
Counterexample-Guided Policy Refinement in Multi-Agent
Reinforcement Learning

Briti Gangopadhyay

IIT Kharagpur

India

briti_gangopadhyay@iitkgp.ac.in

Pallab Dasgupta

IIT Kharagpur

India

pallab@cse.iitkgp.ac.in

Soumyajit Dey

IIT Kharagpur

India

soumya@cse.iitkgp.ac.in

ABSTRACT
Multi-Agent Reinforcement Learning (MARL) policies are being

incorporated into a wide range of safety-critical applications. It

is important for these policies to be free of counterexamples and

adhere to safety requirements. We present a methodology for the

counterexample-guided refinement of an optimized MARL policy

with respect to given safety specifications. The proposed algorithm

refines a calibrated MARL policy to become safer by eliminating

counterexamples found during testing, using targeted gradient up-

dates. We empirically validate our method on different cooperative

multi-agent tasks and demonstrate that targeted gradient updates

induce safety in MARL policies.

KEYWORDS
Counterexample-Guided Refinement; Multi-Agent Reinforcement

Learning; Multi-Agent Proximal Policy Optimization

ACM Reference Format:
Briti Gangopadhyay, PallabDasgupta, and Soumyajit Dey. 2023. Counterexample-

Guided Policy Refinement in Multi-Agent Reinforcement Learning. In Proc.
of the 22nd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023,
IFAAMAS, 9 pages.

1 INTRODUCTION
Single-agent Deep Reinforcement Learning (DRL) is a popular con-

trol technique where the policy controlling agent learns to choose

actions that maximize a discounted long-term reward. DRL has been

successfully applied for games [25] and complex tasks in simula-

tion environments [9], with performances often exceeding human

counterparts. The success of DRL algorithms has motivated their

use in multi-agent settings, giving rise to techniques collectively

known as Multi-Agent Reinforcement Learning (MARL). MARL

involves the study of optimally controlling multiple agents through

adaptive interactions with unknown entities in an environment.

These methods have been modeled on the mathematical framework

of stochastic games expressed as i) fully competitive [19], ii) fully

cooperative [18] or iii) mixed setting [20]. MARL is being studied

for multiple real-world applications like traffic management [17],

autonomous driving [24], and robotic control [15]. Safety-critical

MARL applications, like autonomous driving, require agents to

behave robustly and reasonably, as visiting an unsafe state dur-

ing deployment is undesirable. MARL inherits the drawbacks of

DRL, such as interpretability, susceptibility to adversarial inputs,

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

and lack of a formal safety guarantee. In general, MARL suffers

from a lack of convergence guarantee except for certain special

cases. Difficulty in establishing safety in a MARL environment is

also attributed to the fact that individual agents need to consider

other agents’ behaviors so that the joint transition of the system

is safe. Safety for MARL environments has been studied through

the addition of constraints with the optimization objective [13], or

the use of shields [5]. Given an optimized policy, it is safe to use

the policy in the training environment. However, if the policy is

deployed in an uncertain environment with changing parameters,

the existing policy may lead to safety violations. Our objective in

this paper is to refine the existing policy in a minimal way such that

the new counterexamples found during testing are excluded. It is

often preferable to modify a tested policy than to learn a new one.

In this work, we propose a counterexample guided refinement
technique for a MARL policy that has already been fine-tuned to

optimize a reward function. The proposed methodology aims to

make the optimized policy progressively safer by incorporating

targeted gradient-based action shaping specific to a set of counterex-

ample traces obtained from intelligent testing. This accommodates

corrections for counterexamples without compromising the quality

of the learned policy. Counterexample-guided refinement has been

studied for single agent RL [7, 8] but has not been explored for

multi-agent settings. In summary, the paper makes the following

novel contributions.

(1) We propose the first work on counterexample-guided refine-

ment in a MARL setting. The counterexamples are obtained

with respect to multiple safety specifications in a cooperative

environment.

(2) We propose two types of refinements. One that finds an

alternate path to the goal state while satisfying safety criteria.

The other one keeps the system in a safe state when goal

and safety cannot be achieved together.

(3) We show that under the proper choice of importance factor

for the penalty for violation of safety objective, the updated

policy monotonically increases towards safety.

(4) The proposed methodology is studied over environments

with continuous state and action spaces on different multi-

agent tasks.

Contributions 2 and 3 enhance the single-agent counterexample-

guided refinement methodology in general. The paper is organized

as follows: Section 2 outlines related works, Section 3 discusses the

background concepts, Section 4 presents the overall methodology

of policy refinement, Section 5 presents case studies on several

MARL environments, and Section 6 provides concluding remarks.

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1606

2 RELATEDWORKS
Classical DRL techniques rely purely onmaximizing a reward signal

for deriving an optimal policy. However, only reward maximization

is not enough for real-world applications where reaching unsafe

states is not desirable [8]. The domain of safe RL [11] aims to tackle

this problem such that the policies respect the notion of some pre-

defined safety both during training and deployment. Designing safe

policies for a multi-agent system is a challenging yet pertinent prob-

lem. However, limited studies exist for SafeMARL [32]. Safety for RL

has been studied on themathematical model of ConstrainedMarkov

Decision Processes (CMDPS) where constraint costs, in addition to

rewards, are produced by each state, which is factored into the op-

timization problem [1]. Constrained policy optimization has been

extended for MARL with algorithms like Multi-Agent Constrained

Policy Optimization (MACPO) and MACPO-Lagrangian [13]. Opti-

mization with constraints has a positive effect on safety but often

generates poor rewards and is susceptible to design errors [21]. In

our work, we do not introduce constraint costs, rather, we perform

targeted gradient changes based on the margin of safety specifica-

tion violation on failure traces. The use of external knowledge from

safety shields to replace unsafe actions is another popular technique

that has been explored for single-agent systems [2] and recently for

multi-agent RL [5]. The authors in [5] propose an algorithm that co-

ordinates multiple agents to join factored shields constructed from

sub-parts of the state space and given LTL specifications. Safety

shields require engineering expertise and continuous monitoring

to guarantee safety. They also introduce performance overhead

caused by the delay during shield switching.

Counterexample guided learning has been studied for networks [26],

which are restricted to only monotonic constraints. Policy refine-

ment through counterexamples has been applied to Recurrent Neu-

ral Policies [3] and Apprentice Learning (AL) [33, 34] using model-

checking approaches like Probabilistic Computational Tree Logic

(PCTL). These model-checking techniques are only applicable to

discrete state spaces and suffer from the curse of dimensionality.

Our work closely follows the counterexample-guided refinement

technique proposed by [8] for single agent RL where authors per-

form gradient updates based on failure traces to obtain a safer policy.

However, [8] does not account for trajectories that cannot reach the

goal without violating safety and the quantification of the impor-

tance factor. In our work, we extend the refinement methodology

to work with MARL environments while also accounting for paths

that cannot reach the goal state safely and quantify the penalty

importance.

3 PRELIMINARIES
In this Section, we give an overview of theMARL setting and discuss

Bayesian Optimization (BO), which is used to uncover counterex-

amples from a trained policy.

3.1 Multi Agent Reinforcement Learning
A multi-agent reinforcement learning problem can be formulated

in terms of an Agent Environment Cycle (AEC) [29] game which is

a sequential version of the Partially Observable Stochastic Game

(POSG) model. We use a slightly modified version of AEC formally

defined by the tuple:

⟨𝑆,𝑀, {𝐴𝑖 }, {𝑇 𝑖 }, {𝑅𝑖 }, 𝛾⟩ where 𝑆 is the set of global states. 𝑆𝑖 is the
set of local states. 𝑆 = ⟨𝑆1, 𝑆2, . . . , 𝑆𝑀 ⟩,𝑀 is the number of agents,

𝐴𝑖
represents the set of actions for each agent 𝑖 ,𝑇 𝑖

: 𝑆𝑖 ×𝐴𝑖 → 𝑆𝑖 is

the agent transition function, 𝑅𝑖 is the reward signal corresponding

to agent 𝑖 and 𝛾 ∈ [0, 1) is the discount factor. We consider a fully

cooperative multi-agent setting. In each iteration, 𝑡 of the cycle,

each agent 𝑖 ∈ 𝑀 observes a local state 𝑠𝑖𝑡 and sequentially chooses

one action 𝑎𝑖𝑡 ∈ 𝐴𝑖
generating reward 𝑟 𝑖𝑡 . The combination of the

local states and actions yield global state 𝑠𝑡 = ⟨𝑠1

𝑡 , 𝑠
2

𝑡 , . . . , 𝑠
𝑚
𝑡 ⟩ and

joint action 𝑎𝑡 = ⟨𝑎1

𝑡 , 𝑎
2

𝑡 , . . . , 𝑎
𝑚
𝑡 ⟩. The states may have common

observations, i.e., 𝑆𝑖 ∩ 𝑆 𝑗 ̸= ∅. When 𝑎𝑡 is applied to 𝑠𝑡 the system

transitions to a new state 𝑠𝑡+1 ∼ 𝑇 (𝑠𝑡 , 𝑎𝑡).

We choose Multi-Agent Proximal Policy Optimization (MAPPO) as

the training algorithm. MAPPO is effective in several multi-agent

settings with minimum hyper-parameter tuning and architectural

modifications [31]. MAPPO also enjoys monotonic improvement

guarantees under a proper choice of clipping bounds [27]. Since our

environments have homogeneous agents, we use parameter sharing.

Policy parameters \ and value parameters 𝜑 are shared across all

the agents. The policy network 𝜋𝑖
\

(𝑎𝑖 |𝑠𝑖) for agent 𝑖 produces action
𝑎𝑖𝑡 ∼ 𝜋𝑖

\
(·|𝑠𝑖𝑡) based only on its local state 𝑠𝑖 ∈ 𝑆𝑖 and receives a

reward 𝑟 𝑖𝑡 ∈ 𝑅𝑖 . The objective of the MAPPO algorithm is to adjust

\ via gradient ascent such that the discounted accumulated reward

for each agent is maximized 𝐽 (\𝑖) = E𝑎𝑖𝑡 ,𝑠
𝑖
𝑡
[

∑𝑇
𝑡=0

𝛾𝑡𝑟 𝑖𝑡 (𝑠𝑖𝑡 , 𝑎
𝑖
𝑡)]. Similar

to single agent PPO, MAPPO achieves this by updating the policy

parameters in the direction which maximizes a clipped surrogate

objective. The clipped independent probability ratio for the policy

of each agent 𝑖 is denoted by

_𝜋 ′𝑖 =

𝜋
′𝑖

(𝑎𝑖 |𝑠𝑖)
𝜋𝑖 (𝑎𝑖 |𝑠𝑖)

. (1)

Here 𝜋
′𝑖
is the current policy, and 𝜋𝑖 is the old policy that was used

to collect samples in a previous iteration. The purpose of _𝜋 ′𝑖 is

to trace the impact of the change in actions under 𝜋
′𝑖
and 𝜋𝑖 . The

objective function is given by:

max

𝜋
′𝑖
E

(𝑠𝑖 ,𝑎𝑖)∼𝑑
𝜋𝑖

[𝑚𝑖𝑛(_𝜋 ′𝑖 ∗ A𝑖 (𝑠𝑖 , 𝑎𝑖),

𝑐𝑙𝑖𝑝(_𝜋 ′𝑖 , 1 + 𝜖, 1 − 𝜖) ∗ A𝑖 (𝑠𝑖 , 𝑎𝑖))]
(2)

where E is the expectation, A𝑖 (𝑠𝑖 , 𝑎𝑖) =

∑∞
𝑡=0

[𝑟 (𝑠𝑖𝑡 , 𝑎
𝑖
𝑡)] − 𝑉 (𝑠𝑖) is

the advantage function, 𝑉 (𝑠𝑖) is the value function and 𝜖 is the clip

hyperparameter.

3.2 Uncovering Counterexamples Using
Bayesian Optimisation

Bayesian Optimization (BO) is a global optimization technique that

is used for optimizing black box functions, which are expensive

to evaluate [23]. BO has been extensively used in literature for

testing cyber-physical systems [4, 10, 12] and analog circuits due

to low sample complexity [14]. BO has been shown to find more

counterexamples than techniques like random and grid-search for

single agent environments [8]. For finding adversarial counterex-

amples through BO, the negation of given safety specifications is

converted into an objective function 𝜙(𝑠) over state variables 𝑠 [10].

A safety specification is expressed as a combination of multiple

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1607

Figure 1: An overview of the counterexample-guided refinement framework for MARL

predicates of the form 𝜚 (𝑠) ≥ 0, where 𝜚 : 𝑆 → R represents

a real-valued function of the state. For each predicate, 𝜚 (𝑠) ≥ 0,

we use Bayesian optimization to search for 𝜙𝑖 = 𝑚𝑖𝑛(𝜚𝑖 (𝑠)). Since

the objective function, 𝜙𝑖 , corresponding to the safety predicate,

(𝜚𝑖 (𝑠) ≥ 0) is real-valued, we need composition operators over re-

als to arrive at a single objective function when multiple safety

predicates are given. The equivalent quantitative semantics for

the logical operators is given by: ¬𝜙 = −𝜙 ; 𝜙1∧𝜙2 = 𝑚𝑖𝑛(𝜙1, 𝜙2)

and 𝜙1∨𝜙2 = 𝑚𝑎𝑥(𝜙1, 𝜙2). The system is unsafe if 𝜙 < 0 and safe

otherwise. Each 𝜙𝑖 is estimated using a separate Gaussian Process

(GP) model as this uncovers more failures than using a single GP

model [12]. The BO algorithm samples parameters 𝑝𝑖 from given

parameter bounds [𝑃𝑙𝑜𝑤 , 𝑃ℎ𝑖𝑔ℎ] over the state variables. When a

trajectory b initialized with 𝑝𝑖 leads to a negative evaluation of 𝜙 ,

it is added to the set of failure trajectories b 𝑓 . To uncover multiple

counterexamples, we remove already explored failure regions from

the search space using the technique proposed by [10]. The BO

loop runs until the entire search space is covered or the maximum

sampling budget for BO search has been exhausted.

4 METHODOLOGY
The overview of the refinement methodology is shown in Figure 1.

The refinement strategy is broadly divided into the following steps:

(1) Given aMARL policy 𝜋𝑜𝑙𝑑 trained by optimizing rewards, we

test it against different safety objectives by sampling from

parameters of uncertainty 𝑃 over state variables. We use

BO to minimize the objective functions such that the safety

specifications are falsified. This generates a set of failure

trajectories b 𝑓 .

(2) Next, we train sub-policy 𝜋𝑠𝑢𝑏 and critic𝑉𝑠𝑢𝑏 using a combi-

nation of reward and penalty only on b 𝑓 . Using b 𝑓 and 𝜋𝑠𝑢𝑏

we selectively do gradient updates on 𝜋𝑜𝑙𝑑 to construct a

new policy 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 .

(3) If 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 has uncorrected trajectories b ′
𝑓
in b 𝑓 , we again

train 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 on b ′
𝑓
treating only safety (𝜙) as the optimiza-

tion objective beyond a saddle state (the penultimate state

before specification violation). This generates a new policy

𝜋𝑠𝑎𝑓 𝑒 such that safety specifications are respected by all the

agents in 𝜋𝑠𝑎𝑓 𝑒 .

Definition 4.1. Local Safety Specifications: These are defined
over the state parameters of a single agent in the system. The objective
function has the form 𝜙𝑙𝑜𝑐𝑎𝑙 (𝑠

𝑖
𝑡) < 0, 𝑠𝑖𝑡 ∈ 𝑆𝑖 . An example of a local

objective function is the speed of agent one at time step 10 is less than
5: speed(agent1

10
) - 5 < 0.

Definition 4.2. Mutual Safety Specification: These are defined
over the state parameters of two agents in the system. The objective
function used for finding counterexamples has the form𝜙𝑚𝑢𝑡𝑢𝑎𝑙 (𝑠

𝑖
𝑡 , 𝑠

𝑗
𝑡) <

0, 𝑠𝑖 ∈ 𝑆𝑖 , 𝑠 𝑗 ∈ 𝑆 𝑗 ∧ 𝑖 ̸= 𝑗 . For example, the distance between two
agents < 0.

Definition 4.3. Global Safety Specification: These are defined
over the state parameters of all the agents in the system, which coop-
erate to achieve a common goal. The objective function has the form
𝜙𝑔𝑙𝑜𝑏𝑎𝑙 (𝑠

0

𝑡 , . . . , 𝑠
𝑖
𝑡 , . . . , 𝑠

𝑚
𝑡) < 0 or 𝜙𝑔𝑙𝑜𝑏𝑎𝑙 (𝑠𝑡) < 0, 𝑠𝑡 ∈ 𝑆 . For example,

the angle of the package carried by multiple agents < 0.

A trajectory is treated as a failure trajectory if either local, mutual,

or global safety specification is violated.

Definition 4.4. A failure trajectory b 𝑓𝑙 in the AEC setting is de-
fined as b 𝑓𝑙 = {(𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , ˜𝑠𝑛)}where 𝑠𝑡 = ⟨𝑠0

𝑡 , . . . , 𝑠
𝑚
𝑡 ⟩ and𝑎𝑡 =

⟨𝑎0

𝑡 , . . . , 𝑎
𝑚
𝑡 ⟩ s.t. (∃𝑠𝑖𝑡𝑙 , 𝜙𝑙𝑜𝑐𝑎𝑙 (𝑠

𝑖
𝑡𝑙

) < 0), or (∃(𝑠𝑖𝑡𝑙
, 𝑠

𝑗
𝑡𝑙

), 𝜙𝑚𝑢𝑡𝑢𝑎𝑙 (𝑠
𝑖
𝑡𝑙
, 𝑠

𝑗
𝑡𝑙

) <

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1608

Figure 2: a) Example of a Type-1 trajectory b) Example of a
Type-2 trajectory

0), or (∃𝑠𝑡𝑙 , 𝜙𝑔𝑙𝑜𝑏𝑎𝑙 (𝑠𝑡𝑙) < 0). b 𝑓 denotes the set of failure trajectories
and 𝑠𝑖𝑡𝑙

denotes the state for 𝑖𝑡ℎ agent at time-step 𝑡 in 𝑙𝑡ℎ failure
trajectory b 𝑓𝑙 .

A failure trajectory may violate one or more safety specifications.

For example, in an environment where multiple agents are carrying

a package, if one of the agents carrying the package falls, then

the package may fall as a result. In this work, we shall consider a

trajectory only as part of one specification during refinement.

We start with a motivating example to elucidate our methodology:

Example 4.1. Consider the toy grid world in Fig 2. The grey tiles
are obstacles, the tile with flame is a bad state with a -3 penalty, and
the tile with the flag is the goal state with a +10 reward. The environ-
ment consists of two agents (𝐴1, 𝐴2), which are allowed three actions,
right for moving right, up for moving up, and no action for staying in
the current state. Each movement incurs a -1 penalty, and no action
incurs a -2 penalty. The game terminates when both agents reach the
goal or when the maximum time budget of 10 steps is exhausted. The
agents can start and visit any location in the grid world except the
obstacle states. Now let us consider two safety specifications:
1) No agent should reach a bad state i.e., (𝑟𝑒𝑤𝑎𝑟𝑑(𝑠𝑡𝑎𝑡𝑒) + 2 ≥ 0)

2) Agents must not collide i.e., (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴1, 𝐴2) > 0)

For a policy trained to only maximize rewards, the following coun-
terexample configurations exist as highlighted in Fig 2:

Trajectory 1

A1
(1, 0)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (1, 1)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (1, 2)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (1, 3)

𝑢𝑝
−−→ (0, 3)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (0, 4)

A2
(2, 1)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (2, 2)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (2, 3)

𝑢𝑝
−−→ (1, 3)

𝑢𝑝
−−→ (0, 3)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (0, 4)

Trajectory 2

A1
(4, 0)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (4, 1)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (4, 2)

𝑢𝑝
−−→ (3, 2)

𝑢𝑝
−−→ (2, 2)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (2, 3)

𝑢𝑝
−−→

(1, 3)

𝑢𝑝
−−→ (0, 3)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (0, 4)

A2
(5, 0)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (5, 1)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (5, 2)

𝑢𝑝
−−→ (4, 2)

𝑢𝑝
−−→ (3, 2)

𝑢𝑝
−−→ (2, 2)

𝑙𝑒 𝑓 𝑡
−−−→

(2, 3)

𝑢𝑝
−−→ (1, 3)

𝑢𝑝
−−→ (0, 3)

𝑙𝑒 𝑓 𝑡
−−−→ (0, 4)

A counterexample trajectory may have three different types of

states in its path. They are described as follows:

(1) States with an alternate path: Trajectories with some state

𝑠𝑖
𝑘𝑙

∈ b 𝑓𝑙 where corrective actions 𝑎𝑐 can be applied to lead

the agents to goal without violating the safety specification.

These are Type-1 trajectories.

(2) States with a path to a safe region: Trajectories with some

state 𝑠𝑖
𝑘𝑙

∈ b 𝑓𝑙 where agents can reach a safe state but do

not have any action that can take them to the goal state. For

example, the starting state (4,0) has no trajectory that leads

to the goal state. However, the agent can reach states (3,2)

or (4,3) which are safe. These are Type-2 trajectories.

(3) Irrecoverable States: Trajectories with starting state 𝑠𝑖
𝑘𝑙

∈
b 𝑓𝑙 which already lie in an unsafe region. For example, if

any of the agents start in the state (2,2), then the safety

specification is already violated. States like these are flagged

as irrecoverable.

We first describe the refinement strategy for trajectories of Type-1

and then subsequently address the refinement of trajectories of

Type-2.

4.1 Refinement of Type-1 Trajectories
All counterexample trajectories b 𝑓 are initially assumed to be Type-

1 trajectories. Trajectory 1 in Example 4.1 is a Type-1 trajectory.

The desired objective is to modify the policy of 𝐴2 such that the

state (2,2) violating the safety specification 𝑟𝑒𝑤𝑎𝑟𝑑(𝑠𝑡𝑎𝑡𝑒) + 2 ≥ 0

can be avoided. In a single agent setting, this is achieved by first

training a sub-policy 𝜋𝑠𝑢𝑏 with reward + penalty for specification

violation. Then the gradients of the original policy 𝜋𝑜𝑙𝑑 are updated

using the following update rule :

_𝑡 (\) =

𝜋𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡)

𝜋𝑠𝑢𝑏 (𝑎𝑡 |𝑠𝑡)

(3)

considering an advantage of 1 for the ratio update to enforce the

corrections [8]. However, adapting this methodology directly to a

multi-agent setting has the following pitfalls.

• Adding only a penalty for one specification during training

may lead to the violation of another specification for the

same agent. In Trajectory 1 of Example 4.1 we can correct the

policy of A2 by changing the action from (2, 1)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (2, 2)

to (2, 1)

𝑢𝑝
−−→ (1, 1). This satisfies the predicate 𝑟𝑒𝑤𝑎𝑟𝑑(𝑠𝑡𝑎𝑡𝑒)+

2 ≥ 0. However, this change causes a collision with 𝐴1 and

violates the predicate 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴1, 𝐴2) > 0

• Since the policy uses shared parameters, the environment

becomes non-stationary from the perspective of a single

agent. An update for a single agent causes an exogenous shift

changing the policy for all other agents. Hence, enforcing

the actions with the advantage of 1 may cause disruptive

changes in the policy for other agents.

To handle the first problem, we account for the penalty for viola-

tion of any safety objective. The updated reward function while

training the sub-policy becomes 𝑅𝑡 + 𝛽𝑡 ∗ (𝜙𝑥 (𝑠′) − 𝑡) where 𝛽𝑡
is the importance of the penalty term at time step t and 𝜙𝑥 (𝑠′) =

𝜙𝑙𝑜𝑐𝑎𝑙 (𝑠
′
) +𝜙𝑚𝑢𝑡𝑢𝑎𝑙 (𝑠

′
) +𝜙𝑔𝑙𝑜𝑏𝑎𝑙 (𝑠

′
). To have minimum interference

with the reward, a penalty is only added when a safety objective is

violated i.e,𝜙𝑙𝑜𝑐𝑎𝑙∨𝑚𝑢𝑡𝑢𝑎𝑙∨𝑔𝑙𝑜𝑏𝑎𝑙 (𝑠
′
) < 0 making 𝜙𝑥 (𝑠′) < 0. The in-

clusion of penalties for all violated safety specifications pushes the

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1609

Algorithm 1: Policy Refinement for Type-1 Trajectories

Input: Policy 𝜋𝑜𝑙𝑑 , Critic 𝑉𝑜𝑙𝑑 , Failure Trajectories b 𝑓

Function Refine_Policy_1(𝜋𝑜𝑙𝑑 ,𝑉𝑜𝑙𝑑 , b 𝑓):
𝜋𝑠𝑢𝑏 ,𝑉𝑠𝑢𝑏 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒()

for each b 𝑓𝑙 in b 𝑓 do
𝑡𝑟𝑎 𝑗 = []

𝑠𝑖𝑡𝑙
= 𝑠0

𝑡𝑙

while not(𝑒𝑛𝑣 .𝑑𝑜𝑛𝑒) do
𝑎𝑖𝑡𝑙

= 𝜋𝑠𝑢𝑏 (𝑠𝑖𝑡𝑙
)

𝑠′ = 𝑒𝑛𝑣 .𝑎𝑝𝑝𝑙𝑦(𝑎𝑖𝑡𝑙
)

if 𝜙𝑙𝑜𝑐𝑎𝑙 (𝑠′) ∨ 𝜙𝑚𝑢𝑡𝑢𝑎𝑙 (𝑠
′
) ∨ 𝜙𝑔𝑙𝑜𝑏𝑎𝑙 (𝑠

′
) < 0 then

𝑟 𝑖𝑡𝑙
= 𝑟 𝑖𝑡𝑙

+ 𝛽𝑡 ∗ (𝜙𝑥 (𝑠′) − 𝑡)

end
𝑡𝑟𝑎 𝑗 = 𝑡𝑟𝑎 𝑗 ∪ (𝑠𝑖𝑡𝑙

, 𝑎𝑖𝑡𝑙
, 𝑟 𝑖𝑡𝑙

), 𝑠𝑖𝑡𝑙
= 𝑠′

end
Train 𝜋𝑠𝑢𝑏 ,𝑉𝑠𝑢𝑏 using (𝑡𝑟𝑎 𝑗)

end
𝜋𝑢𝑝𝑑𝑎𝑡𝑒 ,𝑉𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑈𝑝𝑑𝑎𝑡𝑒(𝜋𝑜𝑙𝑑 ,𝑉𝑜𝑙𝑑 , 𝜋𝑠𝑢𝑏 ,𝑉𝑠𝑢𝑏 , b 𝑓)

Algorithm 2: Updating the Old Policy

Input: Old Policy 𝜋𝑜𝑙𝑑 , Old Critic 𝑉𝑜𝑙𝑑 , Policy 𝜋𝑠𝑢𝑏 , Critic

𝑉𝑠𝑢𝑏 , b 𝑓

Function Update(𝜋𝑜𝑙𝑑 ,𝑉𝑜𝑙𝑑 , 𝜋𝑠𝑢𝑏 ,𝑉𝑠𝑢𝑏 , b 𝑓):
for each b 𝑓𝑙 in b 𝑓 do

Collect new actions and log probabilities

corresponding to b 𝑓𝑙 from 𝜋𝑠𝑢𝑏

Calculate Advantage Estimate A𝑙 using 𝑉𝑠𝑢𝑏
if A𝑙 is positive then

Update (𝜋𝑜𝑙𝑑 ,𝑉𝑜𝑙𝑑) to (𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ,𝑉𝑢𝑝𝑑𝑎𝑡𝑒𝑑) by

maximizing clipped objective, minimizing MSE

using (𝜋𝑠𝑢𝑏 ,𝑉𝑠𝑢𝑏)

end
end

policy towards choosing the safest path for all the agents. Following

from example, agent 𝐴2 will now prefer (2, 1)

𝑛𝑜−𝑎𝑐𝑡𝑖𝑜𝑛−−−−−−−−−→ (2, 1) and

then (2, 1)

𝑢𝑝
−−→ (1, 1) as directly taking the 𝑢𝑝 action would garner

a negative penalty for collision.

To alleviate the second problem, we consider the advantage of the

chosen action for all the agents during the update. The advantage is

calculated using the sub-critic network𝑉𝑠𝑢𝑏 , trained along with the

sub-actor network to accommodate both reward and safety. The

update rule given in Eq:3 for a particular state belonging to a failure

trajectory 𝑠𝑖𝑡𝑙
∈ b 𝑓𝑙 is modified as below:

_𝑖𝑡𝑙 (\) =

𝜋𝑖
𝑜𝑙𝑑

(𝑎𝑖𝑡𝑙
|𝑠𝑖𝑡𝑙)

𝜋𝑖
𝑠𝑢𝑏

(𝑎𝑖𝑡𝑙
|𝑠𝑖𝑡𝑙)

× A𝑖𝑡𝑙 (4)

Where A𝑖𝑡 = Σ
𝑇
𝑡=0

𝑟 𝑖𝑡 (𝑠𝑖𝑡 , 𝑎
𝑖
𝑡) −𝑉𝑠𝑢𝑏 (𝑠𝑖𝑡). The update is only allowed

when the advantage of taking all actions 𝑎𝑙 in policy 𝜋𝑠𝑢𝑏 for fail-

ure trajectory b 𝑓𝑙 is positive with respect to the sub critic network

𝑉𝑠𝑢𝑏 . The reason for choosing a sub-critic network for calculating

Algorithm 3: Policy Refinement for Type-2 Trajectories

Input: Policy 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 , Critic 𝑉𝑢𝑝𝑑𝑎𝑡𝑒𝑑 , b
′
𝑓

Function Refine_Policy_2(𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ,𝑉𝑢𝑝𝑑𝑎𝑡𝑒𝑑 , b
′
𝑓
):

𝜋𝑠𝑎𝑓 𝑒 ,𝑉𝑠𝑎𝑓 𝑒 = 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ,𝑉𝑢𝑝𝑑𝑎𝑡𝑒𝑑

for each b 𝑓𝑙 in b ′
𝑓
do

Calculate saddle state 𝑠𝑖
𝑘𝑙

𝑡𝑟𝑎 𝑗 = []

𝑠𝑖𝑡𝑙
= 𝑠𝑖

𝑘𝑙

while not(𝑒𝑛𝑣 .𝑑𝑜𝑛𝑒) do
𝑎𝑖𝑡𝑙

= 𝜋𝑠𝑎𝑓 𝑒 (𝑠𝑖𝑡𝑙
)

𝑠′ = 𝑒𝑛𝑣 .𝑎𝑝𝑝𝑙𝑦(𝑎𝑖𝑡𝑙
)

if 𝜙𝑙𝑜𝑐𝑎𝑙 (𝑠′) ∨ 𝜙𝑚𝑢𝑡𝑢𝑎𝑙 (𝑠
′
) ∨ 𝜙𝑔𝑙𝑜𝑏𝑎𝑙 (𝑠

′
) < 0 then

𝑟 𝑖𝑡𝑙
= 𝛽𝑡 ∗ (𝜙𝑥 (𝑠′) − 𝑡)

end
if 𝜙𝑥 (𝑠) ≈ 0 then

𝑟 𝑖𝑡𝑙
= 𝛿

end
𝑡𝑟𝑎 𝑗 = 𝑡𝑟𝑎 𝑗 ∪ (𝑠𝑖𝑡𝑙

, 𝑎𝑖𝑡𝑙
, 𝑟 𝑖𝑡𝑙

), 𝑠𝑖𝑡𝑙
= 𝑠′

end
Train 𝜋𝑠𝑎𝑓 𝑒 ,𝑉𝑠𝑎𝑓 𝑒 using (𝑡𝑟𝑎 𝑗)

end

the advantage is further elaborated while discussing Type-2 refine-

ment. The updated network post Type-1 corrections are referred

to as 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 and contain the trajectories that can reach the goal

without violating any safety specification. The refinement process

of Type-1 trajectories is described in Algorithm 1, and the update

function is given in Algorithm 2.

4.2 Refinement of Type-2 Trajectories
Type-2 trajectories have no safe path to the goal state but have a

path to a safe region. All counterexample trajectories not corrected

by Type-1 refinement are treated as Type-2 trajectories. Trajectory

2 in Example 4.1 is a Type-2 trajectory. It is important to note that

an agent can have multiple safe regions. For example, agents𝐴1 and

𝐴2 can also take {no-action} repeatedly and be safe. We shall choose

the updated trajectory that is closest to the original trajectory. With

minimum deviation from the original policy, Trajectory 2 will be

updated as follows:

Updated Trajectory 2

A1
(4, 0)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (4, 1)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (4, 2)

𝑢𝑝
−−→ (3, 2)

𝑛𝑜−𝑎𝑐𝑡−−−−−→ (3, 2) . . .
𝑛𝑜−𝑎𝑐𝑡−−−−−→ (3, 2)

A2
(5, 0)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (5, 1)

𝑟𝑖𝑔ℎ𝑡
−−−−→ (5, 2)

𝑢𝑝
−−→ (4, 2)

𝑛𝑜−𝑎𝑐𝑡−−−−−→ (4, 2) . . .
𝑛𝑜−𝑎𝑐𝑡−−−−−→ (4, 2)

On Type-2 failure trajectories, which were not corrected after the

first update, we train on 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 to obtain new policy 𝜋𝑠𝑎𝑓 𝑒 . 𝜋𝑠𝑎𝑓 𝑒
and critic 𝑉𝑠𝑎𝑓 𝑒 are trained using rewards, 𝑅𝑡 = 𝑟𝑡 until the agent

moves close to the violation of the specification but does not violate

it i.e, 𝜙𝑥 (𝑠′) > 0. If 𝜙𝑥 (𝑠′) is close to 0, the policy receives a positive

reward of 𝑅𝑡 = 𝛿 . Close to zero denotes the last real positive value

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1610

obtained by 𝜙𝑥 (𝑠′) before it becomes 0. When valuation 𝜙𝑥 (𝑠′) <
0 then the policy receives only penalties 𝑅𝑡 = 𝛽𝑡 ∗ (𝜙𝑥 (𝑠′) − 𝑡).

The penalty increases with an increase in the margin of violation

with each time step 𝑡 . The reward of the trajectory is not included

beyond 𝜙𝑥 (𝑠′) ≈ 0 as the primary objective of 𝜋𝑠𝑎𝑓 𝑒 is to find

safe regions rather than reach the goal. To minimize the deviation

from the original trajectory 𝜋𝑠𝑎𝑓 𝑒 is initialized with 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 . The

clipped ratio training using 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 ensures that the trajectories

of 𝜋𝑠𝑎𝑓 𝑒 have a marginal deviation from 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 . The advantage

is calculated using 𝑉𝑠𝑎𝑓 𝑒 i.e, A𝑖𝑡 = 𝑄𝑠𝑎𝑓 𝑒 (𝑠𝑖𝑡 , 𝑎
𝑖
𝑡) − 𝑉𝑠𝑎𝑓 𝑒 (𝑠𝑖𝑡). The

reason for calculating the advantage with respect to the sub-critic

is explained with the following example:

Example 4.2. Let us consider the policy of only agent 𝐴1 for
Trajectory 2 from Ex. 4.1 with 𝛾 = 1 from saddle state 𝑠 = (3, 2)

and with only one specification, 𝑟𝑒𝑤𝑎𝑟𝑑(𝑠𝑡𝑎𝑡𝑒) + 2 ≥ 0. From state
(3, 2) the reward of taking {up} action is given by: 𝑄𝑟𝑒𝑤𝑎𝑟𝑑 (𝑠,𝑢𝑝) =

−3 + 3 − 1 − 1 − 1 + 10 = 7. Now changing the action {up} to {no-
action} will generate the following Q value in terms of the reward,
𝑄𝑟𝑒𝑤𝑎𝑟𝑑 (𝑠, no-action) = −2−2−2−2−2−2 = −10, which will gener-
ate a negative advantage when calculated in terms of the reward critic,
𝑉𝑜𝑙𝑑 . However, when calculated in terms of the safety critic, 𝑉𝑠𝑎𝑓 𝑒 ,
that is learned on the function, 𝜙(𝑠) = 𝑟𝑒𝑤𝑎𝑟𝑑(𝑠𝑡𝑎𝑡𝑒) + 2, we obtain
𝑄𝑠𝑎𝑓 𝑒 (𝑠, no-action) = 𝛿 + 𝛿 + 𝛿 + 𝛿 + 𝛿 + 𝛿 = 6𝛿 . This gives a positive
advantage when calculated with 𝑉𝑠𝑎𝑓 𝑒 . Similarly, 𝑉𝑠𝑢𝑏 will generate
a positive advantage for actions that respect safety along with reward.
Hence, the advantage is calculated in terms of the critic trained via
incorporation of reward and penalty in 𝑉𝑠𝑢𝑏 for Type-1 trajectories
and in terms of penalty only in 𝑉𝑠𝑎𝑓 𝑒 for Type-2 trajectories.

Further action shaping using ratio update is not required in

the case of Type-2 trajectories as the updated policy 𝜋𝑢𝑝𝑑𝑎𝑡𝑒𝑑 is

changed directly during training. It is important to note that train-

ing a separate sub-policy is required in the case of Type-1 trajec-

tories because we want the policy to explore alternate safer paths

towards the goal, which may not be close to the original policy.

The refinement process of Type-2 trajectories is described in Al-

gorithm 3. We show that even though trajectories in 𝜋𝑠𝑎𝑓 𝑒 have

less reward, under a proper choice of 𝛽𝑡 , the refinement improves

the network monotonically towards safety. Monotonic improve-

ment means [(𝜋 ′) > [(𝜋) at each update step where [[16] is the

performance measure with respect to safety.

Proposition 4.5. A modified trajectory b ′
𝑓𝑙
in 𝜋𝑠𝑎𝑓 𝑒 has equal or

less reward corresponding to its failure trajectory b 𝑓𝑙 in 𝜋𝑜𝑙𝑑
Assumption: 𝜋𝑜𝑙𝑑 converges to an optimal reward for all trajectories.
Proof: For the saddle state 𝑠𝑖

𝑘𝑙
the action 𝑎𝑖

𝑘𝑙
, proposed by 𝜋𝑜𝑙𝑑 , takes

the agent to an unsafe state in b 𝑓𝑙 . An alternate action 𝑎
′𝑖
𝑘𝑙

is proposed

by 𝜋𝑠𝑎𝑓 𝑒 for 𝑠𝑖
𝑘𝑙

modifying the trajectory to b ′
𝑓𝑙
. Since 𝜋𝑜𝑙𝑑 is optimal

𝑄𝑜𝑙𝑑 (𝑠𝑖
𝑘𝑙
, 𝑎

′𝑖
𝑘𝑙

) ≤ 𝑄𝑜𝑙𝑑 (𝑠𝑖
𝑘𝑙
, 𝑎𝑖

𝑘𝑙
). In general, such repeated refinements

lead 𝜋𝑠𝑎𝑓 𝑒 to have trajectories with less reward than 𝜋𝑜𝑙𝑑 .

Proposition 4.6. 𝜋𝑜𝑙𝑑 monotonically increases towards safety
through the update steps if 𝛽ℎ >

𝑟ℎ
−(𝜙𝑥 (𝑠′)−ℎ)

, where 𝐻 is the horizon
of the trajectory following old policy 𝜋𝑜𝑙𝑑 and ℎ ∈ 0 . . . 𝐻 and 𝑠′

is a next state violating a safety specification i.e, 𝑠′ : 𝜙𝑙𝑜𝑐𝑎𝑙 (𝑠
′
) ∨

𝜙𝑚𝑢𝑡𝑢𝑎𝑙 (𝑠
′
) ∨ 𝜙𝑔𝑙𝑜𝑏𝑎𝑙 (𝑠

′
) < 0

Proof: Let us first consider a single-agent setting. The policy perfor-
mance of another policy 𝜋 ′ in terms of original policy 𝜋𝑜𝑙𝑑 or 𝜋 can
be expressed using the identity given by [16].

[(𝜋 ′) − [(𝜋) = E𝜏∼𝜋 ′ [Σ∞
𝑡=0

𝛾𝑡A(𝑠𝑡 , 𝑎𝑡)] (5)

where the expected discounted reward [(𝜋) = E[Σ
∞
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡)]. It is
guaranteed that any policy update that yields a non-negative expected
advantage i.e, Σ𝑎𝜋

′
(𝑎 |𝑠) × A𝜋 ≥ 0, increases the policy performance

[[22]. We shall start our analysis from a saddle state sampled from
failure trajectory 𝑠𝑘 ∼ b 𝑓 . Eq: 5 changes as follows:

[(𝜋 ′) − [(𝜋)

=E𝑠𝑘∼b𝑓 [Σ
∞
𝑡=𝑘

𝛾𝑡−𝑘A(𝑠𝑡 , 𝑎𝑡)]

=E𝑠𝑘∼b𝑓 [Σ
∞
𝑡=𝑘

𝛾𝑡−𝑘𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾𝑉 𝜋
(𝑠𝑡+1) −𝑉 𝜋

(𝑠𝑡)]

=E𝑠𝑘∼b𝑓 [Σ
∞
𝑡=𝑘

𝛾𝑡−𝑘𝑟 (𝑠𝑡 , 𝑎𝑡) + Σ
∞
𝑡=𝑘+1

𝛾𝑡−𝑘+1𝑉 𝜋
(𝑠𝑡) − Σ

∞
𝑡=𝑘

𝛾𝑡−𝑘𝑉 𝜋
(𝑠𝑡)]

=E𝑠𝑘∼b𝑓 [Σ
∞
𝑡=𝑘

𝛾𝑡−𝑘𝑟 (𝑠𝑡 , 𝑎𝑡) −𝑉 𝜋
(𝑠𝑘)]

=E𝑠𝑘∼b𝑓 [Σ
∞
𝑡=𝑘

𝛾𝑡−𝑘𝑟 (𝑠𝑡 , 𝑎𝑡) − {Σ𝐻
ℎ=𝑘

𝛾ℎ−𝑘 (𝑟 (𝑠ℎ) + 𝛽ℎ × (𝜙𝑥 (𝑠′) − ℎ))}]
where 𝐻 is the horizon of the trajectory following old policy 𝜋 . Since
we want [(𝜋 ′) − [(𝜋) > 0, the expectation can be removed as it is
an average over the length of the trajectory. Now, [Σ

∞
𝑡=𝑘

𝛾𝑡−𝑘𝑟 (𝑠𝑡 , 𝑎𝑡)]

is a positive quantity as either it reaches goal or gets a reward of 𝛿
from Algo 1 or Algo 3. In order to have policy improvement we need
to ensure 𝛾ℎ−𝑘 (−𝑟 (𝑠ℎ) − (𝛽ℎ × (𝜙𝑥 (𝑠′) − ℎ))) > 0. From this it follows:

𝛽ℎ >
𝑟ℎ

−(𝜙𝑥 (𝑠′) − ℎ)

(6)

The result also holds for a multi-agent setting if independent ratios in
Eq. 1 are bound under a centralized trust region ([27], theorem 4.3).
The independent ratio bounded between _𝑖 ∈ [1 − 𝛼

𝑀
, 1 +

𝛼
𝑀

], where
M is the number of agents and 𝛼 is the trust region constraint, is a
sufficient condition to enforce the centralized trust region constraint
([27], Eq. 10).

5 EMPIRICAL STUDIES
To evaluate our strategy, we use the multi-walker environment

from [28], custom Cooperative ACC environment, and Multi-agent

Ant environment from Safe Multi-Agent Mujoco environments [13].

The experiments were run on a machine with AMD Ryzen 4600h

six-core processor and GeForce GTX 1660 Graphics unit. For calcu-

lating the distance between the policies 𝜋𝑜𝑙𝑑 and 𝜋𝑠𝑎𝑓 𝑒 , we sample

n=1000 random trajectories b from 𝜋𝑜𝑙𝑑 and their corresponding

trajectories b ′ from 𝜋𝑠𝑎𝑓 𝑒 along with the failure trajectories and

the updated trajectories. We then measure the difference of states

visited between the trajectories through metric 𝐷𝑣 proposed in [8].

𝐷𝑣 (𝜋𝑜𝑙𝑑 | | 𝜋𝑠𝑎𝑓 𝑒) =

1

𝑛

∑︁
b𝑖 ,b

′
𝑖
∈b

√︄ ∑︁
𝑠𝑖 ,𝑠

′
𝑖
∈b𝑖 ,b ′𝑖

��
(𝑠𝑖)𝜋𝑜 − (𝑠′

𝑖
)𝜋𝑠

��2
(7)

The environments, parameter bounds on the uncertain variables,

safety specifications, number of original counterexample traces,

number of counterexamples traces after Type-1 and Type-2 refine-

ment, and the mean variation distance, along with the standard

deviation, between the original and refined policy are summarised

in Table 1. The environments are briefly described below:

Multi-Walker Environment: The environment has a set of

bipedal robots with a package placed on top of them. The goal is to

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1611

Figure 3: Reward and training time plots for original, sub-policy, and refinement of Type-2 trajectory for a) Multi-walker
Environment b) Cooperative ACC Environment c) Multi-agent Ant Environment. A counterexample for e) Local Specification, f)
Mutual Specification, h) Global Specification h) A refined trajectory from Type-2 refinement where the walkers prefer balancing
the pole and standing.

Table 1: Parameter bounds on uncertain variables, safety specifications, counterexamples after BO testing, counterexamples
after Type-1 (T1) and Type-2 (T2) refinement, and distance between the original and the refined policies.

Environment Parameter Bounds Safety Specification Type Counterexamples T1 T2 Distance (n=1000)

MultiWalker

agent.hull_angle : (0,2 ∗ 𝜋)
agent.velocity_x : (-1,1)

agent.velocity_y : (-1,1)

Local : walker[i].hull_angle >0.2 133 6 0

2.97 ± 1.33Mutual : distance(walker[i],walker[j]) ≥ 0 12 1 0

Global : package.angle ≥ 0.25 11 1 0

Cooperative ACC

mid_car.pos_y : (0,5)

car.velocity : (-1,1)

rear_car.pos_y : (0,3)

Local : car[i].path_error <0.5 25 0 –

7.09 ± 0.18Mutual : distance(car[i],car[j]) >0 50 5 0

Global : ∀𝑖, 𝑗 ∈ 𝑐𝑎𝑟 𝑑𝑖𝑠𝑡 (𝑖, 𝑗) > 0 =⇒ 𝑠𝑝𝑒𝑒𝑑𝑝𝑙𝑎𝑡𝑜𝑜𝑛 > 0 21 0 –

Multiagent Ant

torso_pos : (-1,1)

torso_velocity : (-1,1)

Local : wall_distance𝑙𝑒 𝑓 𝑡 <-1.8 ∨ wall_distance𝑟𝑖𝑔ℎ𝑡 >1.8 115 10 0

5.093 ± 1.574Global : Contact𝑟𝑖𝑔ℎ𝑡 >1 ∧ Contact𝑙𝑒 𝑓 𝑡 >1 70 22 10

carry the package as far right as possible through coordination. We

consider two agents with 6 six sources of uncertainty as mentioned

in Table 1. The original MAPPO policy is tested against the follow-

ing safety specifications: 1) Local: The hull angle of each walker is

greater than 0.2; 2) Mutual: The walkers must not collide; and 3)

Global: The package is not touching the ground. The visualization

for a counterexample for each specification is shown in Fig 3 (e,f,g).

Fig 3h) shows a trace obtained as a result of secondary training

where the walkers prefer to balance and stand rather than take an

unsafe action to reach the goal.

Cooperative Adaptive Cruise Control (CACC) Environment:
CACC is an extension of the Adaptive Cruise Control problem

where the aim is to drive a platoon of vehicles in a harmonized

manner [30] (details in Appendix A [6]). We consider a platoon of

3 vehicles controlled as an AEC game. We consider four sources of

disturbances in the system. We want the following specifications

to be maintained: 1) Local: Each car should not deviate from its

path predefined through way-points, 2) Mutual: No vehicle collides

and 3) Global: If all the cars are at a safe distance, then the platoon

should be moving.

Multi-agent Ant Environment: In this environment from [13],

the objective is to control a robotic ant through different legs, each

treated as an agent while keeping a safe distance from nearby

obstacles. For testing, the initial torso position and velocity are

chosen to be uncertain. The safety specifications ensure that locally

none of the legs hit the obstacle, and globally the torso does not

get imbalanced. We observe that after the secondary training, ten

counterexamples remain uncorrected. The trajectories for these

counterexamples start at irrecoverable states.

We choose a reward-optimized policy to uncover maximum coun-

terexamples for refinement. In Fig 3, we report the reward per

training step plots for the original policies, sub-policies 𝜋𝑠𝑢𝑏 , and

secondary training for 𝜋𝑠𝑎𝑓 𝑒 . 𝜋𝑠𝑢𝑏 takes less time to train as it is

only trained on counterexample traces and converges to a reward

less than or equal to the original policy supporting proposition

4.5. In our experiments, we required 25 updates to the original

policy for multi-walker, 10 updates for CACC, and 40 updates for

multi-ant on the original policy for Type-1 refinement. For Type-2

trajectories, training 𝜋𝑠𝑎𝑓 𝑒 takes further less time as the number of

counterexamples reduces post-first refinement. Our experiments

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1612

Figure 4: Plots of Bayesian Optimization samples collected and the objective function value for different a) Local b) Mutual c)
Global specifications in themulti-walker environment. Plots d) e) f) illustrate samples collected from 𝜋𝑠𝑎𝑓 𝑒 for each specification.

Figure 5: Comparison with baselines w.r.t training time and
percentage of counterexamples corrected.

took 45K steps for multi-walker, 18K steps for CACC, and 4M steps

for multi-ant (Appendix B [6]).

We consider the following baselines for comparison. 1) Policy A:

A MAPPO policy trained from scratch with a combined penalty

for specification violation and counterexample traces without im-

portance 𝛽𝑡 after one iteration of testing with BO 2) Policy B: A

MAPPO policy refined only based on the individual specification

violated and advantage set to 1 without secondary training as used

in [8] 3) Policy C: Policy refined through the strategies proposed

in this paper. The training time for each policy, along with the

percentage of counterexamples corrected, is reported in Figure 5.

We observe Policy A takes the highest time to train as it is trained

from scratch but corrects the lowest amount of counterexamples

due to the non-inclusion of 𝛽 . Policy B has less training time as

there is no secondary training involved but reports uncorrected

counterexamples. Policy C, which is our strategy, has the highest

number of counterexamples corrected in all three environments.

Policy B and C are both refinement techniques and thus have sim-

ilar training times. We report the value of the samples selected

and the corresponding objective function evaluation for different

specifications in the multi-walker environment in Figure 4 a), b),

c). Though multiple state variables contribute to the violation of

the specification, only samples of hull angle are plotted for com-

prehensibility. To demonstrate that the refinement methodology

corrects the old counterexamples without introducing any new

counterexamples to the policy, we retest the refined policy 𝜋𝑠𝑎𝑓 𝑒
with 200 BO iterations. Figure 4 d), e), f) illustrates that all objective

evaluations are positive for all specifications in 𝜋𝑠𝑎𝑓 𝑒 .

6 CONCLUSION
Testing and refinement of MARL policies are critical for their de-

ployment in real-world applications. To the best of our knowledge,

we present the first counterexample-guided refinement strategy for

a cooperative multi-agent learning setting. The refinement algo-

rithm incorporates both paths that can reach the goal safely and

paths that can terminate in a safe region through targeted gradient

updates. A limitation of this work lies in assuming the safety predi-

cates to be smooth and continuous functions of the trajectory to

estimate their valuations through Gaussian Process. In the future,

the authors would like to extend the strategy for providing formal

guarantees of safety through formal verification methods and apply

the methodology in competitive and mixed settings.

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1613

ACKNOWLEDGMENTS
The authors would like to thank TCS Research Scholarship for

partially supporting this project.

REFERENCES
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

Policy Optimization. In Proceedings of the 34th International Conference onMachine
Learning - Volume 70 (ICML’17). JMLR.org, Sydney, NSW, Australia, 22–31.

[2] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer,

Scott Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shield-

ing. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-
gence and Thirtieth Innovative Applications of Artificial Intelligence Conference
and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence
(AAAI’18/IAAI’18/EAAI’18). AAAI Press, New Orleans, Louisiana, USA, Article

326, 10 pages.

[3] Steven Carr, Nils Jansen, Ralf Wimmer, Alexandru Constantin Serban, Bernd

Becker, and Ufuk Topcu. 2019. Counterexample-Guided Strategy Improvement

for POMDPs Using Recurrent Neural Networks. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019. ijcai.org, Macao, China, 5532–5539. https://doi.org/10.

24963/ijcai.2019/768

[4] Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and

Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems through Bayesian

Optimization. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 170 (Sept. 2017),
18 pages. https://doi.org/10.1145/3126521

[5] Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk

Topcu, and Lu Feng. 2021. Safe Multi-Agent Reinforcement Learning via Shield-

ing. In Proceedings of the 20th International Conference on Autonomous Agents
and MultiAgent Systems (Virtual Event, United Kingdom) (AAMAS ’21). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland,

SC, 483–491.

[6] Briti Gangopadhyay. 2023. Counterexample-Guided Policy Refinement in

Multi-Agent Reinforcement Learning (Code and Supplement) [Available on-

line]. https://github.com/britig/Counterexample-Guided-Policy-Refinement-in-

Multi-Agent-Reinforcement-Learning.

[7] Briti Gangopadhyay et al. 2022. Refinement Of Reinforcement Learning Algo-

rithms Guided By Counterexamples. In 2022 IEEE Women in Technology Con-
ference (WINTECHCON). IEEE, Bangalore,India, 1–6. https://doi.org/10.1109/

WINTECHCON55229.2022.9832063

[8] Briti Gangopadhyay and Pallab Dasgupta. 2021. Counterexample Guided RL

Policy Refinement Using Bayesian Optimization. In Advances in Neural Informa-
tion Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and

J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., Sydney, Australia,

22783–22794.

[9] Briti Gangopadhyay, Pallab Dasgupta, and Soumyajit Dey. 2022. Safe and

Stable RL (S2RL) Driving Policies Using Control Barrier and Control Lya-

punov Functions. IEEE Transactions on Intelligent Vehicles (2022), 1–1. https:

//doi.org/10.1109/TIV.2022.3160202

[10] B. Gangopadhyay, S. Khastgir, S. Dey, P. Dasgupta, G. Montana, and P. Jennings.

2019. Identification of Test Cases for Automated Driving Systems Using Bayesian

Optimization. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC).
IEEE, Auckland, New Zealand, 1961–1967. https://doi.org/10.1109/ITSC.2019.

8917103

[11] Javier García and Fernando Fernández. 2015. A Comprehensive Survey on Safe

Reinforcement Learning. J. Mach. Learn. Res. 16, 1 (jan 2015), 1437–1480.

[12] S. Ghosh, F. Berkenkamp, G. Ranade, S. Qadeer, and A. Kapoor. 2018. Verifying

Controllers Against Adversarial Examples with Bayesian Optimization. In 2018
IEEE International Conference on Robotics and Automation (ICRA). IEEE, Brisbane,
Australia, 7306–7313. https://doi.org/10.1109/ICRA.2018.8460635

[13] Shangding Gu, Jakub Grudzien Kuba, Muning Wen, Ruiqing Chen, Ziyan Wang,

Zheng Tian, Jun Wang, Alois C. Knoll, and Yaodong Yang. 2021. Multi-Agent

Constrained Policy Optimisation. CoRR abs/2110.02793 (2021). arXiv:2110.02793

https://arxiv.org/abs/2110.02793

[14] Hanbin Hu, Peng Li, and Jianhua Z. Huang. 2018. Parallelizable Bayesian opti-

mization for analog and mixed-signal rare failure detection with high coverage.

In Proceedings of the International Conference on Computer-Aided Design, ICCAD
2018, San Diego, CA, USA, November 05-08, 2018, Iris Bahar (Ed.). ACM, San Diego,

CA, USA, 98. https://doi.org/10.1145/3240765.3240835

[15] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey

Levine. 2021. How to train your robot with deep reinforcement learning: lessons

we have learned. The International Journal of Robotics Research 40, 4-5 (2021),

698–721.

[16] Sham Kakade and John Langford. 2002. Approximately Optimal Approximate

Reinforcement Learning. In Proceedings of the Nineteenth International Conference
onMachine Learning (ICML ’02). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 267–274.

[17] Prabuchandran K.J., Hemanth Kumar A.N, and Shalabh Bhatnagar. 2014. Multi-

agent reinforcement learning for traffic signal control. In 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC). IEEE, Qingdao, 2529–2534.
https://doi.org/10.1109/ITSC.2014.6958095

[18] Martin Lauer and Martin A. Riedmiller. 2000. An Algorithm for Distributed

Reinforcement Learning in Cooperative Multi-Agent Systems. In Proceedings of
the Seventeenth International Conference on Machine Learning (ICML ’00). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 535–542.

[19] Michael L. Littman. 1994. Markov Games as a Framework for Multi-Agent

Reinforcement Learning. In Proceedings of the Eleventh International Conference
on International Conference on Machine Learning (New Brunswick, NJ, USA)

(ICML’94). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 157–163.

[20] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In

Proceedings of the 31st International Conference on Neural Information Processing
Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red

Hook, NY, USA, 6382–6393.

[21] Alex Ray, Joshua Achiam, and Dario Amodei. 2019. Benchmarking Safe Explo-

ration in Deep Reinforcement Learning.

[22] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

2015. Trust Region Policy Optimization. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 37), Francis Bach and David Blei (Eds.). PMLR, Lille, France, 1889–1897.

https://proceedings.mlr.press/v37/schulman15.html

[23] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. 2016. Taking

the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 104,

1 (2016), 148–175. https://doi.org/10.1109/JPROC.2015.2494218

[24] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe, Multi-

Agent, Reinforcement Learning for Autonomous Driving. CoRR abs/1610.03295

(2016). arXiv:1610.03295 http://arxiv.org/abs/1610.03295

[25] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George Driessche, Thore

Graepel, and Demis Hassabis. 2017. Mastering the game of Go without human

knowledge. Nature 550 (10 2017), 354–359. https://doi.org/10.1038/nature24270

[26] Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den

Broeck. 2020. Counterexample-Guided Learning of Monotonic Neural Networks.

In Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc., Red Hook,

NY, USA, Article 1001, 13 pages.

[27] Mingfei Sun, Sam Devlin, Katja Hofmann, and Shimon Whiteson. 2022. Mono-

tonic Improvement Guarantees under Non-stationarity for Decentralized PPO.

CoRR abs/2202.00082 (2022). arXiv:2202.00082 https://arxiv.org/abs/2202.00082

[28] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari,

Ryan Sullivan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo

Perez-Vicente, Niall Williams, Yashas Lokesh, and Praveen Ravi. 2021. Pet-

tingZoo: Gym for Multi-Agent Reinforcement Learning. In Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.

Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., Syd-

ney, Australia, 15032–15043. https://proceedings.neurips.cc/paper/2021/file/

7ed2d3454c5eea71148b11d0c25104ff-Paper.pdf

[29] Justin K. Terry, Nathaniel Grammel, Benjamin Black, Ananth Hari, Caroline

Horsch, and Luis Santos. 2020. Agent Environment Cycle Games. ArXiv
abs/2009.13051 (2020).

[30] Ziran Wang, Guoyuan Wu, and Matthew J. Barth. 2018. A Review on Cooper-

ative Adaptive Cruise Control (CACC) Systems: Architectures, Controls, and

Applications. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE Press, Maui, HI, USA, 2884–2891. https://doi.org/10.1109/

ITSC.2018.8569947

[31] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and Yi

Wu. 2021. The Surprising Effectiveness of MAPPO in Cooperative, Multi-Agent

Games. ArXiv abs/2103.01955 (2021).

[32] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2019. Multi-agent reinforcement

learning: A selective overview of theories and algorithms. arXiv abs/1911.10635

(2019), 1–72. arXiv:1911.10635

[33] Junchen Zhao and Francesco Belardinelli. 2022. Safety-AwareMulti-Agent Ap-

prenticeship Learning. arXiv preprint arXiv:2201.08111 abs/2201.08111 (2022).
[34] Weichao Zhou and Wenchao Li. 2018. Safety-Aware Apprenticeship Learning.

In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.).

Springer International Publishing, Cham, 662–680.

Session 5A: Multiagent Reinforcement Learning III

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1614

https://doi.org/10.24963/ijcai.2019/768
https://doi.org/10.24963/ijcai.2019/768
https://doi.org/10.1145/3126521
https://github.com/britig/Counterexample-Guided-Policy-Refinement-in-Multi-Agent-Reinforcement-Learning
https://github.com/britig/Counterexample-Guided-Policy-Refinement-in-Multi-Agent-Reinforcement-Learning
https://doi.org/10.1109/WINTECHCON55229.2022.9832063
https://doi.org/10.1109/WINTECHCON55229.2022.9832063
https://doi.org/10.1109/TIV.2022.3160202
https://doi.org/10.1109/TIV.2022.3160202
https://doi.org/10.1109/ITSC.2019.8917103
https://doi.org/10.1109/ITSC.2019.8917103
https://doi.org/10.1109/ICRA.2018.8460635
https://arxiv.org/abs/2110.02793
https://arxiv.org/abs/2110.02793
https://doi.org/10.1145/3240765.3240835
https://doi.org/10.1109/ITSC.2014.6958095
https://proceedings.mlr.press/v37/schulman15.html
https://doi.org/10.1109/JPROC.2015.2494218
https://arxiv.org/abs/1610.03295
http://arxiv.org/abs/1610.03295
https://doi.org/10.1038/nature24270
https://arxiv.org/abs/2202.00082
https://arxiv.org/abs/2202.00082
https://proceedings.neurips.cc/paper/2021/file/7ed2d3454c5eea71148b11d0c25104ff-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7ed2d3454c5eea71148b11d0c25104ff-Paper.pdf
https://doi.org/10.1109/ITSC.2018.8569947
https://doi.org/10.1109/ITSC.2018.8569947
https://arxiv.org/abs/1911.10635

	Abstract
	1 Introduction
	2 RELATED WORKS
	3 PRELIMINARIES
	3.1 Multi Agent Reinforcement Learning
	3.2 Uncovering Counterexamples Using Bayesian Optimisation

	4 METHODOLOGY
	4.1 Refinement of Type-1 Trajectories
	4.2 Refinement of Type-2 Trajectories

	5 EMPIRICAL STUDIES
	6 Conclusion
	Acknowledgments
	References

