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ABSTRACT
Many recent works have turned to multi-agent reinforcement learn-
ing (MARL) for adaptive traffic signal control to optimize the travel
time of vehicles over large urban networks. However, achieving ef-
fective and scalable cooperation among junctions (agents) remains
an open challenge, as existing methods often rely on extensive, non-
generalizable reward shaping or on non-scalable centralized learn-
ing. To address these problems, we propose a newMARLmethod for
traffic signal control, SocialLight, which learns cooperative traffic
control policies by distributedly estimating the individual marginal
contribution of agents on their local neighborhood. SocialLight re-
lies on the Asynchronous Actor Critic (A3C) framework, and makes
learning scalable by learning a locally-centralized critic conditioned
over the states and actions of neighboring agents, used by agents
to estimate individual contributions by counterfactual reasoning.
We further introduce important modifications to the advantage
calculation that help stabilize policy updates. These modifications
decouple the impact of the neighbors’ actions on the computed
advantages, thereby reducing the variance in the gradient updates.
We benchmark our trained network against state-of-the-art traf-
fic signal control methods on standard benchmarks in two traffic
simulators, SUMO and CityFlow. Our results show that SocialLight
exhibits improved scalability to larger road networks and better
performance across usual traffic metrics.
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1 INTRODUCTION
In recent years, most cities around the world have seen growing
traffic levels, and associated traffic congestion have started to show a
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number of negative effects, both at the micro andmacro level. At the
micro level, passengers experience frustration due to delays and also
face increased risks of collisions. At the macro level, unproductive
time spent in traffic damages economic health, while wasted fuel
and traffic jams increase air and noise pollution. As a result, there
is a growing need for effective traffic signal control methods, which
can play a significant role in alleviating traffic congestion.

Current traffic signal control methods can be broadly classified
into two categories: fixed-time control and adaptive control. In
fixed-time control, the duration of different traffic light phases
are pre-determined, often optimized offline from historical data.
However, urban traffic, on top of having considerable stochasticity,
also shows significant temporal and spatial variations. For example,
higher congestion is often seen due to temporal peaks at the end of
a work day. Similarly, the spatial structure of traffic networks often
gives rise to tidal patterns, with high congestion in particular lane
directions. To account for this variability, adaptive traffic signal
control (ATSC) methods aims at dynamically adjusting traffic signal
phases online, based on current traffic conditions.

Multi-Agent Reinforcement learning (MARL) is one such adap-
tive and versatile data-driven method, which has recently shown
great promise in ATSC and general control tasks [6, 10, 17]. ATSC
is cast as a MARL problem in which each agent controls a single
traffic intersection, based on locally-sensed real-time traffic con-
ditions and communication with neighboring intersections. Thus,
each agent learns a policy which maps the current traffic condi-
tions at the intersection into control outputs (e.g., phase selection,
phase duration). This lends it an advantage over conventional ATSC
methods, which rely on complex dynamics models and heuristic
assumptions. An alternative to MARL is to train a single centralized
RL agent, which is responsible for controlling all traffic intersec-
tions. However, while centralization allows for direct maximization
of a global reward/objective such as average trip time, training such
a centralized method is infeasible in practice due to the exponen-
tially growing joint action space, and the high latency associated
with information centralization.

Although the MARL formulation of ATSC alleviates most issues
associated with centralized methods, it introduces new challenges
as the performance of control policies that optimize local objec-
tives for each agent (intersection) will not be equivalent to that
of a centralized global RL agent if the local objectives aren’t well-
aligned with the global (team-/network-level) one. Since, traffic
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networks have complex spatio-temporal patterns and significant
interdependence between agents, greedily optimizing each agent’s
local reward usually does not optimize global (network-level) objec-
tives. A possible solution to this is to directly sum each agent’s local
reward with that of neighboring agents into a large neighborhood
reward, which becomes a new, more global objective optimized by
each agent. The idea here is to couple neighboring agents via their
rewards, whereby improving their neighbors’ local rewards via
their own actions directly affect their own long-term return. How-
ever, such a neighborhood reward has high variance since it is now
conditioned on the actions of multiple agents, making it difficult
for an agent to determine its true marginal contribution. A recent
work introduced COMA [10], which learns a complex team-level
network allowing agents to estimate their own marginal contribu-
tion to the team reward via counterfactual reasoning. Specifically,
COMA’s centralized value function network uses both the global
team reward, as well as the states and actions of all agents as input,
which becomes exponentially harder to train in larger teams.

In this work, we propose to spatially distribute the global credit
assignment problem into a collection of local marginal contributions
calculations, as a natural means to balance the tradeoff between
scalability and cooperative performance. To this end, we learn a
shared value network, similar to COMA’s but only conditioned on
each agent’s states/actions and that of its direct neighbors, which
can be used for agents to estimate their own marginal contribution
to the local neighborhood reward. By relying on a fixed number of
neighbors, our locally-centralized value network allows for signifi-
cantly improved scalability, while minimally affecting the quality
of the learned solutions by leveraging the natural fixed structure
of ATSC, where the natural flow of traffic means that neighboring
agents must be more tightly coupled. We further introduce impor-
tant modifications to the advantage calculation that helps improve
and stabilize policy updates.

We present results of an extensive set of simulations conducted
on a range of benchmark traffic networks using two standard traffic
simulators, SUMO [14] and CityFlow [26]. We show that our frame-
work - SocialLight - results in improved cooperation and natural
scalability to larger networks compared to existing state-of-the-art
ATSC baselines. To the best of our knowledge, we are also the first
work to show effective performance on both these standard traffic
simulators1. Finally, through a series of ablation studies, we also
show that the modified advantages in combination with the coun-
terfactual baseline derived from COMA help improve the speed
and stability of training in comparison to vanilla A3C/COMA.

2 RELATEDWORK
2.1 Conventional Traffic Signal Control
Traffic signal control is a versatile problem with many possible
objectives to optimize and different scopes of optimization. Con-
ventional methods can be broadly categorized into adaptive or
fixed-time control based on the ability of the method to adapt to
current traffic conditions. They are also categorized based on the
scope of their optimization - some methods only consider optimiza-
tion over a single isolated traffic intersection while others consider

1To help the community standardize bench-marking on both simulators, our open-
source code can be found at https://github.com/marmotlab/SocialLight

a network of traffic intersections (multiple intersections). Here, we
briefly list out seminal works for each of these categories -

• Single intersection, Fixed time: The Webster method [13]
obtains a closed-form solution for the optimal cycle length
and phase split based on a set of modeling assumptions.

• Single intersection, Adaptive: SCATS [18] is a popular
adaptive-control method, which has even been deployed
in numerous urban cities around the world. It takes in pre-
defined signal plans and iteratively selects from these traffic
signals according to a defined performance measure.

• Multiple intersections, Fixed time: GreenWave [24] opti-
mizes the timing offsets between different intersections to
minimize the number of stops for vehicles traveling along a
specific direction.

• Multiple intersections, Adaptive:Max-pressure control [28]
addresses the risk of oversaturation at an intersection by bal-
ancing queue lengths between neighboring intersections.

This list is not exhaustive and for more details, we refer the reader to
the recent survey by Wei et al. [31]. While conventional traffic con-
trol methods are currently the standard for real-world deployments,
they rely on accurate traffic models.

2.2 RL-based Traffic Signal Control
Model-free RL is particularly suitable for ATSC due to its ability to
learn from and find structure in large amounts of raw data. Early
works in RL explored different ATSC problem formulations on sim-
plified traffic environments. Out of these variants, themost common
variant has been learning to select the next traffic light phase using
a set of features describing the local traffic conditions. [11, 23, 33]. In
contrast, Li et al. [15], Aslani et al. [1] and Casas et al. [3] focused on
learning policies for selecting the traffic signal timing (also known
as the phase duration). While most methods focused on learning
policies from a low-dimensional feature space, Mousavi et al. [20]
used a CNN to directly map from image snapshots (obtained using a
simulator) to the policy for selecting the next traffic phase. Similarly,
Wei at al. [32] used both extracted features and real-world images
to learn the policy. Taking note of the fact that traffic intersections
in the real world vary greatly, Oroojlooy et al. [22] proposed At-
tendLight, which uses two attention networks to learn a universal
model applicable to intersections with any number of roads, lanes,
phases (possible signals), and traffic flow.

Multiple works described above showed that deep RL agents
can effectively control individual intersections. Hence, the focus of
more recent works has shifted to developing methods for a network
of traffic intersections that more closely resemble real-world traffic
systems where different traffic intersections are highly intercon-
nected. From lessons learned through conventional methods such
as Greenwave [24], it is evident that coordination between these
intersections is necessary to achieve effective performance for the
network. Current coordination methods for multi-agent traffic sig-
nal control can be broadly grouped into two - joint action learners
and independent learners. Joint action learners use a single global
agent to control the traffic for all intersections [23, 34]. While joint
action learners allow for direct optimization of a global objective,
they find it difficult to scale beyond a few intersections. On the
other hand, independent learners train an individual policy for each
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Figure 1: Single intersection with 8 traffic light phases

intersection, while considering other agents/intersections to be a
part of the environment [6, 21, 22, 29, 30]. Wei at al. [29] proposed
PressLight, which extends max pressure [28] to multi-agent RL by
rewarding each agent for minimizing the pressure at an intersec-
tion. Scaling this, Chen et al [5] proposed MPLight, a deep MARL
framework which uses parameter sharing to train policies using
pressure-based objectives for large-scale networks. A fundamental
challenge with achieving cooperation with independent learners
is partial observability, as individual traffic intersections are un-
able to observe nearby intersections. To address this, Chu et al. [6]
proposed MA2C, a MARL algorithm that adds fingerprints of its
neighbors to each agent’s observation for improved observability,
and a spatial discount factor to reduce learning difficulty. With
a similar motivation, Nishi et al. [21] used a graph convolutional
neural network (GCNN) to automatically extract traffic features
between distant intersections. As an alternative to direct state aug-
mentations or feature extractions, Wei et al. [30] proposed to learn
a communication mechanism between different intersections. Their
framework, referred to as Colight, uses graph attentional networks
(GAT’s) to facilitate communication between intersections. More
recently, Zhang et al. [37] further showed performance improve-
ments by learning phase correlation with an attention mechanism
over a queue length based state representation.

Finally, making use of the Centralized Training Decentralized
Execution (CTDE) paradigm, some works have focused on learning
a centralized critic to guide independent policy learning [4, 27].

3 BACKGROUND
3.1 Multi-Agent Reinforcement Learning
Multi-agent Reinforcement Learning generally optimize a global
objective over a cooperative game involving numerous agents. For-
mally, a MARL problem can be formulated as a set of Decentralized
Partially ObservableMarkovDecision Processes (Dec-POMDPs) [12]
characterized by a tuple 𝐺 = (𝜓, S,A, P,R, 𝜌,O,Z, 𝛾), where𝜓 is a
finite set of all agents (|𝜓 | = 𝑛, S is the state space,𝐴 the joint action
space, defined as 𝐴 = 𝐴1 ×𝐴2 × .... ×𝐴𝑛 and P : S ×A × S → [0, 1]
denotes the global transition dynamics. The reward function 𝑅 :
𝑆 × 𝐴 × 𝑆 → R𝑛 computes a set of private rewards [𝑟𝑡

𝑖
] for each

agent 𝑖 at each time-step 𝑡 . These rewards can be global (i.e each
agent receives the same global reward) or local via reward shaping.
In partially observable settings each agent cannot access the true
global state of the environment s𝑡 . Instead, it draws an observation
via observation models O = [𝑂1,𝑂2, ...,𝑂𝑁 ] where 𝑂𝑖 : S → Z𝑖 .
Here Z = [𝑍1, 𝑍2, ...𝑍𝑛] are the agents’ observation spaces.

Let Π𝑖 : 𝑍𝑖 ×𝐴𝑖 → [0, 1] denote the stochastic policy for agent 𝑖 ,
then the joint policy of themulti-agent system is given by 𝜋 (at |st) =∏

𝑖∈𝜓 𝜋𝑖
𝜃
(𝑎𝑡

𝑖
|𝑧𝑡
𝑖
) assuming the policy of each agent is parameterized

by 𝜃𝑖 . The Multi-Agent RL objective thereby is to find an optimal
joint policy 𝜋 that formally maximizes the discounted returns over
all agents 𝐽 (𝜋) = 𝐸𝜏∼𝜋 [

∑∞
𝑡=0

∑𝑁
𝑖=0 𝑟

𝑡
𝑖
]. Here, 𝜏 denotes the global

trajectory (s0, a0, s1, a1 ..s𝑡 , at). Finally, 𝜌 and𝛾 represents the initial
state distribution and the discount factor respectively.

This objective can be optimized over in a centralized manner
by parameterizing the global policy 𝜋 (at |st). However, such a cen-
tralized approach usually scales poorly, given the exponentially
growing state-action space of the agents. Independent learning algo-
rithms [19, 25, 35] have been effective in many multi-agent settings
to optimize 𝜋𝑖

𝜃
(𝑎𝑡

𝑖
|𝑧𝑡
𝑖
) over the local returns 𝑅𝑖 (𝜏) = ∑∞

𝑡=0 𝑟
𝑡
𝑖
with

either a local observation value critic 𝑉 𝜋𝑖
𝑖

(𝑧𝑖 ) = 𝐸𝜏 [𝑅𝑖 (𝜏) |𝑧0𝑖 = 𝑧𝑖 ]
or 𝑄𝜋𝑖

𝑖
(𝑧𝑖 , 𝑎𝑖 ) = 𝐸𝜏 [𝑅𝑖 (𝜏) |𝑧0𝑖 = 𝑧𝑖 , 𝑎

0
𝑖
= 𝑎𝑖 ] to estimate local advan-

tages 𝐴𝜋𝑖
𝑖
(𝑧𝑖 , 𝑎𝑖 ) = 𝑄

𝜋𝑖
𝑖
(𝑧𝑖 , 𝑎𝑖 ) − 𝑉 𝜋

𝑖
(𝑧𝑖 ) for policy improvement.

For cooperation, multi-agent actor-critic methods [9, 36] propose
to learn centralized critics 𝑄𝜋 (s, a) that optimize global returns
𝑅(𝜏) = 𝐸𝜏 [

∑∞
𝑡=0

∑𝑁
𝑖=0 𝑟

𝑡
𝑖
] with individual policies for decentralized

execution in their environments.

3.2 Traffic Terminology
Definition 1 (Traffic movement): One way by which vehicles can
traverse the intersection, i.e., from one incoming lane to one con-
nected outgoing lane. The traffic movement𝑚𝑖 𝑗 between lane 𝑖 and
outgoing lane 𝑗 is denoted as (𝑙𝑖𝑛

𝑖
, 𝑙𝑜𝑢𝑡
𝑗

), and the activation of the
movement is defined as𝑚𝑖 𝑗 = 1.

Definition 2 (Traffic signal phase): A set of simultaneously allowed
traffic movements, allowing only vehicles under these activated
traffic movements to traverse the intersection. We denote the signal
phase as 𝑝 =

{
𝑚𝑖 𝑗 |𝑚𝑖 𝑗 = 1

}
, where 𝑖 ∈ Lin and 𝑗 ∈ Lout.

Definition 3 (Traffic Agent and traffic network): A traffic agent
is in charge of one intersection and relies on the real-time traffic
conditions within its own area to control the signal phases. A traffic
network is a multi-agent network G(V, E), where the verticesV
are traffic agents and the edges E define the road network connect-
ing them. An agent 𝑖 has an immediate neighbor 𝑗 if 𝐸𝑖 𝑗 = 1. In
practice, this means that agents 𝑖 and 𝑗 are directly connected.

Fig. 1 depicts an example single intersection which is composed
of twelve incoming lanes and twelve outgoing lanes. Considering a
single connection between incoming and outgoing lanes, i.e., each
incoming lane is only connected to one outgoing lane, there is a
total of twelve movements (left-turn, go-straight, and right-turn
for each direction). Therefore, we can define eight phases, shown
in the right side of the Fig. 1. Currently, the W-E left-turn phase
is activated at the intersection, allowing vehicles at the left-turn
lanes of the west and east directions to move.

3.3 Traffic as a MARL Problem
3.3.1 Problem Definition. Given the current traffic conditions, the
goal of traffic agents in the network is to select their own optimal
signal phase 𝑎𝑡 for a fixed phase duration, until the next decision
time-step 𝑡 + 1, to maximize a global cumulative objective.

3.3.2 Observations. The true global state for a traffic systems com-
prises the position and current travel time of each vehicle in the
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Figure 2: Illustration of SocialLight: Fig a) highlights the distributed training framework where each agent maintains an actor network and a
local critic network with parameter sharing. The local critic is conditioned on the augmented observations and the actions of neighboring
agents to marginalize individual credit via a counterfactual baseline. This baseline is then used to compute the individual advantages used for
individual policy improvement. Fig b) Details the actor and critic network architectures. ( Image helped prepared by Stuti Mittal)

network, as well as the current traffic phase of each agent. However,
obtaining this information is infeasible in practice. Instead, each
agent is only allowed to observe a portion of this full state, which
contains the incoming queue lengths, current local traffic phase,
average waiting time of queued vehicles, and pressure, which can
all be locally measured via Induction Loop Detectors commonly
found in modern traffic networks. In this work, aligned with recent
work in the community, we use a combination of these features to
define each agent’s local state.

3.3.3 Actions. We let agents directly select one of the 8 traffic
phases, and execute that phase for a pre-specified duration (i.e.,
there is not fixed cycle among phases), for maximal adaptability.
Note other works have also considered switching phases in a fixed
cycle without specified phase duration [8], or setting phase dura-
tions within a fixed cycle length[2].

3.3.4 Rewards. The global objective for traffic control is to mini-
mize the cumulative trip time of all vehicles. However, optimizing
over total trip time is hard, since vehicles usually accumulate local
delays as they pass through multiple junctions in their journey.
Thus, different local reward structures are often used instead, such
as cumulative delay, queue length, pressure, or waiting time, which
align well enough with the global trip time objective. In this work,
we specifically opt to use queue lengths, to implicitly maximize
throughput at each intersection. This has been recently shown to
be superior compared to other local reward formulations [37].

4 SOCIALLIGHT
SocialLight introduces a new learning mechanism where individual
traffic agents learn to cooperate by marginalizing out their true
contributions to a neighborhood reward within an independent
learning framework. We outline the components proposed in So-
cialLight to train traffic light control policies for a junction. We first
provide an intuition that motivates SocialLight. Then we present
the adaptations within the asynchronous actor-critic framework

that are inspired by COMA [9] to address these challenges. Finally
we introduce modifications to the vanilla COMA formulation of the
advantages to enhance training stability and improve convergence.

4.1 Notation
Given a traffic network G(V, E), the local neighborhood for agent
𝑖 is denoted asV𝑖 = 𝑖

⋃N𝑖 , where N𝑖 are the agents in the imme-
diate neighborhood of agent 𝑖 . Each agent learns a policy network
𝜋𝜃 (𝑎𝑡𝑖 |𝑧

𝑡
V𝑖
) and a critic network𝑄𝜙 (𝑧𝑡V𝑖

, 𝑎𝑡V𝑖
), where 𝑧𝑡V𝑖

is the aug-
mented observation comprising the observation of each agent and
its neighbors, i.e., 𝑧𝑡V𝑖

= [𝑧𝑡
𝑖
]⋃𝑗∈N𝑖

[𝑧𝑡
𝑗
]. The 𝑎𝑡V𝑖

denotes the joint
action of the agent and it’s neighbors i.e. 𝑎𝑡V𝑖

= [𝑎𝑡
𝑖
]⋃𝑗∈N𝑖

[𝑎𝑡
𝑗
].

An agent 𝑖 receives an individual reward 𝑟𝑡
𝑖
which can be any

reward function computed using local traffic conditions such as
queue length over its incoming lanes or local max pressure. Through
reward sharing, an individual agent would sum up its own reward
with those received by it’s neighbors. The neighborhood reward
for the agent 𝑖 is defined as 𝑟𝑡V𝑖

=
∑

𝑗∈V𝑖
𝑟𝑡
𝑗
.

4.2 Changes to the Policy Gradient
We leverage the locally centralized critic to compute advantages by
marginalizing individual contributions via a counterfactual baseline
that is inspired by COMA for policy improvement. COMA learns a
central critic𝑄 (s𝑡 , a𝑡 ) over the global state 𝑠𝑡 and global action a𝑡 =⋃

𝑖∈𝑁 [𝑎𝑡
𝑖
] for all 𝑁 agents. The counterfactual baseline and COMA

advantages for a global state is given by 𝑄 (s𝑡 , a𝑡 ) − 𝐸𝑎𝑡
𝑖
𝑄 (s𝑡 , a𝑡 ).

In contrast our method computes a local critic 𝑄𝜙 (𝑧𝑡V𝑖
, 𝑎𝑡V𝑖

) for
each agent i.e. conditioned on the joint observation space and action
space of the neighborhood𝑉𝑖 to marginalize individual contribution
over the neighborhood reward. Hence in our setting, a naive COMA
update is given by

𝐴(𝑧𝑡V𝑖
, 𝑎𝑡𝑖 ) = 𝑄𝜙 (𝑠𝑡V𝑖

, 𝑎𝑡V𝑖
) −

∑︁
𝑎𝑡
𝑖

𝜋𝜃 (𝑎𝑡𝑖 |𝑠
𝑡
V𝑖
)𝑄𝜙 (𝑠𝑡V𝑖

, 𝑎𝑡V𝑖
), (1)

Session 4F: Innovative Applications
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1554



where the second term is a counterfactual baseline that marginal-
izes an agents expected contributions by fixing the actions of neigh-
boring agents. However, we observed that using original COMA
advantages made learning unstable especially with multiple agents
updating shared parameters. While the counterfactual baseline’s
expected contribution to the gradient is zero, we suspect that the in-
stability primarily arises from the high bias in the critic’s gradients
during the first few epochs of training. To reduce this bias, we intro-
duce two modifications. First, we take inspiration from Temporal
Differences (TD), which reduces bias by estimating advantages from
rolling out the trajectory and bootstrapping the critic estimates at
a future state. However, unbiasing advantages with the estimated
return from the full trajectory roll-out comes at the cost of larger
variance in the policy gradient. This bias-variance trade-off prob-
lem is then further addressed via standard Generalized Advantage
Estimation (GAE) over the modified COMA advantages.

TD advantages do not require training an additional network.
Hence, we propose a similar modification to the COMA advantages
to resembles TD advantages as follows:

𝐴1 (𝑧𝑡V𝑖
, 𝑎𝑡,𝑖 ) = 𝑟𝑡V𝑖

+ 𝛾
∑︁
𝑎𝑡+1
𝑖

𝜋𝜃 (𝑎𝑡+1𝑖 |𝑧𝑡+1V𝑖
)𝑄𝜙 (𝑧𝑡+1V𝑖

, 𝑎𝑡+1V𝑖
)

−
∑︁
𝑎𝑡
𝑖

𝜋𝜃 (𝑎𝑡𝑖 |𝑧
𝑡
V𝑖
)𝑄𝜙 (𝑧𝑡V𝑖

, 𝑎𝑡V𝑖
)

(2)

Note that our key distinction lies in the estimate of the boot-
strapped value which we do by evaluating the counterfactual base-
line at the future state. In contrast, TD(1) advantages in a multi-
agent setting bootstraps the discounted return over the expecta-
tion of the joint action over the policies of all agents 𝑗 ∈ V𝑖 that
is given by 𝐸∏

𝑗 ∈V𝑖 𝜋 (𝑎
𝑡+1
𝑖

|𝑧𝑡+1V𝑖
) 𝑄 (𝑧𝑡+1V𝑖

, 𝑎𝑡+1V𝑖
). However, this fails to

capture the dependence of future returns on the future actions of
neighboring agents. Hence, setting the bootstrapped return as the
counterfactual baseline at the future state reduces the variability of
future returns on the actions of future neighboring agents, thereby
reducing the variance in the gradient updates to the policy network.

The above advantages via TD errors still uses a biased critic for
the one-step lookahead during the first few epochs. Inspired by the
success of GAE, we also use a GAE-type computation to trade off
the bias and variance to the policy gradients, for improved learning
stability. The generalized advantages are given as:

𝐴𝐺𝐴𝐸 (𝑧𝑡V𝑖
, 𝑎𝑡𝑖 ) =

∞∑︁
𝑙=0

(𝛾𝛿)𝑙𝐴1 (𝑧𝑡+𝑙V𝑖
, 𝑎𝑡+𝑙𝑖 ) (3)

Note that the Generalised Advantage estimate implicitly weights
the 𝑛 step TD advantages by a factor 𝛿𝑛 as follows:

𝐴𝑛 (𝑧𝑡V𝑖
, 𝑎𝑡𝑖 ) =

𝑛−1∑︁
𝑙=0

𝛾𝑙 𝑟𝑡+𝑙V𝑖
+ 𝛾𝑛

∑︁
𝑎𝑡+𝑛
𝑖

𝜋𝜃 (𝑎𝑡+𝑛𝑖 |𝑧𝑡+𝑛V𝑖
)𝑄𝜙 (𝑧𝑡+𝑛V𝑖

, 𝑎𝑡+𝑛V𝑖
)

−
∑︁
𝑎𝑡
𝑖

𝜋𝜃 (𝑎𝑡𝑖 |𝑧
𝑡
V𝑖
)𝑄𝜙 (𝑧𝑡V𝑖

, 𝑎𝑡V𝑖
)

(4)
The discounting factor 𝛿 regulates the bias variance tradeoff

where the variance in the gradient estimator increases with the
time horizon due to the influence of the returns on the actions of
the team in the neighborhood. The policy gradient for a rollout of
length 𝑇 is thereby given as:

∇𝐿𝜋 (𝜃 ) =
𝑇∑︁
𝑡=0

∇𝜃 𝑙𝑜𝑔(𝜋𝜃 (𝑎𝑖𝑡 |𝑧𝑡V𝑖
) 𝐴𝐺𝐴𝐸 (𝑧𝑡V𝑖

, 𝑎𝑡𝑖 ) (5)

4.3 Critic Training
The critic introduced in the above section estimates returns over a
joint action space of the agents in the neighborhood N𝑖 . However,
having the critic output |A|𝑛 values, where |A| represents the
size of the action space of one agent, is impractical. We address
this problem by using a critic representation similar to COMA
which allows for an efficient evaluation of the baseline. In this
work, the critic is a neural network that takes local observations
of the neighborhood 𝑧𝑡V𝑖

and the actions of other agents 𝑎𝑡{V𝑖 −𝑖 }
and outputs the a vector of length |𝐴|. Note that the actions of
other agents are one hot encoded; the network is depicted in Fig. 2.
In doing so, the advantage term can be computed in a single pass
through a dot product between the outputs of the actor and critic
networks.

To conform with the TD error used to compute advantages via
the counterfactual baseline computed at the joint future agent state,
the targets of the critic are modified similarly. Here the TD(1) error
is given by

𝐺𝑡
𝑖 = 𝑟𝑡V𝑖

+ 𝛾
∑︁
𝑎𝑡+1
𝑖

𝜋𝜃 (𝑎𝑡+1𝑖 |𝑧𝑡+1V𝑖
)𝑄𝜙 (𝑧𝑡+1V𝑖

, 𝑎𝑡+1V𝑖
) (6)

More generally, the 𝑛 step TD returns is formulated as

𝐺𝑡 :𝑡+𝑛
𝑖 =

𝑛−1∑︁
𝑙=0

𝛾𝑙 𝑟𝑡+𝑙V𝑖
+ 𝛾𝑛

∑︁
𝑎𝑡+𝑛
𝑖

𝜋𝜃 (𝑎𝑡+𝑛𝑖 |𝑧𝑡+𝑛V𝑖
)𝑄𝜙 (𝑧𝑡+𝑛V𝑖

, 𝑎𝑡+𝑛V𝑖
) (7)

The TD(𝜆) targets𝐺𝜆
𝑡,𝑖

can be computed via these modified 𝑛 step
returns and the critic network is regressed against these targets
over a rollout of length 𝑇 . The critic loss reads

𝐿𝑄 (𝜙) = 1
𝑇

𝑇∑︁
𝑡=0

(𝑄𝜙 (𝑧𝑡+𝑛,V𝑖
, 𝑎𝑡+𝑛,V𝑖

) −𝐺𝜆
𝑡,𝑖 )

2 (8)

5 EXPERIMENTS
Our experiments aim to answer the following questions:

(1) Does SocialLight improve over the current state of the art,
when keeping standard definitions of the state space and
reward?

(2) What is the impact of the proposed individual contribution
marginalization mechanism in comparison to standard re-
ward sharing?

(3) Do our modified advantages improve the stability of training,
compared to simply applying COMA advantages locally?

To answer these questions, our experiments are conducted in
both the SUMO and CityFlow traffic simulators [14, 26]. We first
benchmark the performance of SocialLight on common baselines
developed over both the synthetic SUMO and real world Cityflow
traffic datasets and measure the same standard traffic metrics in
both datasets.

We then perform an ablation to study the impact of individual
contribution marginalization on the traffic performance over ar-
tificially generated traffic flows on a Manhattan road-map over
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Figure 3: Real-world traffic road network for CityFlow dataset (From left to right, Hangzhou map, Jinan map and New York map)

Table 1: SocialLight vs Baselines on CityFlow

Methods New York Hangzhou Jinan

1 2 1 2 1 2 3

Fixed Time 1397.37 1660.29 432.316 359.44 364.36 289.74 316.69
Max Pressure 1177.75 1535.77 262.35 348.68 275.79 223.06 234.93
Co-Light 1221.77 1476.18 271.07 297.26 276.33 237.14 278.16
MP - Light 1168.49 1597.24 343.47 282.14 300.93 259.10 261.45
Attention-Light 978.62 1571.68 259.62 284.75 268.68 212.76 216.34
SocialLight 760.94 1114.47 255.68 301.16 226.21 209.81 205.38

Performance Gain 22.23 % 24.53 % 1.54 % - 15.68% 1.41 % 5.09 %

the SUMO simulator. By simulating a diverse range of traffic sce-
narios to train and test on, we can eliminate networks potentially
over-fitting to a single scenario that may misrepresent our analysis.
Moreover, we show the improvement over the learning stability of
our network over both synthetic traffic and a real traffic datasets.

5.1 Description of Traffic Datasets
We conduct experiments on two different microscopic traffic simu-
lators SUMO [16] and CityFlow [26] with synthetic and real-world
datasets respectively. A traffic simulation on either simulator com-
prises a road network and a traffic flow dataset. Here the road
network defines the positions of the intersections, the attributes of
the roads (e.g., number and length of lanes, speed limits, and lane
connections etc.) and the phase settings. The traffic flow datasets
define the travel information of all vehicles, characterized by the
origin destination (O-D) pair and time that the vehicle enters the
network. Note that our simulations are conducted over homoge-
neous intersections that have the same settings for the roads and
traffic light phases.
5.1.1 Synthetic Traffic Datasets. We use synthetic traffic dataset
with a Manhattan road network on the SUMO simulator that is
adapted from the benchmark method MA2C [7]. The road network
is a 5×5 traffic grid network with 25 intersections. Each intersection
is formed by two-lane streets (W-E) with speed limit 72 km/h and
one-lane avenues with speed limit 40km/h.

The traffic flow datasets are artificially generated during run
time with different fixed seeds, to fairly compare among algorithms.
Aligned with previous work [7], all episodes consider a fixed traffic

flow composed of travel information (O-D pair) for all vehicles,
while the seed sets the (random) initial position and speed of these
vehicles.
5.1.2 Real Traffic Datasets. The real traffic dataset considers three
city networks - Jinan, Hangzhou and New York. These datasets
serve as popular benchmarks for ATSC [30, 31, 38]. The road net-
works are extracted from a portion of real-world traffic map for
simulations, and traffic flow datasets were compiled from cameras
during different time periods. As shown in Figure 3, there are a
total of 12 (3𝑥4) intersections in the Jinan map, 16 (4𝑥4) intersec-
tions in the Hangzhou map, and 192(28𝑥7) intersections in the New
York map. The traffic flow datasets used in these different maps are
described in [37]; there are three different flow datasets for Jinan,
two for Hangzhou, and two for New York.

5.2 Traffic Performance on SUMO Synthetic
Traffic Datasets

We compare our method SocialLight with current state-of-the-art
baselines optimized on the various traffic datasets. Following the
baselines [7] for a fair comparison, we keep the same experiment
settings, as well as similar POMDP settings in terms of the def-
initions of actions and rewards. The state is modified to include
current traffic phase.

5.2.1 Baseline methods.

(1) Greedy [13]: Greedily chooses the phase associated with
lanes with maximum incoming queue length.
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Table 2: SocialLight vs Baselines on SUMO - Manhattan

Metrics(Average) Greedy IA2C MA2C IQL-LR A3C A3C (nr) SocialLight

Queue Length 5.00 (2.86) 3.27 (2.00) 2.24 (1.28) 3.76(2.74) 1.71 (1.14) 1.11 (0.89) 0.74 (0.69)

Speed (m/s) 1.56 (1.33) 1.70 (1.32) 2.31 (1.22) 3.04(3.24) 4.55 (2.78) 4.94 (2.34) 5.36 (2.66)

Intersection Delay (s) 60.97 (47.15) 58.27 (46.08) 21.96 (19.83) 92.59(94.69) 38.23 (32.83) 25.43 (22.53) 10.07 (9.02)

Cumulative Delay (s) 595.78 (464.23) 446.85 (410.71) 325.02 (269.77) 214.521(342.95) 184.60 (297.99) 159.23 (226.64) 106.51 (165.18)

Trip Time (s) 885.47 (572.63) 704.62 (501.33) 597.88 (399.09) 462.862(453.69) 395.04 (387.06) 386.01 (305.74) 309.81 (243.95)

(2) IQL-LR [7]: A linear regression based independent Q-learning
(IQL) algorithm, where each local agent learns its own policy
independently by considering other agents as part of the
environment’s dynamics.

(3) IA2C [7]: An extension of IQL-LR which relies on advantage
actor-critic (A2C) algorithm instead of IQL.

(4) MA2C [7]: A cooperative MARL algorithm, which includes
the observations and fingerprints of neighboring agents in
each agent’s state.
to alleviate the instability caused by partial observability.
MA2C further introduces a spatial discount factor to scale
down the observation and rewards signals of the neighboring
agents, to encourage agents towards neighborhood-level
cooperation.

(5) A3C: The distributed learning framework with parameter
sharing relying on A3C algorithm, where each agent learns
to maximize its individual objective.

(6) A3C(nr): The distributed learning framework where each
agent is to maximize the neighborhood reward rather than
individual reward.

5.2.2 Analysis. We first observe that SocialLight outperforms the
heuristic based Greedy baseline, as well as the Deep RL baselines
MA2C, IA2C, IQL-LR and evenA3Cwith andwithout neighborhood
reward over all traffic metrics (average queue length, speed, inter-
section delay, cumulative delay, and average total trip time). Prior
methods IA2C, MA2C and IQL-LR are outperformed significantly
by both A3C with and without neighborhood rewards, even though
these are on policy actor-critic methods with the same POMDP
settings. We believe that this may be due to the way in which neigh-
boring states are aggregated into each agents’ individual state via
discounted summation in these baselines, which results in poorer
policies. SocialLight, on the other hand, significantly outperforms
standard A3C methods with and without neighborhood reward
in terms of average trip time and cumulative delays. This is most
likely due to the proposed contribution marginalization scheme
within the neighborhood reward which tightly couples the given
agent with neighboring agents to maximize throughput across the
neighborhood, thereby reducing travel time and delays.

5.3 Traffic Performance on CityFlow Real
Traffic Datasets

We evaluate SocialLight on real traffic datasets. The experiment
settings and POMDP settings are unchanged with respect to [37]
for a fair comparison among all methods.

5.3.1 Baseline methods.

(1) FixedTime [13]: Fixed time control considers a fixed cycle
over phases with a pre-defined total phase length and pre-
defined phase split over the total cycle length.

(2) MaxPressure [28] : MP (max-pressure) control greedily
selects the phase that can minimize the intersection pressure,
where the pressure is calculated by the difference between
the vehicles of incoming lanes and connected outgoing lanes.

(3) Co-Light [30] : A state-of-the-art method that uses Graph
Attention Neural Networks to accomplish junction level co-
operation and has been trained via Deep Q learning.

(4) MP-Light [5]MP-Light incorporates pressure in their states
and reward to achieve state-of-the art scalable ATSC over a
city-level traffic network. MP-Light also applies the FRAP
based training architecture that uses phase competitionwithin
various traffic movements to improve control performance.

(5) Attention-Light Attention-Light [37] is a recent state-of-
the-art model that incorporates self-attention to learn the
phase correlation and competition in contrast to FRAP that
uses human knowledge. This method has shown to outper-
form FRAP based MPLight and the CoLight over numerous
traffic datasets.

5.3.2 Analysis. Our results show that SocialLight in Table 1 out-
performs all existing baselines over a wide variety of traffic flows in
terms of reducing average travel time. In particular, we observe the
highest performance gains over the New York traffic flow sets that
comprises 196 traffic agents. We report more modest performance
gains over the Hangzhou and Jinan traffic flow datasets.

Over traffic flow datasets compiled for Jinan and Hangzhou
urban networks, SocialLight shows modest improvements com-
pared to the state-of-the-art AttentionLight. Despite large gains on
NewYork, the relatively modest performance gains of SocialLight
over the Hangzhou and Jinan can be attributed to the saturation.
This saturation results from their relatively small scale in terms
of the number of agents in the training datasets. This saturation
is evident from the performance classical baselines such as Max-
Pressure over these traffic flow. For instance, the average trip time
performance is actually observed to degrade with Co-Light and MP-
Light as compared to the MaxPressure baseline on the Hangzhou
and Jinan datasets. Attention-light is found to have very marginal
performance gains as compared to the MaxPressure baseline (ex-
cept for Hangzhou-2). This observations indicate that any potential
performance gains from these datasets would be minimal due to
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Figure 4: Training Plots of methods over average rewards, vehicle speed and intersection delay on the SUMOManhattan synthetic data-set.
SocialLight is shown in Blue, A3C with Neighborhood Rewards is in red and SocialLight with original COMA advantages which we refer to as
decCOMA is in green. Observe that decCOMA fails to improve over cumulative returns.

saturation. Hence, SocialLight performs better than AttentionLight
and the MaxPressure baselines on most traffic datasets.

We then turn our attention to the New York traffic flow sets,
which are harder to learn over due to their sheer scale. Of the two
flow sets there, New York-2 is the hardest traffic dataset [37] in
terms of vehicle arrival rate. Most RL methods (CoLight, MPLight
and AttentionLight) produce modest performance gains compared
to the classical FixedTime and MaxPressure baselines on both the
New york traffic flowsets. Co-light improves over the New York-2
dataset compared to the classical methods, but fails to do so over
the New York-1 dataset. In contrast, AttentionLight fails to improve
over the classic MaxPressure controller in the NewYork-2 dataset.
We believe that these improvements indicate the need for true
cooperation, which Co-Light and AttentionLight only achieve via
their network designs.

SocialLight pushes the state-of-the-art in terms of traffic perfor-
mance on both these New York datasets, where our performance
gains over the current state-of-the-art AttentionLight and CoLight
are even more pronounced (≥ 20%). We believe that this is due
to the impact of agents marginalizing individual contributions to
the neighborhood reward, which encourages better cooperation
as each agent understands its role in the local traffic performance.
By overlapping the agents’ neighborhoods (i.e., local areas of en-
hanced cooperation), our approach effectively leads to improved
network-wide cooperation and thus large performance gains.

5.4 Impact of Individual Contribution
Marginalization on Learning and Final
Performance

This ablation study aims to identify the impact of contribution
marginalization on both the learning process and the final perfor-
mance of trained policies. We compare SocialLight with vanilla
Asynchronous Actor Critic (A3C) with reward sharing (rewards
of neighbors summed up). As shown in Fig. 4, SocialLight exhibits
improved sample efficiency and improved returns as compared to
A3C even though both algorithms are on-policy and have the same
architectures and augmented state inputs for their policy networks.

Furthermore, we note that decentralized contribution marginal-
ization introduced in SocialLight is also shown to have improved
the stability of training. While both algorithms converge, Fig 4 indi-
cates larger variances in the returns, average speed and intersection
delays during training for A3C with neighborhood reward sharing.

We further compare both the networks over a validation set of
synthetic traffic flows generated from separate seeds that generate
traffic flows during training. The improvement over the total trip
time and cumulative delay shown in Table 2 highlight how the
marginalization of individual contributions promote cooperation
between traffic agents for large performance gains.

5.5 Impact of Modified Advantages on Training
Stability and Convergence

Further analysis shows the impact of the modified advantages that
marginalizes individual contributions. Compared to simply apply-
ing COMA advantages [9], our modifications are shown to improve
training stability as shown in Fig 4 and overall returns. We believe
that original COMA advantages converge to sup-optimal policies
due to the highly distributed nature of our training process, where
high initial biases in the critic inhibit monotonic policy improve-
ment during the initial phase of training. As both the policy and
networks learn in conjunction, the policy network learned via the
original COMA advantages converge to sub-optimal traffic control
policies, differently from SocialLight.

6 CONCLUSION
This paper presents SocialLight, a fully decentralized training frame-
work that learns cooperative traffic light control policies via dis-
tributedly marginalizing individual contributions to each agent’s
local neighborhood reward. We show that our method improves
over the scalability for cooperative learning, thereby improving
final traffic performance (average trip time) especially over large
traffic networks such as the New York grid with 196 traffic inter-
sections. These performance gains suggest that our method could
improve the overall quality of learned policies on real-life citywide
networks.

Our method leverages the fixed spatial structure of traffic sys-
tems to define overlapping neighborhoods over which agents can
marginalize their contributions, to scale cooperative learning with-
out the need for a centralized critic. Future work will focus on ex-
tending this idea to general mixed competitive-cooperative games,
where such distributed spatial structures are more difficult to iden-
tify and leverage. There, we will aim to develop methods to learn
suitable neighborhoods over which individual agents can marginal-
ize their contributions over to improve the scalability of cooperative
learning.
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