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ABSTRACT
Achieving convergence of multiple learning agents in general 𝑁 -

player games is imperative for the development of safe and reli-

able machine learning (ML) algorithms and their application to

autonomous systems. Yet it is known that, outside the bounds of

simple two-player games, convergence cannot be taken for granted.

To make progress in resolving this problem, we study the dynam-

ics of smooth Q-Learning, a popular reinforcement learning algo-

rithm which quantifies the tendency for learning agents to explore

their state space or exploit their payoffs. We show a sufficient condi-

tion on the rate of exploration such that the Q-Learning dynamics

Is guaranteed to converge to a unique equilibrium in any game.

We connect this result to games for which Q-Learning is known

to converge with arbitrary exploration rates, including weighted

Potential games and weighted zero sum polymatrix games.

Finally, we examine the performance of the Q-Learning dynamic

as measured by the Time Averaged Social Welfare, and comparing

this with the Social Welfare achieved by the equilibrium. We pro-

vide a sufficient condition whereby the Q-Learning dynamic will

outperform the equilibrium even if the dynamics do not converge.
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1 INTRODUCTION
Understanding the behaviour of multi-agent learning systems has

been a hallmark problem of game theory and online learning. The

requirement is that agents must explore potentially sub-optimal

decisions whilst interacting with other agents to ultimately max-

imise their long-term reward. In contrast to online learning with a

single agent, this poses a fundamentally non-stationary problem,

in which convergence to an equilibrium is not always guaranteed.

In fact, recent work has consistently found that, when learning

on games, agents may present a wide array of behaviours. This in-

cludes cycles [7, 10, 28], and even chaos [2, 11, 36–38]. Furthermore,
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the equilibria of a game need not be unique, so even if convergence

is guaranteed, it may be to one of many (or even a continuum)

of equilibria. Thus, predicting the behaviour of online learning

in games with many players becomes a particularly challenging

problem.

Yet it remains an important problem to solve. Recent advances in

machine learning require training multiple neural networks for ap-

plications to generativemodels [5, 16]. In order for such applications

to be realised, it is required that that training provably converges

to an equilibrium. Of equal importance is that this equilibrium be

unique, so that the outcome remains consistent regardless of initial

conditions. A unique equilibrium guarantees not only the repro-

ducibility of the system, but also ensures that desired behaviours

will persist, even if the system is perturbed from its desired state.

Similarly, the most complex tasks often require the interaction of

multiple autonomous agents [13]. This again requires that agents

are able to reliably equilibrate their behaviour.

There is a strong, and ongoing, effort in the research community

to understand these learning behaviours, with positive convergence

results being found in an assortment of game structures. For in-

stance, games with two players and two actions are well understood

[21, 31, 34]. Beyond this, some of the most widely studied games are

potential games, in which agents collaborate to maximise a shared

global function, and zero sum games (and its network variants), in

which agents are in competition. Indeed, it has been found that a

number of learning algorithms, including Fictitious Play [41], Q-

Learning [38, 43, 46], Replicator Dynamics [17, 18, 25] all converge

to equilibria (though not always unique) in potential games [14, 23].

In zero sum games, the former two converge to a unique fixed point

[8, 24], whereas the latter is known to cycle, always maintaining

its distance from the equilibrium [28].

Outside of this class of games, however, the story becomes much

more complicated. A wide array of results show learning algorithms

may be chaotic in even the simplest games [37]. Such complex be-

haviours become even more pronounced as the number of agents

in the game increases [36]. However, they are also influenced by

the structure of the game and the parameters of the learning algo-

rithm [33]. This dichotomy between the range of possible learning

behaviours and the convergence requirement of the applications

motivate our central question:

Are there learning dynamics such that convergence to a unique
equilibrium is guaranteed in any game?

Main Contribution. To answer this, we study the (smooth) Q-
Learning dynamics, a popular online learning model which captures
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the behaviour of agents who must balance their tendency to explore

their strategy space against exploiting their payoffs.

In the first of our contributions, we answer the above question

in a positive manner. Namely, we show that, through sufficient

exploration, agents engaged in any game can reach a unique equi-

librium. We parameterise the amount of exploration required in

terms of the size of the game and the number of players. We then

revisit previously established results of Q-Learning and show that

convergence of the algorithm in weighted potential and weighted

network zero sum games both follow as special cases of our main

result.

To qualify our convergence result, we consider the payoff perfor-
mance of learning dynamics in terms of the sum of payoffs received

by all agents. We provide a condition whereby learning dynamics

that do not converge can outperform the equilibrium. In such a case,

it may be beneficial to assume no exploration on the parts of the

agents. This result is supported by our experiments in which exam-

ples of games are considered where payoff performance degrades

as agents are pushed towards an equilibrium through exploration.

Related Work. Our work applies the framework of monotone

games, which encompass a number of classes of games, including

potential [35] and network zero sum games [20]. Indeed recent

work has considered the question of designing games which are

monotone [44]. Most prominent in this is the study of network

games [26]. These works relate the monotonicity of the game with

properties of the network. From a design perspective, this makes the

study of monotone games rather attractive, as it becomes possible to

make any game, be it co-operative or competitive, monotone. This

fact is also exploited in [27], in which it was shown how any game,

regardless of its structure, can be made monotone by appropriate

parameter tuning.

In addition, monotone games have been used to design online

learning algorithms that converge to a Nash Equilibrium [9, 30].

However, many of these require the gradient (or estimates) of their

cost functions at each step. Ideally, an online learning algorithm

should require only obtained rewards at each time step. To resolve

this, [44] derive a distributed algorithm which converges to a Nash

Equilibrium in monotone games. These results are advanced in

[45] in which an algorithm is developed which converges, whilst

also achieving no-regret; this was the first instance of a no-regret

algorithm who could provably converge in a monotone game. In a

similar manner, [35] show the convergence of the Best Response Al-

gorithm in a class of network games which satisfy the monotonicity

property.

Our work departs from the above by considering Q-Learning,

and by lifting strong technical assumptions on the payoff functions.

Specifically, we do not assume a form of the payoffs as in [35], or

the growth of the function as in [45]. In addition, we require no

knowledge of the cost gradients as in [6]. Finally, ourwork considers

the generalised class of weighted monotone games, rather than the

unweighted case considered by the above. This class of games is

also considered in [15, 48], in which variations of online gradient

descent are analyzed. However, the former requires weighted strong

monotonicity (which is much more restrictive even than strict

monotonicity) and the latter requires strong assumptions on the

parameters of the learning algorithm.

Our work also touches upon the Follow the Regularised Leader

(FTRL) dynamic. The strongest convergence result regarding this

dynamic in continuous time is a negative one: FTRL does not con-

verge to a Mixed Nash Equilibrium [47], or to any equilibrium in

zero sum games [28]. The strongest positive result, and the onemost

similar to our own is [12] in which it is shown that FTRL converges

in unweighted strictly monotone games, a more restrictive class

that that analysed here. Other positive results regard FTRLs local

convergence to a strict Nash Equilibrium [29] and its convergence

in time average [12].

Our paper is structured as follows. We begin in Section 2 by out-

lining the setting and tools through which we analyse convergence

of learning. Section 3 proceeds with our main results, namely that

convergence of Q-Learning dynamics can be achieved through suf-

ficient exploration (Theorem 1), and that non-convergent learning

dynamics can outperform the equilibrium (Theorem 4). Our experi-

ments in Section 4 validate these results by showing examples of

games in which convergence occurs through increased exploration,

although at the cost of decreasing payoff across all agents.

2 PRELIMINARIES
In this section, we expand on the necessary background for our

main results; specifically how the game model is set up, the learning

dynamics of interest, and the techniques used in our analysis.

2.1 Game Model
In our study, we consider a game Γ = (N , (𝑆𝑘 , 𝑢𝑘 )𝑘∈N), where
N denotes a finite set of agents indexed by 𝑘 = 1, . . . , 𝑁 . Each

agent 𝑘 ∈ N is equipped with a finite set of actions denoted by 𝑆𝑘
with the number of actions 𝑛𝑘 := |𝑆𝑘 | as well as a payoff function

𝑢𝑘 . We denote a mixed strategy (hereafter just strategy) x𝑘 of an

agent 𝑘 as a probability vector over its actions. Then, the set of all

strategies of agent 𝑘 is Δ𝑘 := {x𝑘 ∈ R𝑛𝑘 :

∑
𝑖 𝑥𝑘𝑖 = 1, 𝑥𝑘𝑖 ≥ 0} on

which act the payoff functions 𝑢𝑘 : Δ𝑘 × Δ−𝑘 → R. We denote by

x := (x𝑘 )𝑘∈N ∈ Δ = ×𝑘Δ𝑘 the joint strategy of all agents and, for

any 𝑘 , x−𝑘 := (x𝑙 )𝑙∈N\{𝑘 } ∈ Δ−𝑘 the joint strategy of all agents

other than 𝑘 .

For any x ∈ Δ, we define the reward to agent 𝑘 for playing action

𝑖 ∈ 𝑆𝑘 as 𝑟𝑘𝑖 (x) :=
𝜕𝑢𝑘𝑖 (x)
𝜕𝑥𝑘𝑖

. We write 𝑟𝑘 (x) = (𝑟𝑘𝑖 (x))𝑖∈𝑆𝑘 as the

concatenation of all rewards to agent 𝑘 . Using this notation we

can write 𝑢𝑘 (x) = ⟨x𝑘 , 𝑟𝑘 (x)⟩ in which ⟨x, y⟩ = x⊤y denotes the

standard inner product in R𝑛 . With this in mind, we define the

Equilibrium of a game.

Definition 1 (Equilibrium). A joint mixed strategy x̄ ∈ Δ is an

Equilibrium if, for all agents 𝑘 and all x𝑘 ∈ Δ𝑘

⟨x𝑘 , 𝑟𝑘 (x̄)⟩ ≤ ⟨x̄𝑘 , 𝑟𝑘 (x̄)⟩ (1)

x̄ is a strict equilibrium if the inequality (1) is strict for all x𝑘 ≠ x̄𝑘 .
The equilibrium concept which we are primarily interested in

with regards to Q-Learning is the Quantal Response Equilibrium

(QRE) [4], which acts as an equilibrium concept when agents have

bounded rationality.

Definition 2 (Quantal Response Equilibrium (QRE)). A joint mixed

strategy x̄ ∈ Δ is a Quantal Response Equilibrium (QRE) if, for all
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agents 𝑘 and all actions 𝑖 ∈ 𝑆𝑘

x̄𝑘𝑖 =
exp(𝑟𝑘𝑖 (x̄−𝑘 )/𝑇𝑘 )∑

𝑗∈𝑆𝑘 exp(𝑟𝑘 𝑗 (x̄−𝑘 )/𝑇𝑘 )

where𝑇𝑘 denotes the exploration rate of the agent: low values of

𝑇𝑘 correspond to a higher tendency to exploit the best performing

action. This, purely rational behaviour, corresponds to the Nash
Equilibrium in the limit 𝑇𝑘 → 0. Higher values of 𝑇𝑘 , meanwhile,

implies a higher exploration rate. The two equilibria concepts are

related by the following results

Proposition 1 ([27] Proposition 2). Consider a game Γ = (N , (𝑆𝑘 , 𝑢𝑘 )𝑘∈N)
and take any𝑇𝑘 > 0. Define the perturbed game Γ𝐻 = (N , (𝑆𝑘 , 𝑢𝐻𝑘 𝑘 ∈ N)
with the modified payoffs

𝑢𝐻
𝑘
(x𝑘 , x−𝑘 ) = ⟨x𝑘 , 𝑟𝑘 (x−𝑘 )⟩ −𝑇𝑘 ⟨x𝑘 , ln x𝑘 ⟩

Then x̄ ∈ Δ is a QRE of Γ if and only if it is an NE of Γ𝐻 .

Finally, in the application of our results (specifically Lemma 1),

we will consider the influence bound of a game, which gives a notion

of its size. Formally, we apply the definition from [27]

Definition 3 (Influence Bound). Consider a finite normal form

game Γ, the influence bound 𝛿 is given by

𝛿 = max

𝑘∈N,𝑖∈𝑆𝑘 ,𝑠−𝑘 ,𝑠−𝑘 ∈𝑆−𝑘
{|𝑟𝑘𝑖 (𝑠−𝑘 ) − 𝑟𝑘𝑖 (𝑠−𝑘 ) |}

where the pure strategies 𝑠−𝑘 , 𝑠−𝑘 ∈ 𝑆−𝑘 differ only in the strategies
of one agent 𝑙 ≠ 𝑘 .

Since |𝑟𝑘𝑖 (𝑠−𝑘 ) − 𝑟𝑘𝑖 (𝑠−𝑘 ) | measures the change in reward to

agent 𝑘 for playing action 𝑖 due to a change the other players’

actions, the influence bound 𝛿 can be thought of as a measure of

the maximum influence (in terms of reward) that any agent could

receive from their opponents. In Section 4, we consider two games

and show how their influence bound can be readily determined.

2.2 Learning Model
The principal multi agent learning model that we analyse in this

study is the smooth Q-Learning (QL) dynamic [46] which is founda-

tional in economics [3] and artificial intelligence [43]. In [38, 46] a

continuous time approximation of the Q-Learning algorithm was

found which accurately captures the behaviour of learning agents

through the following ODE:

¤𝑥𝑘𝑖
𝑥𝑘𝑖

= 𝑟𝑘𝑖 (x) − ⟨x𝑘 , 𝑟𝑘 (x)⟩ −𝑇𝑘 (ln𝑥𝑘𝑖 − ⟨x𝑘 , ln x𝑘 ⟩) (2)

A full review of this dynamic is beyond the scope of this study,

however a derivation of (2) can be found in [24] as well as the result

that fixed points of the Q-Learning dynamic correspond to the QRE

of the game Γ.
It was shown in [23] that the transformation between the game Γ

and the perturbed game Γ𝐻 as described in Sec. 2.1 also relates the

Q-Learning Dynamics to the the well studied replicator dynamics
(RD) [18, 25], in the following manner.

Lemma 1 ([23]). Consider the game Γ = (N , (𝑆𝑘 , 𝑢𝑘 )𝑘∈N) and
some 𝑇𝑘 > 0. Then the Q-Learning dynamics (2) can be written as

¤𝑥𝑘𝑖
𝑥𝑘𝑖

= 𝑟𝐻
𝑘𝑖

(x) −
〈
x𝑘 , 𝑟

𝐻
𝑘
(x)

〉
(3)

where 𝑟𝐻
𝑘𝑖

(x) = 𝑟𝑘𝑖 (x)−𝑇𝑘 (ln𝑥𝑘𝑖 +1). In particular, (2) corresponds
to RD in the perturbed game Γ𝐻 = (N , (𝑆𝑘 , 𝑢𝐻𝑘 )𝑘∈N).

Follow the Regularised Leader. It is known [29, 47] that RD is

derived as a particular instance of the Follow the Regularised Leader
(FTRL) dynamic [39]. In essence, FTRL requires that the agents

maximise their cumulative payoff up to the current time 𝑡 . However,

it also imposes a regularisation on the agents’ actions which softens

the argmax function. More formally we have that for every agent

𝑘 ,

y𝑘 (𝑡) = y𝑘 (0) +
∫ 𝑡

0

r𝑘 (x(𝑠)) 𝑑𝑠

x𝑘 (𝑡) = 𝑄𝑘 (y𝑡 ) := arg max

x𝑘 ∈Δ𝑘

{⟨x𝑘 , y𝑘 ⟩ − ℎ𝑘 (x𝑘 )} (4)

To make RD compatible with FTRL, we make the following assump-

tion on the regularisers

Assumption 1. For every agent 𝑘 , the regulariser ℎ𝑘 is:

(1) Continuously differentiable with differential ∇ℎ𝑘 which it-

self is Lipschitz on Δ𝑘 , with constant 𝐿𝑘 .

(2) Steep in that | |∇ℎ𝑘 (x) | | → ∞ as x → 𝜕Δ (c.f. [47]).

(3) Strongly convex on Δ𝑘 , i.e. there exists 𝜅 such that, for any

x𝑘 , y𝑘 ∈ Δ𝑘

⟨∇ℎ𝑘 (y𝑘 ), x𝑘 − y𝑘 ⟩ ≤ ℎ𝑘 (y𝑘 ) − ℎ𝑘 (x𝑘 ) −
𝜅

2

| |x𝑘 − y𝑘 | |2

The choice of ℎ𝑘 and 𝑟𝑘 will, of course, depend on the appli-

cation scenario. Our interest in this work is to consider the case

ℎ𝑘 (𝑥𝑘 ) =
∑
𝑖 𝑥𝑘𝑖 ln𝑥𝑘𝑖 , which satisfies Assumption 1, and from

which RD is derived. As mentioned, smooth Q-Learning describes

RD in the perturbed game Γ𝐻 . This perturbation will be instrumen-

tal in proving our results on convergence.

2.3 Variational Inequalities and Game Theory
In this work we will examine game-theoretic concepts through the

lens of Variational Inequalities [9]. This branch of research modifies

the problem of finding a Equilibrium of a game to that of finding a

solution to a variational inequality, which is defined as follows.

Definition 4 (Variational Inequalities). Consider a setX ⊂ R𝑑 and

a map 𝐹 : X → R𝑑 . The Variational Inequality𝑉 𝐼 (X, 𝐹 ) is given as

⟨x − x̄, 𝐹 (x̄)⟩ ≥ 0, for all x ∈ X. (5)

We say that x̄ ∈ X belongs to the set of solutions to a variational

inequality 𝑉 𝐼 (X, 𝐹 ) if it satisfies (5).
In this work, we will be considering the state space X = Δ =

×𝑘Δ𝑘 alonside the map 𝐹 : Δ → R𝑁𝑛 defined as

𝐹 (x) = (𝐹𝑘 (x))𝑘∈N = (−𝑟𝑘 (x))𝑘∈N
This map is sometimes referred to as the pseudo-gradient of the
game [44]. Its properties allow for conditions to be found under

which the equilibrium x̄ is unique. To illuminate these conditions,

we have the following definition.

Definition 5 (Weighted Monotone Game). A game Γ with a contin-
uous pseudo-gradient 𝐹 is weighted monotone if there exist positive
constants𝑤1, . . . ,𝑤𝑑 such that, for all x, y ∈ Δ,

⟨x − y, 𝐹 (x;w) − 𝐹 (y;w)⟩ ≥ 0 (6)

where 𝐹 (x,w) = (𝑤1𝐹1, . . . ,𝑤𝑑𝐹𝑑 )⊤.
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Naturally, the game is weighted strictly monotone if, for all x ≠

y ∈ Δ, inequality (6) is strict.

Through these elements, it is possible to explore the nature of

the equilibrium of a game from a variational perspective (see for

instance [9, 27, 35]). The seminal results from this analysis, outlined

in depth in [9] are:

Lemma 2. Consider a game Γ with pseudo-gradient 𝐹 (x). Then,
x̄ ∈ Δ is an Equilibrium of Γ if and only if it satisfies

⟨x − x̄, 𝐹 (x)⟩ ≥ 0 for all x ∈ Δ.

Lemma 3. If Γ = (N , (𝑆𝑘 , 𝑢𝑘 )𝑘∈N) is a strictly monotone game, it

has a unique Equilibrium x̄ ∈ Δ.

In our work, we will leverage the fact that both of these Lemmas

extend readily to the weighted case (as all weights are assumed non-

negative). By applying these properties, it is our goal to examine

whether the equilibrium will be reached by learning agents.

3 LEARNING IN WEIGHTED MONOTONE
GAMES

We have two main results in this section. The first is that multi-

agent Q-Learning can achieve convergence to an equilibrium in

any game through sufficient exploration, parameterised by 𝑇𝑘 . Fol-

lowing this result, we consider the optimality of convergence to an

equilibrium. Namely we show a sufficient condition (convergence

in time-average) in which non-fixed point behaviour (e.g. cycles)

outperforms the equilibrium in terms of payoff.

3.1 Convergence through Sufficient Exploration
Without further delay, we state our first main result

Theorem 1. Let 𝛿 be the influence bound of an arbitrary game Γ
with 𝑁 players. Then, Q-Learning converges to the unique QRE x̄
if, for all agents 𝑘 ,

𝑇𝑘 > 𝛿 (𝑁 − 1) (7)

This result provides a general condition from which the conver-

gence to the QRE can be guaranteed in any game. As one might

expect, the amount of exploration (the size of𝑇𝑘 ) required to achieve

this will be influenced by the size of the game (parameterised by 𝛿)

and the number of players in the game (parameterised by 𝑁 ). An

interesting point to note is that this results supports that of [36] in

which it was shown that non-fixed point behaviour is more likely

with low exploration rates, if the number of players is increased.

Proof Sketch. Theorem 1 relies on two points: first, the per-

turbed game Γ𝐻 is weighted strictly monotone (which gives unique-

ness of x̄) if𝑇𝑘 satisfies (7), and second, the QL dynamics converges

to a fixed point in such games. The first point is shown through

[27] Theorem 1 so we focus on the latter.

We achieve this in the following manner. First we show that,

along trajectories of FTRL in weighted strictly monotone games,

the distance to the equilibrium x̄ is decreasing. From this, the con-

vergence of replicator in strictly monotone games is immediate. The

reader will recall that Q-Learning describes replicator dynamics in

a perturbed game. We show that, if the original game Γ is weighted

monotone, then the corresponding perturbed game Γ𝐻 is weighted

strictly monotone. Putting all this together yields the convergence

of QL in weighted monotone games.

Step 1: Convergence of FTRL. In order to show that the distance

to the equilibrium x̄ is being decreased, we must first define what

we mean by distance. We do this through the Bregman Divergence
[39].

Definition 6. Consider a set of functions ℎ𝑘 : Δ𝑘 → R and a set

of positive scalars w = (𝑤1, . . . ,𝑤𝑁 ) with 𝑘 ∈ N . The Weighted
Bregman Divergence induced by ℎ = (ℎ𝑘 )𝑘∈N between a set of

probability vectors x, y ∈ Δ with x = (x𝑘 )𝑘∈N , y = (y𝑘 )𝑘∈N is

given by

𝑊𝐵 (x| |y;ℎ) =
∑︁
𝑘

𝑤𝑘𝐷𝐵 (x𝑘 | |y𝑘 ;ℎ)

=
∑︁
𝑘

𝑤𝑘 (ℎ𝑘 (y𝑘 ) − ℎ𝑘 (x𝑘 ) − ⟨∇ℎ𝑘 (x𝑘 ), y𝑘 − x𝑘 ⟩) .

Remark. In particular, with the choice ℎ𝑘 (𝑥𝑘 ) =
∑
𝑖 𝑥𝑘𝑖 ln𝑥𝑘𝑖 ,

the Weighted Bregman Divergence corresponds to the Weighted
Kullback-Leibler (KL) Divergence defined by

𝑊𝐾𝐿 (x| |y) =
∑︁
𝑘∈N

𝑤𝑘𝐷𝐾𝐿 (x𝑘 | |y𝑘 ) =
∑︁
𝑘∈N

𝑤𝑘

∑︁
𝑖∈𝑆𝑘

𝑥𝑘𝑖 ln
𝑥𝑘𝑖

𝑦𝑘𝑖
. (8)

Theorem 2. Consider a weighted strictly monotone game Γ. If
each agent follows an FTRL algorithm whose regulariser satisfies

Assumption 1 then, for any initial condition x(0), x(𝑡) minimises

the weighted Bregman divergence towards the unique equilibrium

x̄.

Remark. The question of convergence to the equilibrium x̄ can also

be established through Theorem 4.9 of [12] and showing that the

assumptions required by their theorem are met by Assumption 1,

whichwe do in theAppendix. However, in order to progress towards

convergence of Q-Learning in weighted monotone games (i.e. to lift

the strictness requirement), we take the extra step of showing that

the Bregman Divergence is decreasing along trajectories.

Step 2: Convergence of RD. Using the specialisation ℎ𝑘 (𝑥𝑘 ) =∑
𝑖 𝑥𝑘𝑖 ln𝑥𝑘𝑖 , and the relation between the Bregman and KL Diver-

gences from , Theorem 2 implies that𝑊𝐾𝐿 (x̄| |x(𝑡)) is a Lyapunov
function for RD in weighted strictly monotone games.

Corollary 1. Consider a weighted strictly monotone game Γ. Then
trajectories x(𝑡) under the replicator dynamics minimise the KL-

Divergence to the unique Equilibrium.

Remark. Corollary 1 mirrors the result found by [42] (Prop. 4.5),

which also showed that the KL-divergence decreases. Here, we

show that this is a special case of Theorem 2.

Step 3: Convergence of Q-Learning. Finally, we recognise that the
same transformation which takes Γ to Γ𝐻 also takes Q-Learning

to RD (c.f. [23] Lemma 3.1). Putting this all together, if 𝑇𝑘 satisfies

(7), the perturbed game Γ𝐻 is strictly monotone, which yields the

convergence of RD to the unique equilibrium x̄. This immediately

gives the convergence of QL in the original game Γ. □

3.2 Convergence through Arbitrary Exploration
Whilst Theorem 1 gives a condition to achieve convergence through

sufficient exploration, it is known that there are games for which
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convergence to a QRE can be achieved with any non-zero explo-

ration rate𝑇𝑘 . These games are: weighted potential games [23] and

weighted zero sum polymatrix games [24]. In this section, we point

out that, under suitable game structures, the reduced requirement

on exploration in these games stems from the fact that they are

both examples of monotone games. We can, therefore, apply the

following Theorem to yield convergence of QL in such games.

Theorem 3. If the game Γ is weighted monotone then, for any

𝑇 > 0, Q-Learning converges to the unique QRE.

The proof of this statement, presented in full in the Supplemen-

tary Material, lies in recognising that the transformation which

takes Γ to Γ𝐻 is an additive term of the form

−𝑇𝑘 (ln𝑥𝑘𝑖 + 1)
which is a strictly monotone function in x𝑘 . As such, if Γ is

already weighted monotone then, for any positive value of 𝑇𝑘 , Γ
𝐻

must be weighted strictly monotone.

Weighted Potential Games. Our first application concerns the

dynamics of learning in weighted potential games. These concern

the cooperative setting in which the game admits a global function

over all agents’ strategies. Formally, a game is called a weighted

potential game if there exists a function 𝑈 : Δ → R and posi-

tive weights 𝑤1, . . . ,𝑤𝑁 > 0 such that, for each player 𝑘 ∈ N ,

𝑈 (x𝑘 , x−𝑘 ) −𝑈 (y𝑘 , x−𝑘 ) = 𝑤𝑘 (𝑢𝑘 (x𝑘 , x−𝑘 ) − 𝑢𝑘 (y𝑘 , x−𝑘 )) for all
x𝑘 , y𝑘 ∈ Δ𝑘 and all x−𝑘 ∈ Δ−𝑘 .

Lemma 4. Consider a weighted potential game Γ with concave

potential 𝑈 (x). Then, for any 𝑇𝐾 > 0, the Q-Learning dynamics

converges to the unique QRE x̄.

Of course, it must be noted that, in many games, the potential is

not concave and so require a different approach towards showing

convergence. [23] performs such an analysis and also considers

the geometry of the multiple QRE which can exist due to the non-

concavity of the potential.

Weighted Zero Sum Polymatrix Games. In this application, we

consider the competitive setting through the weighted zero sum
network polymatrix game. Formally, a network polymatrix game

Γ =

(
(N , E), (𝑆𝑘𝑙 , 𝐴𝑘𝑙 ) (𝑘,𝑙 ) ∈E

)
includes a network (N , E) in which

E consists of pairs of agents 𝑘, 𝑙 ∈ N who are connected in the

network. Each edge is imbued with payoff matrices 𝐴𝑘𝑙 which

denotes the reward to agent 𝑘 against agent 𝑙 . The total payoff

received by agent 𝑘 , then, is

𝑢𝑘 (x𝑘 , x−𝑘 ) =
∑︁

(𝑘,𝑙 ) ∈E
⟨x𝑘 , 𝐴𝑘𝑙x𝑙 ⟩ (9)

A game is called weighted zero sum network polymatrix game if
there exists positive constants𝑤1, . . . ,𝑤𝑁 such that, for all x ∈ Δ∑︁

𝑘∈N
𝑤𝑘 ⟨x𝑘 , 𝐴𝑘𝑙x𝑙 ⟩ = 0 (10)

Lemma 5. Consider a weighted zero sum network polymatrix

game Γ. The unique QRE x is globally asymptotically stable under

QL for any 𝑇𝑘 > 0.

The convergence of Q-Learning in this class of games is also

proven through an alternate proof in [24], in which the weighted

KL-divergence was also found as a Lyapunov function. Lemma 5

proves this point by showing that weighted network polymatrix

zero sum games fall under the more general class of weighted

monotone games. In such a manner, the results of [24], can be

extend to all weighted monotone games.

3.3 Learning Outperforms the Equilibrium
In our second result, we consider the optimality of exploration as a

means of reaching the equilibrium. We know, for instance, that RD,

which corresponds to QL with zero exploration rates 𝑇𝑘 , will not

converge in a merely monotone game. However, in this case, we

know from [12] that the time-average of the trajectory does reach

the equilibrium. In this case we are presented with the following

question

Should we apply non-zero exploration rates 𝑇𝑘 to ensure conver-
gence to an equilibrium, or allow the trajectory to remain non conver-
gent?

We answer this question by considering the payoff performance of
the dynamic, where performance is measured by the Time Averaged

Social Welfare (TSW)

𝑇𝑆𝑊 = lim

𝑡→∞
1

𝑡

∫ 𝑡

0

𝑆𝑊 (x(𝑠))𝑑𝑠. (11)

where 𝑆𝑊 (x) = ∑
𝑘 𝑢𝑘 (x𝑘 , x−𝑘 ). Intuitively, the Social Welfare

𝑆𝑊 (x) measures the sum of payoffs received by all agents at some

state x ∈ Δ. In (11), this quantity is averaged along trajectories

of the learning dynamic. From the following theorem we see that,

in monotone games, the social welfare is higher if agents play

according to FTRL (and therefore do not converge), than if they

were to play according to the equilibrium.

Theorem4. Consider a polymatrix game Γ = ((N , E), (𝑆𝑘𝑙 , 𝐴𝑘𝑙 ) (𝑘,𝑙 ) ∈E ).
It is the case that

𝑢𝑘 (x𝑘 , x−𝑘 ) =
∑︁

(𝑘,𝑙 ) ∈E
⟨x𝑘 , 𝐴𝑘𝑙x𝑙 ⟩.

Supposing that the learning dynamic is such that lim𝑡→∞ 1

𝑡

∫ 𝑡
0
𝑅(𝑠) 𝑑𝑠 =

0, where 𝑅(𝑡) = ∑
𝑘 𝑅𝑘 (𝑡) and

𝑅𝑘 (𝑡) = max

x′
𝑘
∈Δ𝑘

∫ 𝑡

0

[
𝑢𝑘 (x′𝑘 , 𝑥−𝑘 (𝑠)) − 𝑢𝑘 (x𝑘 (𝑠), x−𝑘 (𝑠))

]
𝑑𝑠,

is the regret of agent 𝑘 [39] and supposing also that the time av-

eraged strategy 𝜇 (𝑡) := 1

𝑡

∫ 𝑡
0

x(𝑠) 𝑑𝑠 along the learning dynam-

ics converges to the equilibrium x̄, then TSW is asymptotically

greater than or equal to the Social Welfare of the equilibrium x̄, i.e.
𝑇𝑆𝑊 ≥ 𝑆𝑊 (x̄)

Remark. In particular this result holds for FTRL dynamics in mono-

tone games, for which the time average approaches the equilibrium

x̄ asymptotically [12]. In addition, FTRL is a no-regret dynamic, in

that lim𝑡→∞ 1

𝑡

∫ 𝑡
0
𝑅𝑘 (𝑠) 𝑑𝑠 = 0 for all agents 𝑘 .

Proof. Define 𝜇𝑘 (𝑡) ∈ Δ𝑘 as the time averaged strategy of agent

𝑘 , i.e.

𝜇𝑘 (𝑡) =
1

𝑡

∫ 𝑡

0

x𝑘 (𝑠) 𝑑𝑠. (12)
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Then,

𝑅𝑘 (𝑡) = max

x′
𝑘
∈Δ𝑘

∫ 𝑡

0

𝑢𝑘 (x′𝑘 , 𝑥−𝑘 (𝑠)) 𝑑𝑠 −
∫ 𝑡

0

𝑢𝑘 (x𝑘 (𝑠), x−𝑘 (𝑠)) 𝑑𝑠

≥
∫ 𝑡

0

𝑢𝑘 (𝜇𝑘 (𝑡), 𝑥−𝑘 (𝑠)) 𝑑𝑠 −
∫ 𝑡

0

𝑢𝑘 (x𝑘 (𝑠), x−𝑘 (𝑠)) 𝑑𝑠

=

∫ 𝑡

0

𝜇𝑘 (𝑡) ·
∑︁

(𝑘,𝑙 ) ∈E
𝐴𝑘𝑙x𝑙 (𝑠) 𝑑𝑠 −

∫ 𝑡

0

x𝑘 (𝑠) ·
∑︁

(𝑘,𝑙 ) ∈E
𝐴𝑘𝑙x𝑙 (𝑠) 𝑑𝑠

Then, dividing by 𝑡 and applying (12) to x𝑙 , the inequality reads

1

𝑡
𝑅𝑘 (𝑡) ≥ 𝜇𝑘 (𝑡) ·

∑︁
(𝑘,𝑙 ) ∈E

𝐴𝑘𝑙 𝜇𝑙 (𝑡) −
1

𝑡

∫ 𝑡

0

x𝑘 (𝑠) ·
∑︁

(𝑘,𝑙 ) ∈E
𝐴𝑘𝑙x𝑙 (𝑠) 𝑑𝑠

Taking the sum over all agents 𝑘 and defining 𝑅(𝑡) = ∑
𝑘 𝑅𝑘 (𝑡) we

have

1

𝑡
𝑅 (𝑡 ) ≥

∑︁
𝑘

(
𝜇𝑘 (𝑡 ) ·

∑︁
(𝑘,𝑙 ) ∈E

𝐴𝑘𝑙 𝜇𝑙 (𝑡 ) −
1

𝑡

∫ 𝑡

0

x𝑘 (𝑡 ) ·
∑︁

(𝑘,𝑙 ) ∈E
𝐴𝑘𝑙x𝑙 (𝑠 ) 𝑑𝑠

)
= 𝑆𝑊 (𝜇 (𝑡 ) ) − 1

𝑡

∫ 𝑡

0

𝑆𝑊 (x(𝑠 ) ) 𝑑𝑠

=⇒ 1

𝑡

∫ 𝑡

0

𝑆𝑊 (x(𝑠)) 𝑑𝑠 ≥ 𝑆𝑊 (𝜇 (𝑡)) − 1

𝑡
𝑅(𝑡)

=⇒ lim

𝑡→∞
1

𝑡

∫ 𝑡

0

𝑆𝑊 (x(𝑠)) 𝑑𝑠 ≥ lim

𝑡→∞
𝑆𝑊 (𝜇 (𝑡))

where, in the final equality, we use the assumption that lim𝑡→∞ 1

𝑡 𝑅(𝑡) =
0. Applying now the assumption that 𝜇 (𝑡) → x̄, we have the final
result that

lim

𝑡→∞
1

𝑡

∫ 𝑡

0

𝑆𝑊 (x(𝑠)) 𝑑𝑠 ≥ 𝑆𝑊 (x̄) .
□

Remark. We point out here that Theorem 4 defines payoff perfor-

mance as a time-average and as a sum over all agents. As such, it is

possible that a particular agent is losing out on payoff consistently

throughout learning. Similarly, it is possible that at some time 𝑡 , all

agents are performing worse than the equilibrium. Finally, the re-

sult concerns asymptotic behaviour, so it could be the case that the

equilibrium initially outperforms the learning dynamic. However,

Theorem 4 shows that, eventually, the cumulative, time-averaged

performance (11) will be better than the equilibrium.

Similar results on the performance of non-fixed point learning

dynamics have been found for Fictitious Play [32], Replicator Dy-

namics [22] and no-regret learning [1]. In the latter most of these,

TSW was also applied as a measure of payoff performance and it

was found that the payoff in discrete time online mirror descent
outperforms the Nash Equilibrium. Theorem 4 adds to the body

of literature studying payoff performance of learning by showing

a sufficient condition (convergence in time-average) under which

any no-regret learning algorithm (including Fictitious Play and

Replicator) will outperform the equilibrium.

3.4 Discussion of Results
Theorem 1 presents an concrete approach for achieving conver-

gence to a unique equilibrium in any game. This allows us to ab-

stract beyond the typical arena of study: namely weighted potential

or zero sum network games. In fact, we showed convergence in

both of these cases due to the fact that they satisfy the monotonicity

assumption and, therefore, satisfy the assumptions of Theorem 3.

Though general in nature, these results are not without their

limitations. They rely on the assumption of a discrete action set,

so that agent strategies all evolve on Δ. This allows us to assume

the existence of an Equilibrium, through the compactness of Δ.
However, generalising to arbitrary continuous action sets would

widen the range of applications which our work encompasses. In

addition, Theorem 3 is derived for continuous time QL. This is

a reasonable stance to take as it has been shown repeatedly that

continuous time approximations of algorithms provide a strong

basis for analysing the algorithms themselves [19, 46]. However,

the accuracy of discrete time algorithms is always dependent on

parameters, most notably step sizes. Such an analysis of the discrete

variants presents a fruitful avenue for further research.

To qualify Theorem 1, we point out that it does not give any

indication regarding the performance of the system, merely its

behaviour. Furthermore, its success relies on the increasing ex-

ploration rates of the agents and, therefore, at the cost of their

exploitation. We showed in Theorem 4 that, under certain condi-

tions, agents following a non-convergent dynamic may actually

outperform the equilibrium in terms of payoff. Our experiments

monitor this effect further by showing that, in certain games, as 𝑇𝑘
is increased the performance of the system decreases.

4 EXPERIMENTS
In the following experiments, we consider the limitation discussed

in the previous section. Namely, we test to see whether the optimal-

ity of the learning algorithm may decrease as 𝑇𝑘 is increased. To

do this we consider two examples: the Mismatching Pennies and

the Shapley games. The former, proposed in [22], is composed of a

network of three agents, each equipped with two actions, Heads

and Tails. The payoff given to each agent 𝑘 is given by

𝑢𝑘 = 𝑢𝑘 (x𝑘 , x𝑗 ) = x𝑘Ax𝑘−1

A =

(
0 1

𝑀 0

)
, 𝑀 ≥ 1.

For the latter [40], we examine a network variation on the original

two player game towards a three player network variant in which

payoffs, parameterised by 𝛽 ∈ (0, 1) are defined as

𝑢𝑘 = 𝑢𝑘 (x𝑘 , x−𝑘 ) = x𝑘Ax𝑘−1 + x𝑘B⊤x𝑘+1

𝐴 =
©­«

1 0 𝛽

𝛽 1 0

0 𝛽 1

ª®¬ , 𝐵 =
©­«

−𝛽 1 0

0 −𝛽 1

1 0 −𝛽
ª®¬ ,

Remark. In the case of a network polymatrix game, the influence

bound of the game is

max

𝑘∈N,𝑖∈𝑆𝑘 ,𝑠−𝑘 ,𝑠−𝑘 ∈𝑆−𝑘
|
(
𝐴𝑘

)
𝑖,𝑠−𝑘

−
(
𝐴𝑘

)
𝑖,𝑠−𝑘

|.

In other words, it is the maximum difference between any row

elements across the payoff matrices for all agents. In the Mismatch-

ing game, the influence bound is 𝑀 whilst the Shapley game has

influence bound 1 + 𝛽 .

These games were analysed in [22] and [32] respectively, and

it was shown that while the given learning algorithm (RD in the
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Figure 1: Trajectories of Q-Learning, red dots indicate initial conditions whilst black markers indicate final positions. TSW is
averaged over all three initial conditions.

(a) (b)

Figure 2: Normalised TSW against 𝑇 for 35 randomly generated games. TSW is normalised to lie between [-1, 1] in each game.
Results are averaged over 10 initial conditions. The red line denotes the mean TSW across all 35 games. a. Five Players, Five
Actions. b. Seven Players, Five Actions
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former, Fictitious Play in the latter) did not converge to the NE, the

agents actually received greater payoff through learning than they

would have if they had only played the equilibrium strategy. The

implication is that the agents were better off (in terms of payoff)

by not converging to an equilibrium.

In Fig. 1 we plot the trajectories of QL for varying choices of 𝑇𝑘
in each of the games. For the sake of simplicity, we enforce that all

agents have the same𝑇𝑘 so we drop the 𝑘 notation. The trajectories

are displayed on the space (0, 1)3 with each axis corresponding to

the probability with which each agent plays their first action. Above

each figure is displayed the choice of 𝑇 for which Q-Learning is

run, as well as the Time-averaged Social Welfare (TSW) along the

trajectory, given by (11).

Two points become immediately clear from Fig. 1. The first is

that as 𝑇 is increased, the dynamics break no longer cycle around

the equilibrium but rather converge to a unique equilibrium. While

this occurs, however, TSW is decreasing. In fact, even in the case of

equilibriation, trajectories which take longer to reach the QRE gain

a larger TSW. It is clear then, that it is in the agents’ benefit if the

dynamics remain unstable, at least as far as payoff is concerned.

In Fig. 2, we move beyond these indicative examples by evalu-

ating TSW on 35 randomly generated games as 𝑇 is increased. In

order to accurately compare games with differnet payoff functions,

we divide

∑
𝑘 𝑢𝑘 (x𝑘 (𝑡), x𝑘 (𝑡)) by the maximum possible cumula-

tive payoff that an agent could receive in the game. This ensures

that TSW remains within [−1, 1] in all games. It is clear once again

that, in general, TSW decreases as𝑇 increases, i.e. as the gamemove

towards more convergent behaviour. Of course, this does not hold

in every game. However, the red line, which denotes the mean TSW

across all games, suggests that this trend is the expected behaviour

for a randomly selected game.

5 CONCLUSION
Our community has made strong strides in showing that online

learning in games does not always reach an equilibrium. At the

same time, the rising use of multiple interacting agents in machine

learning applications necessitates placing guarantees on learning.

In this paper, we make a step towards resolving this dichotomy by

considering how the structure of a game, beyond the correlation

between agent payoffs, affects online learning.

Specifically, we considered the asymptotic convergence to unique

fixed points through Q-Learning (QL). Our analysis shows that the

convergence in this popular learning dynamic can be guaranteed

through sufficient exploration on the part of all agents. We also

subsume convergence results in co-ordination (potential) games

and competitive (network zero sum) games for which any posi-

tive rate of exploration is required. We then consider the impact

of convergence through the lens of payoff performance and show

that no-regret algorithms will outperform the equilibrium in terms

of payoff, so long as the time-average trajectory reaches an equi-

librium. In our experiments we show that this behaviour holds

for a large number of games. An interesting point for future work

would be to develop an analytical understanding for how often

non-convergent learning dynamics outperform the equilibria of the

game. As our study has shown, convergence of dynamics is inex-

tricably linked to exploration. As such, by studying the optimality

of non-convergent dynamics, one may assess quantitatively the

trade-off between exploration and exploitation.
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