The above methods consider optimizing policy with gradient infor-
mation related to security constraints. Our proposed safety layer
can be used to correct the actions that are output by the policy and
are considered dangerous during testing instead of optimizing the
policy directly during training. And the above safe RL algorithms
for the voltage control task are all single-agent algorithms with
centralized execution. To overcome this limitation, we propose two
components that utilize the output of the safety layer, and they
are based on the centralized training with decentralized execution
(CTDE) framework [22].

Although [17] also used the safety layer to correct the action,
they need to obtain the relationship between actions and voltage by
calculating the power flow equations based on the detailed physical
quantities of the grid. Thus, their method requires prior knowledge
of the grid topology, device parameters, and others for a specific grid,
and is also based on the single-agent setting. To adapt to various
complex and uncertain grid environments, we propose the safety
layer that does not require any prior knowledge and is completely
data-driven. Further, we discuss how to improve the policy without
using the safety layer during decentralized execution.

Also relevant to our work is [9], which assumes that the dy-
namics of the environment are governed by first and second-order
differential equations. Besides, their method only allows at most
one constraint to be active and is still based on the single agent
setting. In contrast, we are faced with complicated dynamics based
on optimal power equations that do not satisfy simple first-order
and second-order relations in active voltage control. And we also
need to deal with voltage constraints that are consistent with the
number of buses in the grid.

2.2 MARL for Active Voltage Control
Recently, MARL algorithms in active voltage control have received
extensive attention. In [5, 33], the attention model was used in the
critic network of the MADDPG algorithm to enhance scalability
for more control units. [34] adopt Markov Game formulation [21]
with specially designed reward for each agent. Further, [39] takes
network loss and voltage violation into the design of the reward
function in the multi-agent Deep Q-learning algorithm. [30] pro-
posed a two-stage volt-var control method, in which the traditional
optimal flow method [3, 13, 36] is used to dispatch on-load tap
changer (OLTCs) and capacitor banks (CBs) hourly in the first stage,
and only in the second stage the MADDPG algorithm is used to reg-
ulate the roof-top photovoltaics (PVs) reactive power to reduce the
rapid voltage fluctuations. A consensus-based maximum entropy
MARL framework is proposed by [14], which encourages the ex-
ploration of agents, but wants policies of neighboring agents to be
as similar as possible in the process of training. [38] applies safe RL
to MARL in energy management of microgrids, where each agent
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needs to receive Lagrange multiplier variables from neighboring
agents and optimize local and global constraints using primal-dual
optimization method [6].

From the above work, it can be seen that as safe MARL algo-
rithms are less studied [15], there are fewer methods to consider
the application of safe MARL in active voltage control problems.
Component to these research gaps, we propose the safety layer
approach applied to the voltage control task in the multi-agent Con-
strained Markov Game framework. Moreover, we exploit the safety
layer to improve the performance of policies during decentralized
execution.

3 PROBLEM FORMULATION
In this section, we briefly present background information on the
issue of active voltage control on power distribution networks.
Subsequently, the active voltage control problem is formalized as a
Multi-agent Constrained Markov Game and thus solved using the
MARL algorithm.

3.1 Active Voltage Control on Power
Distribution Networks
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Figure 1: An example of a distribution. The black circle with
a number indicates the bus, L indicates the load, and G in-
dicates the external generator. The sun emoji indicates that
there is a PV installed in this location. The network is divided
into 4 parts based on the shortest path to the main branch
(nodes 1 - 4). We control the voltages of bus 2 - 14, and the
voltages of bus 0 and 1 are constant value 𝑣ref.

In this paper, the power distribution network with distributed
roof-top photovoltaics (PVs) installed is modeled as a tree graph
G = (𝑉 , 𝐸), where 𝑉 = {0, 1, . . . , 𝑁 } and 𝐸 = {1, 2, . . . , 𝑁 } are
as denoted as the set of buses (nodes) and the set of branches
(edges), respectively [13]. A simple example of a power distribution
network is shown in 1. It should be noted that bus 0 and bus 1 are
two special buses that represent the substation or main grid with
constant voltage and infinite active and reactive power capacity.
They are mainly used to balance the active and reactive power of the
distribution network. For each bus 𝑖 ∈ 𝑉 \ {0}, 𝑠𝑖 = 𝑝𝑖 + 𝑗𝑞𝑖 denotes
the complex power injection, where 𝑝𝑖 is active power and 𝑞𝑖 is
reactive power, 𝑣𝑖 and \𝑖 denote the magnitude and the phase angle
of the complex voltage. There is a complex nonlinear relationship
between these physical quantities satisfying the dynamics rules of
the power system [12].

As shown in Figure 1, different control areas are divided accord-
ing to the shortest path from the terminal bus to the main branch.
Loads and PVs are placed on some buses. Each PV contains an
inverter that maintains the voltage at each bus of the grid around
the standard value denoted as 𝑣ref by generating reactive power.
Each PV inverter is treated as an agent and makes actions based
on the observations in the area where the agent is located. For safe
and stable operation of the grid, the voltage deviation needs to be
kept within 5%. In other words, let the standard value 𝑣ref = 1.0
per unit (𝑝.𝑢.), the voltage amplitude of each bus needs to satisfy
0.95 𝑝.𝑢. ≤ 𝑣𝑖 ≤ 1.05 𝑝.𝑢.,∀𝑖 ∈ 𝑉 \ {0}. PVs convert solar energy
into active power to be injected into the grid during the day, which
may cause the voltage amplitude at some buses to exceed 1.05 𝑝.𝑢..
Due to heavy load at night, the end-user voltage amplitude may be
less than 0.95 𝑝.𝑢.. Thus, it is necessary to suppress voltage fluc-
tuations beyond the safe range by regulating the reactive power
injection of the PV inverter.

3.2 Multi-Agent Constrained Markov Game in
Active voltage Control

In this paper, we formalize the control process of the PV invert-
ers as Multi-agent constrained Markov game, which is defined by
⟨N ,S,A,O,P, 𝜌0, 𝛾, C, 𝑐⟩. P : S × A × 𝑆 → [0, 1] is probabilis-
tic transition function, 𝜌0 is initial state distribution, 𝛾 ∈ [0, 1) is
the discount factor, and the remaining components of the problem
definition are described in detail as follows:

Agents. Each agent in N = {1, 2, . . . , 𝑛} represents a PV. Each
PV injects reactive power through the PV inverter and collaborates
with each other to ensure that the voltage of each bus is within the
safe range.

State and Observation. 𝑆 =
{
p𝐿, q𝐿, p𝑃𝑉 , q𝑃𝑉 , v, \

}
defines the

state set, where p𝐿 ∈ (0,∞) |𝑉 | and q𝐿 ∈ (0,∞) |𝑉 | denote the active
and reactive power of loads, respectively; p𝑃𝑉 ∈ (0,∞) |N | denotes
the active power injected by PVs; q𝑃𝑉 ∈ (0,∞) |N | denotes the
reactive power generated by PV inverters; v ∈ (0,∞) |𝑉 | and \ ∈
(−𝜋, 𝜋) |𝑉 | denote voltage magnitudes and phases. The observation
set is defined as O = ×𝑖∈N O𝑖 , where 𝑂𝑖 is the observations of
agent 𝑖 . Since the grid is divided into several regions,𝑂𝑖 consists of
the measures of all bus states in the region where agent 𝑖 is located.
It is worth noting that the measures are not exactly the same as the
states, because the sensors generate measurement errors.

Action. The Cartesian product of the continuous action set
A𝑖 = {𝑎𝑖 : −𝑐 ≤ 𝑎𝑖 ≤ 𝑐, 𝑐 > 0} for each agent 𝑖 forms the joint
action setA. The continuous action of each agent denotes the ratio
of the maximum reactive power it can generate, which is given by
the power system.

Reward. The reward function is defined as follows:

𝑟 = −𝛼 · 𝑙𝑞
(
q𝑃𝑉

)
− 1

|𝑉 |
∑︁
𝑖∈𝑉

𝑙𝑣 (𝑣𝑖 ), (1)

where 𝑙𝑞
(
q𝑃𝑉

)
= 1

|N |
q𝑃𝑉 1 is the reactive power generation

loss and 𝑙𝑣 (·) is a voltage barrier function. Since it is difficult to
obtain the power loss of the whole grid in practice, the simulation
environment uses 𝑙𝑞 (·) as an easy-to-compute power loss approxi-
mation. Barrier function 𝑙𝑣 (·) describes how much the bus voltage
deviates from 𝑣ref, and a higher value indicates a larger deviation.
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The MAPDN environment [31] provides three forms of 𝑙𝑣 (·): L1-
shape, L2-shape, Bowl-Shape (see Appendix A.2). [31] mention that
Bowl-shape combines the advantages of L1-shape and L2-shape, so
we use Bowl-shape as the form of voltage barrier function in this
paper. 𝛼 ∈ (0, 1) is used to balance the two losses and is set to 0.1.

Constraint. Immediate-constraint function set is defined as
𝐶 = {𝐶𝑖 : S × A → R | 𝑖 ∈ 𝑉 \ {0}}. In the context of active
voltage, 𝐶𝑖 (𝑠𝑡 , 𝑎𝑡 ) denotes the voltage of bus 𝑖 at time step 𝑡 + 1
after the agents take joint actions 𝑎𝑡 ∈ A at state 𝑠𝑡 ∈ S. The
constraint constants set 𝑐 = {0.95, 1.05} contains two numbers that
represent the upper (overvoltage) and lower bounds(undervoltage)
of the safe voltage range, respectively. At each time step 𝑡 , the
immediate-constraint functions must satisfy the following inequal-
ity constraint:

0.95 ≤ 𝐶𝑖 (𝑠𝑡 , 𝑎𝑡 ) ≤ 1.05, ∀𝑖 ∈ 𝑉 \ {0}. (2)

Objective. Let the policy of agent 𝑖 be 𝜋𝑖 : O𝑖 × A𝑖 → [0, 1],
then the joint policy is defined as 𝜋 = ×𝑖∈N𝜋𝑖 . The objective of
voltage control is find the optimal joint policy 𝜋∗ to maximize
the expected discounted cumulative return E𝜋

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡
]
while

satisfying the constraint (2) as much as possible.

4 METHOD
Since the safe operation of the power distribution network is the
primary task of power dispatch, our proposed method focuses on
maintaining the voltage within the safe range. The results in the
MAPDN environment show that the bus voltage always slowly
deviates from the upper and lower boundary of the safety voltage
under the control of the agents [31], rather than suddenly and
significantly crossing the boundary. In order to avoid the voltage out
of the rangewhen the agents cause the voltage to be about to deviate
from the boundary, we apply a small correction of actions suggested
by agents. Accordingly, we propose a data-driven safety layer. In
Section 4.1, we describe the principle of the safe layer. In section
4.2 and section 4.3, we discuss the utilization of action correction
penalty loss and action correction sub-network to improve the
performance of the policies, without using the safety layer directly.

4.1 Data-driven Safety Layer
Considering that the voltage always deviates from the boundary by
a small magnitude, we would like to obtain the first-order approxi-
mation of the voltage of the actions. And then the approximation is
used to solve for the small correction of the safety actions. Figure 2
shows the conceptual overview of our safety layer. It should be
noted that the safety layer requires global observations of all agents.
In the following, we describe our method in two parts.

4.1.1 Voltage Prediction Network. We did not design the structure
of the voltage prediction network specifically for the voltage predic-
tion task or for a specific grid environment. Instead, the common
residual network structure is adopted for voltage prediction.

We concatenate observations and actions at the current time
step 𝑡 as input. The input is then fed sequentially into a linear layer
and two residual blocks to obtain the hidden features. The residual
block structure is shown in Appendix B.4, which contains two linear
layers with the same hidden size. Finally, the hidden features are
fed into a linear layer to predict the voltage of each bus at the next

Power Distribution Network

Agent 1 Agent 2 Agent n

Safety Layer

Voltage Prediction 

Using NN  

Satisfy the 

Constraints (3) ?  

QP solver
Yes

No

Figure 2: Schematic ofMARLwith the safety layer. The safety
layer collects observations and actions from all agents at
each time step and then predicts the voltage of each bus in
the grid. If there is a bus voltage exceeding the safe range,
the correction amount of actions is obtained by solving the
corresponding quadratic programming problem.

time step 𝑡 + 1. The forward propagation process of the prediction
network is described by the mathematical formulation as follows:

𝑖𝑛𝑝𝑢𝑡𝑡 = concatenate
( (
𝑜𝑡1, 𝑎

𝑡
1
)
,
(
𝑜𝑡2, 𝑎

𝑡
2
)
, · · · ,

(
𝑜𝑡𝑛, 𝑎

𝑡
𝑛

) )
, (3)

𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑡 = Residual
(
Residual

(
Linear

(
𝑖𝑛𝑝𝑢𝑡𝑡

) ) )
, (4)

V𝑡+1 = Linear
(
𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑡

)
, (5)

where 𝑜𝑡
𝑖
and 𝑎𝑡

𝑖
denote the observation obtained and the action

taken by agent 𝑖 ∈ N at time step 𝑡 , respectively;V𝑡+1 is the voltage
vector of all buses predicted by the neural network at next time
step 𝑡 + 1; further, the predicted voltage of bus 𝑗 ∈ 𝑉 \ {0} at next
time step 𝑡 + 1 is denoted by the notation V𝑡+1

𝑗
.

The training process of a voltage prediction network can be
considered as a supervised learning problem. 𝜋 ′ = ×𝑖∈N𝜋 ′𝑖 is an
arbitrary multi-agent joint policy. A transition (𝑜, 𝑎, 𝑟, 𝑜′, 𝑑𝑜𝑛𝑒) can
be generated after that 𝜋 ′ interacts with the power distribution
network environment at each time step, where 𝑜 denotes the cur-
rent observation, 𝑎 denotes the action made under observation 𝑜 , 𝑟
denotes the reward, 𝑜′ denotes the next observation and 𝑑𝑜𝑛𝑒 indi-
cates whether an episode is finished. We collect these transitions
as the training set for the voltage prediction network. Specifically,
we take 𝑜 and 𝑎 in each transition as inputs to the prediction net-
work and take the voltages of all buses in 𝑜′ as the label vector 𝑣 .
Each sample in the training set is denoted as (𝑜, 𝑎, 𝑣). The loss is
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designed to minimize the mean square error between the predicted
and actual voltage values at the next time step for all buses. The
mathematical formulation of the loss function is as follows:

𝐿V (𝑜, 𝑎, 𝑣) = 1
𝐾

𝐾∑︁
𝑖=1

1
|𝑉 | − 1

∑︁
𝑗∈𝑉 \{0}

(
V(𝑜𝑖 , 𝑎𝑖 ;\ 𝑣) 𝑗 − 𝑣𝑖 𝑗

)2
, (6)

where 𝐾 denotes the batch size, the subscript 𝑖 denotes the 𝑖-th
sample in a batch, the subscript 𝑗 indexes the 𝑗-th bus in the grid
environment, 𝑉 (·;\ 𝑣) denotes the neural network (NN) for voltage
prediction, \ 𝑣 denotes the weights in voltage prediction network.

We obtain the training set by interacting with the environment
using a random joint policy that randomly and uniformly samples
all actions. The network trained with the training set can be used
directly in the safety layer. Our prediction network and even the
safety layer do not directly affect the policy learning, i.e. our net-
work training process and the MARL algorithm training process are
decoupled from each other. Therefore, in addition to the network
training method used above, we can train the prediction network
while updating the actor and the critic in MARL algorithm. For
example, similar to the policy update and value update process, we
can train the prediction network by randomly drawing data from
the replay buffer every certain interval.

4.1.2 Quadratic Programming Problem. As shown in Figure 2, when
the prediction network predicts some voltages violate the constraint,
the prediction network is used to model the constraint (2) as a qua-
dratic programming problem (QP Problem) to find the safe actions.
Since the voltage always deviates slowly from the boundary, dan-
gerous cases only require fine-tuning actions to prevent it from
occurring, which can be achieved by the first-order approximation
of the predicted voltage.

Specifically, based on the backpropagation process of the neural
network, we can obtain the Jacobi matrix of the voltage prediction
values with respect to the actions at time step 𝑡 :

▽𝑎𝑡V𝑡+1 =


𝜕V𝑡+1

1
𝜕𝑎𝑡1

· · · 𝜕V𝑡+1
1

𝜕𝑎𝑡𝑛
.
.
.

. . .
.
.
.

𝜕V𝑡+1
𝑚

𝜕𝑎𝑡1
· · · 𝜕V𝑡+1

𝑚

𝜕𝑎𝑡𝑛

𝑚×𝑛

, (7)

where𝑚 = |𝑉 | − 1 denotes the number of buses controlled by the
agents; 𝑛 = |N | denotes the number of agents;V𝑡+1

𝑗
( 𝑗 ∈ 𝑉 \ {0})

denotes the predicted voltage of the 𝑗-th bus at time step 𝑡 + 1;
𝑎𝑡
𝑖
(𝑖 ∈ N ) denotes the action of the 𝑖-th agent at next time step

𝑡 . According to the first-order expansion of Taylor’s formula, if
a small change Δ𝑎𝑡 = (𝑎𝑡1, . . . , 𝑎

𝑡
𝑛) (∥Δ𝑎𝑡 ∥ → 0) is added to the

action 𝑎𝑡 , the changed predicted voltage V𝑡+1
∗ has the following

first-order approximation:

V𝑡+1
∗ ≈ V𝑡+1 + ▽𝑎𝑡V𝑡+1Δ𝑎𝑡 . (8)

If the first-order approximation of the predicted voltage is within
the safe range, it is considered that the voltage of the next time step
can be guaranteed to be within the safe range after the execution
of the current action. In order to obtain action change amount
Δ𝑎𝑡 such that the equation (8) satisfies the voltage constraint (2), a
quadratic programming problem of the following form needs to be

solved:

min
Δ𝑎𝑡

1
2
Δ𝑎𝑡 2 ,

s.t.
{
V𝑡+1 + ▽𝑎𝑡V𝑡+1Δ𝑎𝑡 ≤ 1.05 − 𝛿,

−𝑉 𝑡+1 − ▽𝑎𝑡V𝑡+1Δ𝑎𝑡 ≤ −0.95 + 𝛿.

(9)

where 𝛿 ≥ 0 is an adjustable constant for tightening the boundary.
Due to the errors that exist between the first-order approximation
and the actual voltage, we want to reduce the actual voltage viola-
tions as much as possible by using a more conservative bound. For
the QP problem (9), we can use numerical solution methods such
as interior point, active set, gradient injection and so on to solve
for the best Δ𝑎𝑡 . And then we consider 𝑎𝑡 + Δ𝑎𝑡 as the safe actions
that can be taken by agents in the current state.

4.2 Action Correction Penalty Loss
In this section, we consider the utilization of extra policy loss to
improve the performance of the multi-agent policies with the help
of the output of the safety layer. And only local observations are re-
quired for policy decentralized execution.We chooseMADDPG [22]
as the base algorithm to describe the training process of the whole
algorithm with action correction penalty loss.

For each agent 𝑖 ∈ N , consider parameterizing its policy 𝜋𝑖 with
the parameter \𝑖 , and their joint policy is 𝜋\ = ×𝑖∈N𝜋𝑖 , where \ =

{\1, \2, . . . , \𝑛}. In MADDPG [22], the policy 𝜋𝑖 is deterministic pol-
icy, and the gradient of the expected return 𝐽 (𝜋𝑖 ) = E

[∑∞
𝑡=0 𝛾

𝑡𝑟𝑡
]

for agent 𝑖 w.r.t. \𝑖 can be written as:

▽\𝑖 𝐽 (𝜋𝑖 ) = E𝑜,𝑎∼D
[
▽\𝑖𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ) ▽𝑎𝑖 𝑄

𝜋
𝑖 (𝑜, 𝑎)

��
𝑎𝑖=𝜋𝑖 (𝑜𝑖 )

]
, (10)

where 𝑜 = (𝑜1, 𝑜2, ..., 𝑜𝑛) consists of the observations of all agents;
𝑎 = (𝑎1, 𝑎2, ..., 𝑎𝑛) consists of the actions of all agents; D de-
notes the experience replay buffer which consists of transitions
(𝑜, 𝑎, 𝑟, 𝑜′, 𝑑𝑜𝑛𝑒); 𝑜′ denotes the next observations of all agents. The
centralized action-value function 𝑄𝜋

𝑖
is updated as follows:

L (\𝑖 ) = E𝑜,𝑎,𝑟,𝑜 ′∼D
[ (
𝑄𝜋𝑖 (𝑜, 𝑎) − 𝑦

)2]
, (11)

𝑦 = 𝑟𝑖 + 𝛾 𝑄𝜋
′

𝑖

(
𝑜′, 𝑎′

) ���
𝑎′=𝜋 ′ (𝑜 ′ )

. (12)

where 𝜋 ′ = ×𝑖∈N𝜋 ′𝑖 is target joint policy; 𝜋
′
𝑖
for each agent 𝑖 ∈ N

is the copy of the policy 𝜋𝑖 network, but the network weights \ ′
𝑖
of

the target policy 𝜋𝑖 slowly tracks the learned networks 𝜋𝑖 [20].
Note that the additional information we can now obtain is the

"safe" action 𝑎𝑠𝑎𝑓 𝑒 = (𝑎𝑠𝑎𝑓 𝑒1 , 𝑎
𝑠𝑎𝑓 𝑒

2 , . . . , 𝑎
𝑠𝑎𝑓 𝑒
𝑛 ) which is generated

by the safety layer corresponding to the action 𝑎. Inspired by
TRPO [27] and PPO [28], we take advantage of the trust region
method to make the actions learned closer to the "safe" actions. First,
we expand the original quintuple (𝑜, 𝑎, 𝑟, 𝑜′, 𝑑𝑜𝑛𝑒) to the hextuple
(𝑜, 𝑎, 𝑟, 𝑜′, 𝑑𝑜𝑛𝑒, 𝑎𝑠𝑎𝑓 𝑒 ), i.e. we add information about the corrected
safe action. Then the policy function 𝜋𝑖 is taken to parameterize a
condition Gaussian distribution N

(
𝑎𝑖 , 𝜎

2
𝑎

)
. Similarly, the action of

the safety layer output is parameterized as a conditional Gaussian
distribution N

(
𝑎
𝑠𝑎𝑓 𝑒

𝑖
, 𝜎2
𝑠𝑎𝑓 𝑒

)
. In practice, we set 𝜎𝑎 = 𝜎𝑠𝑎𝑓 𝑒 = 𝜎 ,

and 𝜎 is an adjustable hyperparameter. Finally, we construct the
following constrained policy optimization problem:

max
\𝑖

𝐽 (𝜋𝑖 ) s.t. ED
[
KL

[
N

(
𝑎𝑖 , 𝜎

2
𝑎

)
∥N

(
𝑎
𝑠𝑎𝑓 𝑒

𝑖
, 𝜎2
𝑠𝑎𝑓 𝑒

)] ]
≤ 𝛿, (13)
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Figure 3: The diagram of action correction sub-network. The left part shows the way that the policy with sub-network interacts
with the environment. The actions that are fed into the environment at each time step are original actions plus the correction
amount for the actions. The right part shows the structure of the policy network and its sub-network. The observation Encoder
contains the GRU module. The policy network and its sub-network are trained separately, and the two different background
colors on the right part indicate the corresponding updated parameters. The formula next to the orange dashed line indicates
the loss function used in the training of each network.

Similar to PPO [28], we can transform (13) into the unconstrained
optimization problem with a coefficient 𝛽 ≥ 0 by adding a penalty
(which we call action correction penalty loss) as follows:

max
\𝑖
ED

[
𝑄𝜋𝑖 (𝑜, 𝑎) − 𝛽KL

[
N

(
𝑎𝑖 , 𝜎

2
𝑎

)
∥N

(
𝑎
𝑠𝑎𝑓 𝑒

𝑖
, 𝜎2
𝑠𝑎𝑓 𝑒

)] ]
. (14)

In practice, we share the parameters of the policy networks. Note
that although global observations are used in the above training
process, only local observations need to be entered for each agent’s
policy 𝜋𝑖 during testing. The details of the MADDPG based on
action correction penalty loss (ACPL-MADDPG) are given in
Appendix B.2.

4.3 Action Correction Sub-network
The safety layer requires global observations, while the policy func-
tion of each agent receives only local observations. Thus, in the
absence of the safety layer as well as global observations, another
idea is that each agent directly learns the amount of change from
unsafe actions to safe actions only through local observations. We
add an auxiliary action correction sub-network after the policy
network to learn the amount of action change. Figure 3 shows the
diagram of this approach. The Observation Encoder module applies
GRU [8] to map raw local observations to embeddings in the latent
space. The policy network and its sub-network share hidden ob-
servation embedding. Considering that concatenating actions and
observation embedding directly will increase the dimension of the
sub-network input and facilitate the extension to other dimensions
of action, we map the action to an embedding with the same di-
mension as the observation embedding. And then we add the two
embeddings as the common embedding of observation and action.
Finally, this embedding is mapped to the action correction amount
through a linear layer.

When interacting with the environment, the action 𝑎𝑖 generated
by the agent 𝑖 is the original action 𝑎𝑖 output by the policy 𝜋𝑖 plus
the action correction amount Δ𝑎𝑖 . During training, as shown in

Figure 3, the policy network and action correction sub-network
will update their corresponding network parameters separately. In
the same way as in section 4.2, we select the MADDPG algorithm
to describe the training process of the algorithm with an action
correction sub-network. Similarly, the experience replay buffer D
consists of hextuple (𝑜, 𝑎, 𝑟, 𝑜′, 𝑑𝑜𝑛𝑒, 𝑎𝑠𝑎𝑓 𝑒 ). For each agent 𝑖 ∈ N ,
the original policy network 𝜋𝑖 still applies the gradient of equation
(10) to update its parameters. We use the following loss function
to update the parameters of the action correction sub-network
𝑠𝑢𝑏𝑛𝑒𝑡𝑖 :

L𝑠𝑢𝑏𝑛𝑒𝑡𝑖 = 𝑑 (𝑎𝑖 , 𝑎𝑖 ) + 𝛼 ·
𝑎𝑖 − 𝑎𝑠𝑎𝑓 𝑒𝑖


2
, (15)

where the second term indicates the action correction amount to be
learned by the sub-network;𝛼 > 0 is the adjustable hyperparameter;
𝑑 (𝑎𝑖 , 𝑎𝑖 ) is the distance function that measures the change from 𝑎𝑖
to 𝑎𝑖 . In section 4.1, the equation (8) used in the safety layer requires
the change Δ𝑎𝑖 of action 𝑎𝑖 to be as small as possible; otherwise,
the error of the first-order approximation will increase, leading to
a decrease in the safety of the corrected action. Therefore, here we
use the distance function to constrain the action correction amount
learned by the sub-network not to deviate too far from the original
action. In order to show the effect of action changes on returns, it
was pointed out in [37] that it is more appropriate to use Q-value
space distance than L2 distance in action space. And we use the
distance function as follows:

𝑑 (𝑎𝑖 , 𝑎𝑖 ) � max
(
0, 𝑄𝜋𝑖 (𝑜, 𝑎) −𝑄𝜋𝑖 (𝑜, 𝑎)

)
. (16)

When the Q-value of the corrected action 𝑎 is higher than the Q-
value of the original action 𝑎, the loss is zero. Otherwise, the penalty
is applied according to the difference in Q-values between the two
actions. It should be noted that, as shown in Figure 3, only their
corresponding weights are updated when the two networks are
trained. The details of the MADDPG based on action correction
sub-network (ACS-MADDPG) are given in Appendix B.3.
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(a) 33-Bus (b) 141-Bus (c) 322-Bus

Figure 4: The mean test results for each month in the test dataset. "Safety Layer" indicates the test results of the policy that
places the safety layer directly on the policy trained by MADDPG. The sub-caption indicates the scenario.

(a) 33-Bus (b) 141-Bus (c) 322-Bus

Figure 5: Median CR of algorithms. "ACPL-MADDPG" indicates the MADDPG algorithm with action correction penalty loss of
section 4.2. "ACL-MADDPG" indicates the MADDPG algorithm with action correction sub-network of section 4.3.

5 EXPERIMENTS
5.1 Experiment Setups
5.1.1 Environment. We test the performance of the methods pro-
posed in section 4 based on the MAPDN environment [31]. The
MAPDN is a decentralized/distributed power distribution network
environment for active voltage control where the MARL algorithms
can be easily applied. It provides three scenarios of different scales:
33-bus network, 141-bus network, 322-bus network. The 33-bus
network is divided into 4 zones and contains 32 loads and 6 PVs
(agents). The 141-bus network is divided into 9 zones and contains
84 loads and 22 PVs (agents). The 322-bus network is divided into 22
zones and contains 337 loads and 38 PVs (agents). The data used for
the loads and PVs are derived from real-world data of 3 years [31].

And the MAPDN provides the metric Control Rate (CR) to mea-
sure the degree of satisfying voltage constraints during the control
process. More specifically, assuming that the test is conducted on𝑀
episodes and each episode lasts for𝑇 time steps, the control rate on
these𝑀 episodes is calculated according to the following formula:

𝐶𝑅 =
1
𝑀

𝑀∑︁
𝑖=1

1
𝑇

𝑇∑︁
𝑡=1

[
I
(
0.95 <= 𝑉𝑜𝑙𝑡𝑖𝑡 and 𝑉𝑜𝑙𝑡

𝑖
𝑡 <= 1.05

)]
(17)

where 𝑉𝑜𝑙𝑡𝑖𝑡 is the voltage vector of all buses at time step 𝑡 of the
𝑖-th episode; I(·) is the indicator function, and its value is 1 only
when all bus voltages are in the safe range.

5.1.2 Compared Methods. According to the test results of [31],
MADDPG [22], MATD3 [2] and IDDPG [32] algorithms achieve
excellent performance compared to other state-of-the-art MARL
algorithms. We choose these three algorithms as the baselines and
apply the safety layer and two components in Section 4 on the
MADDPG. The voltage prediction network in the safety layer is
trained using transitions generated by the interaction of the random
policy with the environment, and the detailed training parameters
are shown in Appendix B.4. We used the same values in [31] for
the hyperparameters in the baselines, and the hyperparameters in
our proposed approaches are shown in Appendix B.

5.1.3 Training and Testing. During training, each experiment is
run with 5 random seeds and each episode lasts for 240 timesteps.
Each experiment is evaluated on the validation dataset every 20
episodes and the evaluation results during training are given by
the median and the 25%-75% quartile shading. After training is
completed, we test the learned policies on the test dataset. Since
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(a) 33-Bus (b) 141-Bus (c) 322-Bus

Figure 6: The mean test results for each month in the test dataset. Note that the policies of MADDPG, ACL-MADDPG, ACS-
MADDPG require only local observation during execution, while the safety layer requires global observation during execution.

the difficulty of voltage control varies from month to month due to
different levels of solar radiation, we test the algorithm by month.
The test dataset is randomly selected from 10 days from each month,
which has 120 episodes in total, and each episode lasted for 480
timesteps. The validation dataset mentioned above consists of 10
episodes randomly selected from the test dataset.

5.2 Results
Safety Layer. The test results of theMADDPG policy directly using
the safety layer versus the other baselines trained policies are shown
in Figure 4. In the 33-Bus, the safety layer approach achieves the
control rate of about 95% in almost every month, while none of the
baselines achieves that control rate. In the 141-Bus, the safety layer
can still continuously improve the control rate when the baselines
already have a high control rate. These verify the validity of the
first-order approximation of the voltage and the small correction
amount applied to the original action in Section 4.1. In the 322-Bus,
the safety layer can increase the control rate substantially to about
80% even when the control rate of baselines is very low fromMay to
August. This shows that the safety layer scales well to larger-scale
grid scenarios. It can be seen that in all scenarios, the policy using
the safety layer achieves the highest control rate in all months.
Especially in spring and summer, excessive active power injection
generated by PVs makes maintaining voltage stability more difficult.
The safety layer is still able to cope well with these challenges.

ACPL and ACS. The median CR of algorithms during training
in all scenarios is shown in Figure 5. Both ACPL-MADDPG and
ACS-MADDPG algorithms outperform the baseline algorithms in
the 33-Bus and the 141-Bus. In particular, the median control rate
of the ACS-MADDPG algorithm in the 33-Bus is even able to ap-
proach 100%. In the more complex 322-Bus, the two components
we propose do not have a particularly significant improvement
in the training evaluation curve. This is because the number of
data evaluated during training (only 10 episodes in the validation
set) is too small to reflect the comprehensive performance of our
components. When evaluated in the test dataset with a wider range
and larger amount of data (see Figure 6(c)), the performance of our
proposed components is still improved compared to the baseline in

the 322-Bus. The performance of the policies trained by MADDPG,
ACL-MADDPG, ACS-MADDPG, and the MADDPG policy with
the safety layer in the test dataset is shown in Figure 6. In the 33-
Bus and the 141-Bus, both components are effective in improving
control rates compared to MADDPG, and can even achieve better
performance than the MADDPG policy with the safety layer. ACPL
and ACS try to guide policy closer to safe action distribution sug-
gested by safety layer, and intuitively the upper limit of policy will
not be higher than safety layer. Since agents also actively explores
safer states during training (because the reward function includes
the penalty item related to the voltage exceeding the safe range), the
guidance of the two components and the exploration of the agent
itself promote each other and form a virtuous cycle, which leads to
the experimental results in the 33-Bus and the 141-Bus in Figure 6.
In the 322-Bus, both algorithms do not achieve the performance of
the safety layer, but compared with the MADDPG algorithm as the
baseline, the control rate is improved almost every month. This is
because the 322-Bus is more complex and the exploration capability
of agents is limited. These results show that our proposed two com-
ponents can get good performance improvement when only local
observations are obtained and policies are executed decentrally.

6 CONCLUSION
In this paper, we focus on maintaining the voltage at each bus in
the grid within a safe range and propose the safety layer method.
Experimental results show that the policy with the safety layer
approach effectively improves the voltage control rate in all scenar-
ios. Then, considering that the agent has to make decisions relying
only on local observations without the involvement of the safety
layer during decentralized policy execution, we proposed two novel
components: action correction penalty loss and action correction
sub-network. The two components make the policy output closer to
the safe action distribution of the safety layer and can even help the
agent to actively learn the policy that is safer than the safety layer
under the guidance of the safety layer. Experimental results show
the effectiveness of our two components. In the future, we consider
the utilization of larger models and the load pattern information to
enable them to learn more complex cooperative strategies.
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