
Model-based Dynamic Shielding for Safe and Efficient
Multi-Agent Reinforcement Learning

Wenli Xiao

The Chinese University of Hong

Kong, Shenzhen

Shenzhen Institute of Artificial

Intelligence and Robotics for Society

China

wenlixiao@link.cuhk.edu.cn

Yiwei Lyu

Carnegie Mellon University

United States

yiweilyu@andrew.cmu.edu

John Dolan

Carnegie Mellon University

United States

jdolan@andrew.cmu.edu

ABSTRACT

Multi-Agent Reinforcement Learning (MARL) discovers policies

that maximize reward but do not have safety guarantees during the

learning and deployment phases. Although shielding with Linear

Temporal Logic (LTL) is a promising formal method to ensure safety

in single-agent Reinforcement Learning (RL), it results in conserva-

tive behaviors when scaling to multi-agent scenarios. Additionally,

it poses computational challenges for synthesizing shields in com-

plex multi-agent environments. This work introduces Model-based

Dynamic Shielding (MBDS) to support MARL algorithm design.

Our algorithm synthesizes distributive shields, which are reactive

systems running in parallel with each MARL agent, to monitor and

rectify unsafe behaviors. The shields can dynamically split, merge,

and recompute based on agents’ states. This design enables efficient

synthesis of shields to monitor agents in complex environments

without coordination overheads. We also propose an algorithm to

synthesize shields without prior knowledge of the dynamics model.

The proposed algorithm obtains an approximate world model by

interacting with the environment during the early stage of explo-

ration, making our MBDS enjoy formal safety guarantees with high

probability. We demonstrate in simulations that our framework

can surpass existing baselines in terms of safety guarantees and

learning performance.

KEYWORDS

Robotics; Multi-Agent Reinforcement Learning; Safety

ACM Reference Format:

Wenli Xiao, Yiwei Lyu, and John Dolan. 2023. Model-based Dynamic Shield-

ing for Safe and Efficient Multi-Agent Reinforcement Learning. In Proc. of
the 22nd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023,
IFAAMAS, 10 pages.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) [10, 59] is a promis-

ing approach to obtain learning control policies for multi-agent

decision-making tasks such as transportation management [3, 40],

motion control [42, 57], and autonomous driving [7, 47, 60]. How-

ever, applying MARL methods in safety-critical autonomous sys-

tems (e.g., autonomous driving cars) can cause havoc due to the

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: The differently colored circles denote multiple

agents, and the black arrows are desired actions. Traditional

decentralized shielding (upper) takes extra steps in waiting

for coordination near the border of shields, while proposed

dynamic shielding (lower) eliminates this overhead.

lack of formal safety guarantees. In addition, traditional MARL ap-

proaches with behavior penalties (i.e., giving a negative reward for

unsafe actions) cannot ensure safety in practice [18, 45]. Therefore,

there is a significant challenge to developing safe MARL systems

that are provably trustworthy [11, 18, 33, 45, 59].

Recently, there has been much research in notions of safety [1,

18, 19, 24, 41]. For example, Linear Temporal Logic (LTL) [43] is a

specification language used for formal verification to ensure that

an automation system always stays in safe states [46]. A recent

work [1] adopts LTL as a safety specification language in single-

agent Reinforcement Learning (RL) via synthesizing a shield to

monitor the RL agent. The shield is a lightweight system running

along with the RL agent, which monitors actions selected by the RL

agent and rejects any unsafe actions according to the given safety

specification. The shield has provable safety guarantees for the

lifetime of the RL process (i.e., the training and deployment phases).

Factored shielding [18] adapts the shielded learning method to

multi-agent scenarios in a decentralized fashion. Compared with

centralized shielding, which uses one shield to monitor the states

and actions of all agents, factored shielding synthesizes multiple

shields, and each shield monitors a subset of the agents’ state space.

These methods perform well in discrete environments. However,

both centralized shielding and factored shielding are challenging

to scale up for more complex continuous environments.

On the other hand, when it comes to shielding framework de-

sign, there is a dilemma: centralized approaches have limited scala-

bility [18], while fully decentralized methods cause coordination

overheads. Agents can become stuck waiting for coordination when

they get closer to one another due to the lack of information sharing

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1587

in decentralized approaches. For instance, Figure 1 shows a scenario

in which factored shielding causes extra coordination overhead. In

this paper, we propose a novel, safe, and efficient MARL framework

in a mixed decentralized manner, which dynamically synthesizes

shields to mitigate those limitations.

Specifically, our main contributions are threefold: Firstly, we pro-

pose a novel shield framework - dynamic shielding, which enables

robots to collaborate to ensure safety. There are initially multiple

shields, which concurrently monitor different agents. When there

is a high risk of conservative behavior (e.g., agents move together),

the shields could choose to merge with others. The merged shield

can leverage the state information of multiple agents to mitigate

unnecessary coordination overhead. When agents move apart from

each other, the merged shield can split into multiple shields. We

also present an effective shield synthesis approach in section 5,

named k-step look ahead shields. Our method prunes the unneces-

sary computation of traditional shield synthesis approaches [1, 18]

and delegates the computation complexity to the online algorithm,

which can synthesize shields in real-time. We also incorporate a

world-model learning procedure to learn a simplified environment

dynamics model. This enables our framework to learn from scratch,

with minimal external knowledge.

Additionally, we showcase the effectiveness and performance of

our shielding approach through extensive experiments. We study

the navigation problem on six different grid world maps [38] and

two different tasks in the Multi-Agent Particle Environment [32]

(MPE). Our approach outperforms other baselines in terms of re-

ward andminimal steps while guaranteeing safety. Furthermore, we

show that dynamic shielding ensures safety with a high probability

as the number of agents scales up.

2 RELATEDWORK

2.1 Safe Multi-Agent Reinforcement Learning

Safe RL methods can be classified into two categories [19]: 1) The

first is optimization criterion-based methods, which modify the

RL objective functions [15, 50, 53]. For example, SNO-MDP [54]

tackles the safe RL problem using a constrained Markov decision

process. 2) The second is based on modifying the exploration pro-

cess to avoid undesirable actions [6, 26, 30], which incorporates

extra domain-specific knowledge (e.g., and demonstration) into the

training process. Our dynamic shielding algorithm falls into the

second category. Shielding was introduced to RL in [1], and was

adapted to multi-agent settings in [18]. In this work, we propose a

novel shielding framework forMARL by addressing challenges such

as coordination overhead and scalability issues in the multi-agent

setting and mitigating the reliance on external knowledge.

2.2 Safe Control via Control Barrier Functions

Barrier certificates [34, 44] and Control Barrier Function (CBF) [56]

based control methods [12, 14, 35, 36, 49, 52] are commonly used to

provide safety guarantee for safety-critical problems, such as colli-

sion avoidance [37, 44, 56, 58]. In the context of multi-agent collision

avoidance, previous research has explored using the multi-agent

CBF frameworks [8, 37, 55]. Recent works [13, 45] have proposed

decentralized controller synthesis approaches under the CBF that

can scale to an arbitrary number of agents. We acknowledge their

contributions, but they are perpendicular to our focus.

In this work, we aim to address more general safety specifications

for MARL by leveraging a more expressive Linear Temporal Logic

(LTL) [43]. LTL can conveniently capture complex time-varying

constraints [48]. Although we conduct experiments for collision-

avoidance tasks in section 6, we focus on the use of LTL for MARL

in this work, with the aim of extending our approach to even more

complex safety constraints in the future.

2.3 LTL as Safety Specification

LTL is a widely used specification language in safety-critical sys-

tems [2, 4], which can express complex requests at a high level. For

example, LTL has been used to express complex task specifications

for robotic planning and control [28, 51]. Several works [9, 23, 25]

develop reward shaping techniques that translate logical constraints

expressed in LTL to reward functions for RL. However, [18, 45] has

empirically demonstrated reward shaping cannot ensure safety in

MARL. Our shield synthesis technique, which is based on solving

two-player safety games, was originally developed in [27] to en-

force LTL specifications. The original technique synthesizes shields

to local caches in an offline manner. In section 5, we propose a

novel online method to synthesize shields in real time.

3 PRELIMINARIES

We start by introducingMulti-Agent Reinforcement Learning, Shield-
ing, and Safety Games with Linear Temporal Logic specification, upon
which our algorithm builds.

3.1 Multi-Agent Reinforcement Learning

We focus on the 𝑛-player Markov Games defined by a tuple(
N ,S,

{
A𝑖

}
𝑖∈N ,

{
𝑟 𝑖
}
𝑖∈N ,P, 𝛾

)
where N = {1...𝑛} is the set of 𝑛 agents, S denotes the state space

jointly observed by all agents, A𝑖
is the action space of agent 𝑖 ,

𝑟 𝑖 is the reward function of agent 𝑖 , P : S × A → Δ(S) denotes
the transition probability, and 𝛾 is the discount factor. We assume

the initial state 𝑠1 follows a fixed distribution 𝜌 ∈ Δ(S). At each
time step 𝑡 , the agents observe state 𝑠𝑡 , take actions 𝑎𝑡,𝑖 ∈ 𝐴𝑖

in

the environment simultaneously, and receive rewards 𝑟𝑡,𝑖 ∈ 𝑅𝑖 .

Then the state of the environment moves to 𝑠𝑡+1. The objective

of each agent 𝑖 is to learn a control policy 𝜋𝑖 which maximizes

the expected cumulative reward 𝐸
[∑∞

𝑡=0
𝛾𝑡𝑅𝑖 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)

]
. MARL

algorithms can be categorized into three different types based on

the dependence of individual agent performance on other agents’

choices, including cooperative, competitive, and mixed settings.

We use MARL algorithms with mixed settings in our experiment

in Section 6. CQ-learning [16] is a MARL algorithm that enables

agents to behave separately at most of the time and consider the

states and actions of other agents when necessary. MADDPG [32] is

a deep MARL algorithm with centralized training and decentralized

execution, each agent trains models that simulate each of the other

agents’ policies based on its observation of their behavior.

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1588

3.2 LTL as Safety Specification

We consider Linear Temporal Logic [43] (LTL) to express safety

specifications. LTL is an extension of propositional logic, which has

long been used as a tool in the formal verification of programs and

systems. The syntax of LTL is given by the following grammar [5]:

𝜑 := 𝑝 |¬𝑝 |𝜑1 ∨ 𝜑2 | ⃝ 𝜑 |𝜑1U𝜑2

where 𝑝 is an atomic proposition. The temporal operators are next

⃝𝜑 , which indicates 𝜑 is true in the next succeeding state, and until

𝜑1U𝜑2 indicating 𝜑1 is true until the state where 𝜑2 is true. From

these operators, we can define 𝑇𝑟𝑢𝑒 ≡ 𝜙 ∨ ¬𝜙 , 𝐹𝑎𝑙𝑠𝑒 ≡ ¬𝑇𝑟𝑢𝑒 ,
implication 𝜑 ⇒ 𝜓 := ¬𝜑 ∨ 𝜓 , eventually ⋄𝜑 := TrueU𝜑 , and

always □𝜑 := ¬ ⋄ ¬𝜑 . We use LTL formulas to express safe spec-

ifications. For example, □¬𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 denotes that collision should

never happen. We consider translating the LTL safety specification

into a safe language accepted by a deterministic finite automaton

(DFA) [29]. In addition, we extend the definition of safe RL in [1]

to MARL in the following way:

Definition 1. Safe MARL is the process of learning optimal
policies for multiple agents while satisfying a temporal logic safety
specification 𝜙𝑠 during the learning and execution phases.

3.3 Formal Safety Guarantee with Shield

Figure 2: Enforce safety specification via shielding.

Our method builds upon a prior method called Shield [18, 27],

which ensures safety properties at runtime. A Shield (shown in

Figure 2) monitors the control input of agents and corrects any

unsafe control input instantaneously. A Shield should have two

properties: 1) Minimal interference. Namely, shields only correct

the action if it violates the safety rule. 2) Correctness. Shields should

distinguish every unsafe action and refine it with safe actions. Our

method uses the Shield framework to ensure safety, and we provide

theoretical proof of safety in section 5.

We represent the shield using a finite-state reactive system.

According to the formulation in [18], a finite-state reactive sys-

tem is a tuple 𝑆 = (𝑄,𝑞0, Σ𝐼 , Σ𝑂 , 𝛿, 𝜆), where Σ𝐼 and Σ𝑂 are the

I/O alphabets, 𝑄 is the state set, 𝑞0 ∈ 𝑄 denotes the initial state,

𝛿 : 𝑄 × Σ𝐼 → 𝑄 is a transition function, and 𝜆 : 𝑄 × Σ𝐼 → Σ𝑂 is

an output function. Given the symbolic abstraction of the control

input (i.e., input trace) 𝜎𝐼 = 𝑥0𝑥1 . . . ∈ Σ∞
𝐼
, the system S gen-

erates the trajectory of states (i.e., output trace) 𝜎𝑂 = S (𝜎𝐼) =
𝜆 (𝑞0, 𝑥0) 𝜆 (𝑞1, 𝑥1) . . . ∈ Σ∞𝑂 , where 𝑞𝑖+1 = 𝛿 (𝑞𝑖 , 𝑥𝑖) for all 𝑖 ≥ 0.

We synthesize the shield by solving a two-player safety game [27],
a game played by the MARL agents and the environment, where

the winning condition is defined by the LTL safety specification.

MARL agents should comply with all safety specifications all of

the time in order to win the game. A two-layer game is a tuple

G = (𝐺,𝑔0, Σ𝐼 , Σ𝑂 , 𝛿,𝑤𝑖𝑛) with a finite set of game states𝐺 , the ini-

tial state𝑔0 ∈ 𝐺 , a complete transition function 𝛿 : 𝐺×Σ𝐼×Σ𝑂 → 𝐺 ,

and𝑤𝑖𝑛 as a winning condition. In every state 𝑔 ∈ 𝐺 , the environ-

ment first chooses an input action 𝜎𝐼 ∈ Σ𝐼 , and then the MARL

agents choose a joint action (in abstraction symbol) 𝜎𝑂 ∈ Σ𝑂 . Then

the game moves to the next state 𝑔′ = 𝛿 (𝑔, 𝜎𝐼 , 𝜎𝑂), and so forth.

The resulting trajectory of game states 𝑔 = 𝑔0, 𝑔1, ... is called a play.
A play is won if and only if𝑤𝑖𝑛(𝑔) is 𝑡𝑟𝑢𝑒 . We describe the detailed

procedure of synthesizing shields via solving the two-player safety

game in section 5.

Figure 3: The green and blue squares denote shields, and

the dashed arrows are desired actions of agents. There is no

communication between shields 1 and 2. Therefore, Shield 1

conservatively judges that agent 2 cannot successfully enter

shield 2, thus rejects Agent 1’s action.

4 TACKLING SAFE AND EFFICIENT

MULTI-AGENT REINFORCEMENT

LEARNING VIA DYNAMIC SHIELDING

In this section, we first describe how traditional shielding methods

cause sub-optimal learning. Then, we present our method for safe,

optimal, and optimal MARL learning.

4.1 Conservative Behavior and Coordination

Overhead

For multi-agent systems, centralized approaches always fail when

the number of agents increases. For example, centralized shield-

ing for MARL fails empirically for two-agent scenarios [18]. Fully

decentralized shielding separates the whole state space into exclu-

sive subspaces and synthesizes a shield to monitor a subspace. For

example, factored shielding [18] computes multiple shields based

on a factorization of the joint state space observed by all agents.

However, this approach causes conservative behaviors (i.e., agents

stuck in place) when agents move across the border of shields due to

the information isolation between shields. Specifically, as shown in

Figure 3, the shield would reject agents’ actions even for those that

are essentially valid. Consequently, the MARL system has higher

coordination overhead, which causes extra steps when agents in-

teract and render the MARL policy sub-optimal. In Section 6, we

empirically demonstrate that the coordination overhead caused by

conservative behaviors leads to sub-optimal policies.

4.2 Dynamic shielding

To mitigate the coordination overhead caused by conservative be-

haviors, we propose dynamic shielding, a decentralized shield frame-

work on top of the traditional MARL process. Dynamic shielding

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1589

(a) Learn control policies with the protection of Dynamic

Shielding.

(b) Learn Dynamics from experience.

Figure 4: Dynamic Shielding Framework

Algorithm 1: Dynamic Shielding at timestep 𝑡

Initialize :A list of shields 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑚}, MARL agents’

joint action 𝑎𝑡 = (𝑎1

𝑡 , 𝑎
2

𝑡 , ...𝑎
𝑛
𝑡) and joint state

𝑠𝑡 = (𝑠1

𝑡 , 𝑠
2

𝑡 , ..., 𝑠
𝑛
𝑡), a constant penalty for unsafe

actions 𝑝 , a environment dynamics model

𝑝 (𝑠𝑡 |𝑠𝑡−1, 𝑎𝑡−1)
Output :Safe joint action 𝑎𝑡 , punishment 𝑝𝑡 , shield

new_shield

1 // Clustering: divide agents into groups

2 // e.g., cluster agents by their position

3 𝑛𝑒𝑤_𝑠ℎ𝑖𝑒𝑙𝑑 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑎𝑔𝑒𝑛𝑡𝑠 (𝑠𝑡 , 𝑎𝑡)
4 for all group in 𝑖 ∈ {1, ...,𝑚′} do
5 for all shield 𝑗 ∈ {, ...,𝑚} do
6 if new_shield[I].group == 𝑠 𝑗 .𝑔𝑟𝑜𝑢𝑝
7 and 𝑠 𝑗 .duration ! = 0 then
8 new_shield[i].recompute = False

9 new_shield[i].shield = 𝑠 𝑗 .𝑠ℎ𝑖𝑒𝑙𝑑

10 end if

11 end for

12 end for

13 // Re-construct shields

14 // 1. When agents trying to escape shields

15 // 2. When shields expire

16 for all group in 𝑖 ∈ {1, ...,𝑚} do
17 if 𝑛𝑒𝑤_𝑠ℎ𝑖𝑒𝑙𝑑 [𝑖] .𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 == 𝑇𝑟𝑢𝑒 then

18 new_shield[i].reCompute(𝑝)
19 end if

20 end for

21 // Shielding: Replace unsafe actions to safe actions

22 𝑎𝑡 = safe action output by new_shield

23 for all agent in 𝑖 ∈ {1, ..., 𝑛} do
24 if 𝑎𝑖𝑡 ≠ 𝑎𝑖𝑡 then

25 𝑝𝑖𝑡 = p

26 end if

27 end for

28 return 𝑏𝑎𝑟𝑎𝑡 , 𝑝𝑡 , new_shield

has two important features: 1) Dynamic shielding dynamically

constructs shields based on agents’ real-time states; 2) Dynamic

shielding can perform two important operations, namely, merge
and split. The merge operation uses multiple shields’ information

to construct a larger shield, which temporarily removes the border

between shields. Therefore, the merged shield has enough informa-

tion to distinguish whether joint actions are safe and eventually

mitigate conservative behavior. On the other hand, the computa-

tion complexity in shield synthesis increases along with the shield

size. The split operation helps decrease computation costs when

agents locate sparsely. Figure 4a shows the diagram of dynamic

shield construction. Initially, we construct distinct shields for each

agent, which monitor agents’ reachable states in the next 𝑘 steps.

If agents try to move to states outside the shield, the shield will

recompute to establish a monitor on agents’ future possible states.

When agents gathering together has the possibility of collision,

shields will merge to jointly monitor the action using the state

information of multiple agents. When agents are more sparse, the

merged shield will split to save computation.

We summarize dynamic shielding in algorithm 1. There are three

phases: 1) clustering, 2) shield reconstruction, and 3) shielding. In

the clustering phase (LINE 1-12), the algorithm clusters agents into

groups by their current state. For example, in robot navigation

tasks, if some agents are close by, the algorithm will put them in

the same group, otherwise in separate groups. Agents in the same

group should merge shields to avoid conservative behaviors. Then,

in the shield re-construction phase (LINE 13-20), shields will merge

with other shields or split into multiple smaller shields based on

the results of clustering. In addition, some expired shields might

recompute according to agents’ state change. The merge operation

could be implemented by recompute shield using agents’ aggregated

state information. In the shielding phase (Lines 21-27), every shield

will do shielding concurrently, which rejects agents’ unsafe actions

and replaces them with safety actions. Lastly, the MARL agents will

be given an extra penalty for unsafe actions.

Our method faces the challenge it degrades to centralized shield-

ing for edge scenarios (some timesteps). For example, when all

agents gather together, all decentralized shields will merge together

into a single centralized shield. We propose an online method of

shield synthesis in Section 5, which could efficiently synthesize

shields.

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1590

Algorithm 2: Learn dynamics model

Initialize : Initialize dataset D.

Initialize : Initialize neural network parameters 𝜃 randomly.

1 while not converged do
2 // Dynamics Learning

3 for update step 𝑐 = 1...𝐶 do

4 Draw B data sequences (𝑜𝑡 , 𝑎𝑡)𝑘+𝐿𝑡=𝑘

5 Update 𝜃 . // 𝑝𝜃 (𝑜𝑡 | 𝑜𝑡−1, 𝑎𝑡)
6 end for

7 // Collecting Data

8 𝑜1 = env. reset()
9 while episode not stopped do
10 𝑎𝑡 ∼ 𝐴

11 𝑜𝑡+1 ← env. step(𝑜𝑡 , 𝑎𝑡)
12 end while

13 Add experience to dataset D
14 end while

15 return 𝜃

5 SYNTHESIZE SHIELD IN REAL-TIME

In this section, we introduce the incorporation of world model

learning and present our shield synthesis method – k-step look
ahead shields, a variant of traditional shield synthesis [27]. We also

give theoretical proof to show that our method guarantees safety.

5.1 Learn the environment dynamics

To cope with the scenario that the MARL agents do not have ex-

ternal knowledge about the environment in the first place, our

framework will train a coarse world model at the beginning. This

world model is a deep neural network that learns to predict the envi-

ronmental dynamics related to safety considerations. For example,

an autonomous driving car could have different sensor inputs such

as Lidar, Cameras, and GPS. If we only care about safety related to

locomotion, the coarse world model will be trained to predict GPS

signals under control inputs. There are many existing works on

world model learning [20–22]. We adapt a general framework from

Recurrent State-Space Model (RSSM) [21], which consists of three

components (Fig 4b): encoder, decoder, and dynamics networks,

which are denoted by enc𝜃 (𝑠𝑡 | 𝑠𝑡−1, 𝑥𝑡), dec𝜃 (𝑠𝑡) ≈ 𝑥𝑡 , and

dyn𝜃 (𝑠𝑡 | 𝑠𝑡−1, 𝑎𝑡−1) respectively.
With such a model obtained by Algorithm 2, given state 𝑥𝑡 and

action 𝑎𝑡 with latent of previous state 𝑠𝑡−1, we can predict the next

state 𝑥𝑡+1 by:

𝑠𝑡 ∼ enc𝜃 (𝑠𝑡 | 𝑠𝑡−1, 𝑥𝑡)
𝑠𝑡+1 ∼ dyn𝜃 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡)
𝑥𝑡+1 ∼ dec𝜃 (𝑠𝑡+1)

In this work, we focus on using the world model to learn the low-

dimensional intrinsic properties of the environment, such as physi-

cal dynamics, for shield synthesis. We assume the existence of an

expressive world model, which allows us to abstract away from the

details of the sensory input and reason about the environment at a

higher level of abstraction. For this work, the cascading error that

may arise from errors in the learned world model is outside the

scope of our discussion.

5.2 𝑘-step look ahead shields

We assume the state space has been converted into a symbolic ab-

straction (via 𝑓 : 𝑆 → 𝐿) given by a DFA A𝑒 =

(
𝑄𝑒 , 𝑞𝑒

0
, Σ𝑒 , 𝛿𝑒 , 𝐹𝑒

)
.

We translate the LTL safety specification into another DFA A𝑆 =(
𝑄𝑆 , 𝑞𝑆

0
, Σ𝑆 , 𝛿𝑆 , 𝐹𝑆

)
. We formulate a two-player game

G =
(
𝐺,𝑔0, Σ1, Σ2, 𝛿

𝑔, 𝐹
)

by combining A𝑒
and A𝑆

. Instead of solving the game 𝐺 directly,

we add extra time constraints 𝑡 ≤ 𝑘 , where 𝑡 ∈ denotes the time

step from constructing the shield, and 𝑘 is a hyper-parameter that

denotes the maximum steps of the game. The modified game is then

G𝑘 =

(
𝐺𝑘 , 𝑔0

′, Σ1, Σ2, 𝛿
𝑔′, 𝐹𝑘

)
(1)

where the state space 𝐺𝑘 = 𝐺 × {1...𝑘}, the initial state 𝑔0

′ =

(𝑔0, 𝑡 = 1), the transition function 𝛿𝑔′ (𝑔𝑡 , 𝑡) = (𝛿𝑔 (𝑔𝑡), 𝑡 +1), which
could be approximated through the world model, and the winning

condition 𝐹𝑘 = 𝐹∧(𝑡 ≤ 𝑘). We can solve the two-player safety game

G𝑘 and compute the winning region𝑊 ⊆ 𝐹𝑘 , using the method

in [27]. We then construct the k-step look ahead shield by translating
G𝑘 and𝑊 to a reactive system 𝑆 =

(
𝑄S, 𝑞0,S, Σ𝐼 ,S, Σ𝑂,S, 𝛿S, 𝜆S

)
.

The shield has the following components: 𝑄S = 𝐺𝑘
, 𝑞

0,S = 𝑞0

′
,

Σ𝐼 ,S = 𝐿 × A, Σ𝑂,S = A, 𝛿S (𝑔𝑘 , (𝑙, 𝑎)) = 𝛿

(
𝑔𝑘 , (𝑙, 𝜆S (𝑔, (𝑙, 𝑎)))

)
for all 𝑔𝑘 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑎 ∈ A, and

𝜆S (𝑔, 𝑙, 𝑎) =


𝑎 if 𝛿𝑘 (𝑔𝑘 , (𝑙, 𝑎)) ∈𝑊
𝑎′ if 𝛿𝑘 (𝑔𝑘 , (𝑙, 𝑎)) ∉𝑊 for some arbitrary

default 𝑎′ with 𝛿𝑘
(
𝑔𝑘 , (𝑙, 𝑎′)

)
∈𝑊 .

Our shield synthesis bears a resemblance to the classic shield

synthesis [1, 18], which also synthesizes shields by solving the two-

player game. The main difference is that our method only predicts a

subset of future state space, whereas previous methods enumerate

all possible states along the planning horizon. This leads to the

major benefit of our method, that for tasks with state spaces too

large to compute in advance, our algorithm still works efficiently

while previous methods fail.

5.3 Safety Guarantee

We show that dynamic shielding with k-step look ahead shielding
can guarantee safety for MARL agents.

Proposition 1. Given a trace 𝑠0𝑎0𝑠1𝑎1 · · · ∈ (𝑆 × 𝐴)𝜔 jointly
produced by MARL agents, the dynamic shielding, and the environ-
ment, state-action pair (𝑠𝑡 , 𝑎𝑡) is safe at every time step regarding
definition 1.

Proof. Firstly, the procedure in algorithm 1 ensures each agent

is monitored by a shield at each time step, and this shield at least

monitors the states of agents in the next 𝑘 steps (otherwise, the

shield will re-compute). Then the remaining proof is the same as

the correctness of centralized shielding in [18]. For any agents

under shield S = (𝑄,𝑞0, Σ𝐼 , Σ𝑂 , 𝛿, 𝜆), there is a corresponding

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1591

run 𝑞0𝑞1, ...𝑞𝑚 ∈ (𝑆 × 𝐴)𝜔 , where 𝑚 ≤ 𝑘 is the duration before

reconstructing this shield. By constructing the shield, we have

the environment abstraction DFA 𝐴𝑒
and the safety specification

DFA 𝐴𝑠
. We can project the run 𝑞0, 𝑞1, ...𝑞𝑚 of the shield S onto

a trace 𝑞𝑠
0
(𝑓 (𝑠0), 𝑎0)𝑞𝑠

1
(𝑓 (𝑠1), 𝑎1)...𝑞𝑠𝑚 (𝑓 (𝑠𝑚), 𝑎𝑚) on 𝐴𝑠 . Since we

construct the shield from the winning region of the two-player

safety game, every state 𝑞𝑠
𝑖
(𝑓 (𝑠𝑖) visited by agents along the trace

should be a safe state in A𝑠
. The shield S ensures the safety speci-

fication defined in A𝑠
is never violated. Therefore, the joint state-

action pair (𝑠𝑡 , 𝑎𝑡) is safe for every MARL agent at every step.

□

Figure 5: Different gridworld environments. Dots are agents,

stars denote targets, and black blocks are obstacles.

(a) Simple Spread (b) Simple Adversary

Figure 6: Modified Multi-Agent Particle Environment (MPE).

The blue circles denote agents, black dots are landmarks. In

Simple Adversary, the red circle is an adversary agent, and the

green dot is the target landmark, we let 𝑛𝑔𝑜𝑜𝑑 : 𝑛𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦 =

3 : 1. The MPE environment is unbounded, but agents will be

penalized if they move too far away.

6 EXPERIMENTS

In this section, we empirically evaluate the performance of the

proposed safe MARL framework (Algorithm 1) on multiple bench-

mark tasks. We apply our algorithm to four different maps of the

gridworld [39] (shown in Figure 5) and two environments (coop-

erative and mixed-cooperative of MPE (shown in Figure 6). We

compare the proposed algorithm with CQ-Learning [16], CQ with

factored shielding (CQ+FS), DDPG [31], MADDPG [32], and MAD-

DPG+CBF [11]. We conducted three sets of experiments in total.

For the first two sets, we assume known environment dynamics to

evaluate the performance of our shielding framework conveniently.

In the last experiment, we train our framework without any exter-

nal knowledge of the environment to demonstrate the effectiveness

of MARL with the proposed shielding in practice. We implement

algorithms using Python and synthesize shields via Slugs [17]. For

each experiment, we evaluate algorithms in both the training and

testing phases. To mitigate outliers, we performed all experiments

in 5 independent runs and averaged the results.

(a) Left-hand side figure is the max reward that agents obtained

during learning. The right-hand side figure is the total collision

between agents during learning.

(b) TheMin step to reach goals value is an indicator of the optimality

of learned policies.

Figure 7: Gridworld experiment. CQ+DS, CQ+FS, and CQ de-

note CQ-Learningwith dynamic shielding, CQ-Learningwith

factored shielding, and CQ-Learning without shielding.

Experiment Setup. Figure 5 shows six maps of grid world

benchmark environments adapted from the gridworld [39]. Each

map has four agents learning to navigate while avoiding obstacles in

the environment. The action set isA = {𝑠𝑡𝑎𝑦,𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡}.

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1592

We randomly assign a unique target to each agent. Once an agent

reaches its target, it stays there until all agents reach their goals. We

set sparse rewards for this task, namely, giving a −1 living penalty,

−10 collision penalty, and +100 for reaching the target.

Figure 6 shows two tasks from the modified MPE [32], say simple
spread and simple adversary. The goal of simple spread task is for

agents to cooperate and reach their target while avoiding collisions.

The goal of simple adversary task is for good agents to navigate

to the target and trick the adversary, and the adversary agents try

to reach the target while avoiding collisions. These tasks are more

difficult than the gridworld in two aspects:

(1) The state space of MPE is continuous and unbounded.

(2) Agents have more complicated dynamics in MPE, such as

momentum and acceleration.

The action set is A′ = {𝑠𝑡𝑎𝑦,𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡, brake}, from
which the action controls acceleration. For example, if an agent

takes 𝑠𝑡𝑎𝑦, it moves at its original velocity instead of staying. We

use 𝑏𝑟𝑎𝑘𝑒 to simulate braking in the real world, where the agent

exerts a large deceleration in the direction of velocity until it stops.

The 𝑏𝑟𝑎𝑘𝑒 action obeys the law of kinematics; for example, an agent

moving at a higher speed needs a longer distance to brake down.

Each agent receives a reward that is inversely proportional to the

distance with its target and penalties for collisions.

Figure 8: Compare Dynamic Shielding (MADDPG/DDPG+DS)

with other baselines (MADDPG/DDPG+Safe,MADDPG+CBF).

Conservative Behavior Evaluation. We integrate CQ-learning

with factored shielding and proposed dynamic shielding. We ap-

ply them to four different gridworld environments (Figure 5). We

evaluate algorithms using maximum rewards, collision counts, and

episode steps during the training phase. Results in Figure 7a show

that both factored shielding and dynamic shielding can guarantee

collision-free learning in all maps. However, dynamic shielding

obtains better policies with higher rewards compared to factored

shielding and learning without shielding. Figure 7b shows CQ+DS

agents need fewer steps to reach the target than CQ+FS. The dy-

namic shielding policy eventually has comparable performance as

CQ-learning without intervention. Therefore, that demonstrates

the proposed dynamic shielding mitigates coordination overheads

caused by factored shielding with the guarantee of safety.

Scalability Evaluation. We evaluate the performance of the dy-

namic shieldingwhen the state space and the number of agents scale

up. We integrate DDPG and MADDPG with dynamic shielding and

apply them to the modified MPE environment (shown in Figure 6).

The state space of MPE is a scale-up of gridworld as we described

previously. Factored shielding fails in this unbounded environment

since we cannot synthesize shields for the entire state space before-

hand. We consider two baseline algorithms that incorporate safety

mechanisms into DDPG/MADDPG: DDPG/MADDPG+Safe, which

adds safety rewards to the reward function, and MADDPG+CBF,

which enforces safety using control barrier functions. For MAD-

DPG+CBF, we follow the barrier functions proposed in [11]. Ta-

ble 1 shows MADDPG/DDPG+DS and MADDPG+CBF guarantee

collision-free regardless of the tasks.Whereas,MADDPG/DDPG+Safe

constantly have collisions, which increases as the number of agents

scales up. Table 1 also depicts the cumulative rewards during the

testing phase. At convergence, MADDPG/DDPG+DS obtains higher

rewards than MADDPG/DDPG+Safe. The learning curves in Fig-

ure 8 demonstrate that the MARL algorithms with dynamic shield-

ing converge faster at higher rewards. We also evaluate the perfor-

mance of dynamic shielding when the number of agents scales up.

Table 1 shows that although the collision of MADDPG/DDPG+Safe

increase as agents scales up, MADDPG+DS and MADDPG+CBF

always ensures safety and has higher rewards in both environ-

ments. As the number of agents increases, we observe a widening

performance gap between MADDPG+DS and MADDPG+CBF. This

suggests that our dynamic shielding still maintains minimal inter-

vention (less conservative) as the number of agents scales up.

Model Based Dynamic Shielding. In this experiment, we re-

move the 𝑏𝑟𝑎𝑘𝑒 action in the environment and evaluate algorithms

in the standard MPE Simple spread and Simple Adversary environ-

ments. Agents collect 3𝑒5 roll-outs from the environment to train

the world model via Algorithm 2 to learn to predict next step loca-

tion 𝑥𝑡+1 based on current location, velocity, and action [𝑥𝑡 , 𝑣𝑡 , 𝑎𝑡]𝑇 .
Since the temporal information is irrelevant to the dynamics in this

environment, we use a 32 × 64 × 32 MLP network as the dynamics

model. We name this procedure Model-Based Dynamic Shielding

(MBDS). We calculate testing phase safety rate by

𝑟𝑠𝑎𝑓 𝑒𝑡𝑦 =

∑
𝑖 1(collisions in step i > 0)

number of steps

.

Figure 9 demonstrates that MARL with Model-Based Dynamic

Shielding (MADDPG+MBDS, DDPG+MBDS) obtains at least not

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1593

MADDPG+DS MADDPG+Safe DDPG+DS DDPG+Safe MADDPG+CBF

Task N REW COL REW COL REW COL REW COL REW COL

Spread

4 −77 ± 8 0.0 −84 ± 6 1.3 ± 0.9 −76 ± 8 0.0 −82 ± 6 0.9 ± 1.0 −75 ± 6 0.0

8 −112 ± 10 0.0 −119 ± 9 10.0 ± 2.2 −113 ± 10 0.0 −125 ± 13 7.7 ± 1.9 −118 ± 12 0.0

12 −129 ± 9 0.0 −141 ± 9 38.2 ± 6.6 −129 ± 11 0.0 −151 ± 14 26.5 ± 6.5 −138 ± 11 0.0

Adversary

4 −25 ± 3 0.0 −30 ± 4 1.1 ± 0.8 −26 ± 3 0.0 −26 ± 3 0.9 ± 1.3 −23 ± 3 0.0

8 −1 ± 3 0.0 −5 ± 8 6.8 ± 2.0 −2 ± 4 0.0 −11 ± 16 5.5 ± 1.7 −2 ± 5 0.0

12 21 ± 9 0.0 16 ± 8 43.5 ± 10.6 23 ± 9 0.0 13 ± 11 33.2 ± 10.9 18 ± 8 0.0

Table 1: Results comparing the average rewards and collisions of algorithms during the testing phase. In the table, 𝑎 ± 𝑏 denotes

the mean and variance of results from 10 independent testing runs. (REW, COL denote cumulative rewards and collisions).

Figure 9: Compare Model-Based Dynamic Shielding (MBDS)

with other baselines.

lower cumulative rewards than other baselines (MADDPG+Safe,

DDPG+Safe). In addition, when the number of agents increases from

4 to 8, the safety rates of shielding (shown in Figure 10) decrease

no more than 5% and keep above 90%. However, other baselines

has safety rates decrease 10% in simple spread and 20% in simple
adversary. Hence, Model-Based Dynamic Shielding is an effective

method to provide safety guarantees for MARL.

7 CONCLUSIONS

This paper presents a novel approach to addressing safe MARL

through model-based dynamic shielding. The proposed method

minimally interferes with theMARL framework to ensure the safety

specification defined by LTL expressions. We also propose an ef-

fective technique to synthesize shields in real time and provide

theoretical proof of a safety guarantee. In addition, we conduct

extensive experiments to demonstrate our algorithm is better than

Figure 10: Safety rate in the MPE tasks.

other baselines regarding safety and learning performance in bench-

mark tasks. There are some limitations that we acknowledge. First,

our approach does not address the issue of cascading errors that

may arise from inaccuracies in the learned dynamics model. This

could potentially impair the safety guarantees provided by our

framework. Second, we have not analyze the time complexity of

our algorithm, which is heavily dependent on the implementation

of the reactive game solver. In our future work, we plan to explore

methods for enforcing safety guarantees in the presence of a risk-

aware dynamics model, which would help to mitigate the impact of

cascading errors. Additionally, we will conduct a thorough analysis

of the time complexity of our algorithm to ensure that it can scale

to larger and more complex environments.

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1594

ACKNOWLEDGMENTS

We thank Ingy ElSayed-Aly and Daniel Melcer for the insightful

discussion about this work. The work was conducted as part of an

undergraduate research experience with the Carnegie Mellon Uni-

versity Robotics Institute Summer Scholars Program. The scholar-

ship funding forWenli Xiao was provided by the Shenzhen Institute

of Artificial Intelligence and Robotics for Society.

REFERENCES

[1] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott

Niekum, and Ufuk Topcu. 2018. Safe reinforcement learning via shielding. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.
[2] Rajeev Alur. 2015. Principles of cyber-physical systems. MIT press.

[3] Itamar Arel, Cong Liu, Tom Urbanik, and Airton G Kohls. 2010. Reinforcement

learning-based multi-agent system for network traffic signal control. IET Intelli-
gent Transport Systems 4, 2 (2010), 128–135.

[4] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT

press.

[5] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT

press.

[6] Osbert Bastani, Shuo Li, and Anton Xu. 2021. Safe Reinforcement Learning via

Statistical Model Predictive Shielding.. In Robotics: Science and Systems. 1–13.
[7] Sushrut Bhalla, Sriram Ganapathi Subramanian, and Mark Crowley. 2020. Deep

multi agent reinforcement learning for autonomous driving. In Canadian Confer-
ence on Artificial Intelligence. Springer, 67–78.

[8] Urs Borrmann, Li Wang, Aaron D Ames, and Magnus Egerstedt. 2015. Control

barrier certificates for safe swarm behavior. IFAC-PapersOnLine 48, 27 (2015),
68–73.

[9] Alper Kamil Bozkurt, Yu Wang, Michael M Zavlanos, and Miroslav Pajic. 2020.

Control synthesis from linear temporal logic specifications using model-free

reinforcement learning. In 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 10349–10355.

[10] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A comprehensive

survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 38, 2 (2008), 156–172.

[11] Zhiyuan Cai, Huanhui Cao, Wenjie Lu, Lin Zhang, and Hao Xiong. 2021. Safe

multi-agent reinforcement learning through decentralized multiple control bar-

rier functions. arXiv preprint arXiv:2103.12553 (2021).
[12] Yuxiao Chen, Huei Peng, and Jessy Grizzle. 2017. Obstacle avoidance for low-

speed autonomous vehicles with barrier function. IEEE Transactions on Control
Systems Technology 26, 1 (2017), 194–206.

[13] Yuxiao Chen, Andrew Singletary, and Aaron D Ames. 2020. Guaranteed obstacle

avoidance for multi-robot operations with limited actuation: A control barrier

function approach. IEEE Control Systems Letters 5, 1 (2020), 127–132.
[14] Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. 2019. End-

to-end safe reinforcement learning through barrier functions for safety-critical

continuous control tasks. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 33. 3387–3395.

[15] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad

Ghavamzadeh. 2018. A lyapunov-based approach to safe reinforcement learning.

Advances in neural information processing systems 31 (2018).
[16] Yann-Michaël De Hauwere, Peter Vrancx, and Ann Nowé. 2010. Learning multi-

agent state space representations. In Proceedings of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems: volume 1-Volume 1. 715–722.

[17] Rüdiger Ehlers and Vasumathi Raman. 2016. Slugs: Extensible gr (1) synthesis.

In International Conference on Computer Aided Verification. Springer, 333–339.
[18] Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk

Topcu, and Lu Feng. 2021. Safe multi-agent reinforcement learning via shielding.

arXiv preprint arXiv:2101.11196 (2021).
[19] Javier Garcıa and Fernando Fernández. 2015. A comprehensive survey on safe

reinforcement learning. Journal of Machine Learning Research 16, 1 (2015), 1437–

1480.

[20] David Ha and Jürgen Schmidhuber. 2018. World models. arXiv preprint
arXiv:1803.10122 (2018).

[21] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak

Lee, and James Davidson. 2019. Learning latent dynamics for planning from

pixels. In International conference on machine learning. PMLR, 2555–2565.

[22] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak

Lee, and James Davidson. 2019. Learning latent dynamics for planning from

pixels. In International conference on machine learning. PMLR, 2555–2565.

[23] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi,

and Dominik Wojtczak. 2019. Omega-regular objectives in model-free rein-

forcement learning. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 395–412.

[24] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2020.

Cautious reinforcement learning with logical constraints. arXiv preprint
arXiv:2002.12156 (2020).

[25] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2020.

Cautious reinforcement learning with logical constraints. arXiv preprint
arXiv:2002.12156 (2020).

[26] Nils Jansen, Bettina Könighofer, JSL Junges, AC Serban, and Roderick Bloem.

2020. Safe reinforcement learning using probabilistic shields. (2020).

[27] Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem, Laura Humphrey,

Robert Könighofer, Ufuk Topcu, and Chao Wang. 2017. Shield synthesis. Formal
Methods in System Design 51, 2 (2017), 332–361.

[28] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. 2009. Temporal-

logic-based reactive mission and motion planning. IEEE transactions on robotics
25, 6 (2009), 1370–1381.

[29] Orna Kupferman and Moshe Y Vardi. 2001. Model checking of safety properties.

Formal methods in system design 19, 3 (2001), 291–314.

[30] Shuo Li and Osbert Bastani. 2020. Robust model predictive shielding for safe

reinforcement learning with stochastic dynamics. In 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 7166–7172.

[31] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
[32] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.

Neural Information Processing Systems (NIPS) (2017).
[33] Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Başar, and Lior Horesh. 2021.

Decentralized policy gradient descent ascent for safe multi-agent reinforcement

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
8767–8775.

[34] Wenhao Luo, Wen Sun, and Ashish Kapoor. 2020. Multi-robot collision avoidance

under uncertainty with probabilistic safety barrier certificates. Advances in
Neural Information Processing Systems 33 (2020), 372–383.

[35] Yiwei Lyu, Wenhao Luo, and John M Dolan. 2021. Probabilistic safety-assured

adaptive merging control for autonomous vehicles. In 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 10764–10770.

[36] Yiwei Lyu, Wenhao Luo, and John M Dolan. 2022. Adaptive safe merging con-

trol for heterogeneous autonomous vehicles using parametric control barrier

functions. In 2022 IEEE Intelligent Vehicles Symposium (IV). IEEE, 542–547.
[37] Yiwei Lyu,Wenhao Luo, and JohnMDolan. 2022. Responsibility-associatedMulti-

agent Collision Avoidance with Social Preferences. In 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 3645–3651.

[38] Francisco S Melo and Manuela Veloso. 2009. Learning of coordination: Exploiting

sparse interactions in multiagent systems. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2. 773–780.

[39] Francisco S Melo and Manuela Veloso. 2009. Learning of coordination: Exploiting

sparse interactions in multiagent systems. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2. Citeseer,
773–780.

[40] Liane Okdinawati, Togar M Simatupang, and Yos Sunitiyoso. 2017. Multi-agent

reinforcement learning for value co-creation of collaborative transportation

management (CTM). International Journal of Information Systems and Supply
Chain Management (IJISSCM) 10, 3 (2017), 84–95.

[41] Martin Pecka and Tomas Svoboda. 2014. Safe exploration techniques for rein-

forcement learning–an overview. In International Workshop on Modelling and
Simulation for Autonomous Systems. Springer, 357–375.

[42] Adolfo Perrusquía, Wen Yu, and Xiaoou Li. 2020. Redundant robot control using

multi agent reinforcement learning. In 2020 IEEE 16th International Conference
on Automation Science and Engineering (CASE). IEEE, 1650–1655.

[43] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). ieee, 46–57.

[44] Stephen Prajna, Ali Jadbabaie, and George J Pappas. 2007. A framework for

worst-case and stochastic safety verification using barrier certificates. IEEE Trans.
Automat. Control 52, 8 (2007), 1415–1428.

[45] Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. 2021.

Learning safe multi-agent control with decentralized neural barrier certificates.

arXiv preprint arXiv:2101.05436 (2021).
[46] Kristin Y Rozier. 2011. Linear temporal logic symbolic model checking. Computer

Science Review 5, 2 (2011), 163–203.

[47] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe,

multi-agent, reinforcement learning for autonomous driving. arXiv preprint
arXiv:1610.03295 (2016).

[48] Mohit Srinivasan and Samuel Coogan. 2020. Control of mobile robots using

barrier functions under temporal logic specifications. IEEE Transactions on
Robotics 37, 2 (2020), 363–374.

[49] Andrew Taylor, Andrew Singletary, Yisong Yue, and Aaron Ames. 2020. Learning

for safety-critical control with control barrier functions. In Learning for Dynamics
and Control. PMLR, 708–717.

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1595

[50] Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan

Srinivasan, Minho Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken

Goldberg. 2021. Recovery rl: Safe reinforcement learning with learned recovery

zones. IEEE Robotics and Automation Letters 6, 3 (2021), 4915–4922.
[51] Alphan Ulusoy, Stephen L Smith, Xu Chu Ding, Calin Belta, and Daniela Rus.

2013. Optimality and robustness in multi-robot path planning with temporal

logic constraints. The International Journal of Robotics Research 32, 8 (2013),

889–911.

[52] Spencer Van Koevering, Yiwei Lyu, Wenhao Luo, and John Dolan. 2022. Provable

Probabilistic Safety and Feasibility-Assured Control for Autonomous Vehicles

using Exponential Control Barrier Functions. In 2022 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 952–957.

[53] Akifumi Wachi and Yanan Sui. 2020. Safe reinforcement learning in constrained

Markov decision processes. In International Conference on Machine Learning.
PMLR, 9797–9806.

[54] Akifumi Wachi and Yanan Sui. 2020. Safe reinforcement learning in constrained

Markov decision processes. In International Conference on Machine Learning.
PMLR, 9797–9806.

[55] Li Wang, Aaron D Ames, and Magnus Egerstedt. 2017. Safety barrier certificates

for collisions-free multirobot systems. IEEE Transactions on Robotics 33, 3 (2017),
661–674.

[56] Peter Wieland and Frank Allgöwer. 2007. Constructive safety using control

barrier functions. IFAC Proceedings Volumes 40, 12 (2007), 462–467.
[57] Chao Yu, Xin Wang, and Zhanbo Feng. 2019. Coordinated multiagent rein-

forcement learning for teams of mobile sensing robots. In Proceedings of the 18th
international conference on autonomous agents andmultiagent systems. 2297–2299.

[58] Jun Zeng, Bike Zhang, and Koushil Sreenath. 2021. Safety-critical model predic-

tive control with discrete-time control barrier function. In 2021 American Control
Conference (ACC). IEEE, 3882–3889.

[59] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021. Multi-agent reinforce-

ment learning: A selective overview of theories and algorithms. Handbook of
Reinforcement Learning and Control (2021), 321–384.

[60] Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao,

Weinan Zhang, Montgomery Alban, Iman Fadakar, Zheng Chen, et al. 2020.

Smarts: Scalable multi-agent reinforcement learning training school for au-

tonomous driving. arXiv preprint arXiv:2010.09776 (2020).

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1596

	Abstract
	1 Introduction
	2 Related Work
	2.1 Safe Multi-Agent Reinforcement Learning
	2.2 Safe Control via Control Barrier Functions
	2.3 LTL as Safety Specification

	3 Preliminaries
	3.1 Multi-Agent Reinforcement Learning
	3.2 LTL as Safety Specification
	3.3 Formal Safety Guarantee with Shield

	4 Tackling Safe and Efficient Multi-agent Reinforcement Learning via Dynamic shielding
	4.1 Conservative Behavior and Coordination Overhead
	4.2 Dynamic shielding

	5 Synthesize shield in real-time
	5.1 Learn the environment dynamics
	5.2 k-step look ahead shields
	5.3 Safety Guarantee

	6 Experiments
	7 CONCLUSIONS
	Acknowledgments
	References

