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ABSTRACT

Learning a multi-task policy is crucial in multi-agent reinforcement

learning (MARL). Recent work has focused on learning in the con-

text of online multi-task reinforcement learning, where a policy is

jointly trained from scratch, aiming to generalize well to few-shot

or even zero-shot tasks. However, existing online methods require

tremendous interactions and are therefore unsuitable for environ-

ments where interactions are expensive. In this work, we novelly

introduce the modularization for multi-task and multi-agent offline

pre-training (M3) to learn high-level transferable policy represen-

tations. We claim that the discrete policy representation is critical

for multi-task offline learning and accordingly leverage contexts

as a task prompt to enhance the adaptability of pre-trained mod-

els to various tasks. To disentangle multiple agents of variation

under heterogeneous and non-stationary properties even though

they receive the same task, we employ an agent-invariant VQ-VAE

to identify each of the multiple agents. We encapsulate the pre-

trained model as part of an online MARL algorithm and fine-tune it
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to improve generalization. We also theoretically analyze the gener-

alization error of our method. We test the proposed method on the

challenging StarCraft Multi-Agent Challenge (SMAC) tasks, and

empirical results show that it can achieve supreme performance

in few-shot or even zero-shot settings across multiple tasks over

state-of-the-art MARL methods.
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1 INTRODUCTION

Multi-agent reinforcement learning (MARL) is well suited for solv-

ing complex decision problems by controlling multiple agents and

has been preliminarily applied to various control scenarios [12], in-

cluding robot systems [33], autonomous driving [59], and resource
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utilization [9, 20]. As opposed to single-agent reinforcement learn-

ing, the main challenge of MARL is that all the agents must interact

and that their returns depend on the overall behavior, which usu-

ally requires many samples. After sufficient exploration, agents

learn to collaborate effectively, but MARL still induces millions

of interactions. Therefore, the training complexity caused by the

multi-agent exploration is high, resulting in low sample efficiency.

In addition to the high sample efficiency requirement, the trained

policy needs to generalize to many tasks to avoid extra training

costs [5]. Particularly in the training and inference stages of new

scenarios, sample efficiency and generalizability play a crucial role

in reinforcement learning. To reduce the complexity of multiple

tasks, multi-task reinforcement learning (MTRL) is a promising

approach for training agents in the real world [42, 54].

Generally, MTRL, in the single-agent case, trains policies via

multi-task learning based on the learning architecture in three ways,

which learn shared architectures to learn how to share parameters

among tasks: branch sharing, modular sharing, and conditional

architecture. 1) By sharing a backbone network and task-specific

heads across multiple tasks, agents are trained to learn different

policies in parameter-sharing methods [10]. Multi-task learning

typically involves hand-crafted networks with shared initial layers

that branch out at an arbitrary point or task-specific networks with

additional fusion mechanisms and feature sharing. 2) As opposed to

branch sharing, those methods provide an explicit representation

of the policy through a routing mechanism [50]. In the hidden layer,

policies can be routed from different modules to specific tasks. 3)

Furthermore, [39] leverages task metadata to learn context-based

representations that guide policy-learning experiences.

The above methods can be naturally extended to multi-agent

setup formulti-taskmulti-agent reinforcement learning (MT-MARL)

by sharing policies across agents or decentralizedmultiple agents [30].

MT-MARL is an open and challenging problem. Many practical

multi-task scenarios require the coordination of heterogeneous

agents, such as UAV cooperation and football games, in which vehi-

cles or players should take different formations and play different

roles across tasks for better coordination. In such scenarios, sharing

policies across agents may induce homogenization behaviors, and

handcrafting tasks for each agent is tedious and sometimes difficult.

Therefore, multi-agent policy learning is irreplaceable, and we focus

on another branch in which agents receive the same task context

but act differently. An easy-to-understand example is a football

game where multiple players work together for the same winning

goal, but different roles offer different policies. Despite building on

the multi-agent relations, they miss out on conducting a multi-task

multi-agent policy by leveraging offline data and fine-tuning it on-

line. There are considerable offline multi-task trajectories and task

descriptions in practical decision-making problems which have not

been fully employed. Early research attempts to pad the input and

output across different tasks to pre-train a unified multi-task policy

offline for the multi-agent problem [26].

This paper investigates multi-task learning for MARL and pro-

poses a novel offline pre-training method, M3. We train the policy

via a context-based generative model while quantizing the latent

space, then fine-tune it online in a simulated environment. Besides,

a novel policy representation learning scheme was proposed for op-

timization based on theoretical analysis. In the offline pre-training

…… ……

Figure 1: The graphical model of Contextual Markov Games

(CMG) ranges from timestep 𝑡 to 𝑡 + 1. The red line means the

transition to the next step. POMDP can split states 𝑠 as local
observations {𝑜𝑖 }

𝑛
𝑖=1.

stage, we split the trajectories of multiple agents individually as

the input of an encoder and partition the hidden space for discrim-

inating each agent. To reconstruct input trajectories, partitioned

agent-sharing representations are combined with task embeddings

and then quantized according to a learnable codebook. In addition,

the encoded representations are leveraged to map the expected

action. In the online fine-tuning stage, the pre-trained encoder is

loaded as an actor to construct a PPO-based algorithm for retraining.

Multiple agents then learn this policy by interacting with the envi-

ronment. The effect of each technique in M3, which revolves around

(and is necessary for) the multi-agent multi-task setting includes: 1)

We use VQ-VAE to extract transferable discrete policy representa-

tions in the latent space to deal with multi-task policy composition

as the modularization method. 2) We embed task context infor-

mation into the policy representation to prompt the multi-agent

policy under each task. 3) We design agent-specific shared modules

to discriminate each agent’s specific role in each task. The ablation

results demonstrate their importance.

Key contributions of this paper are summarized as follows: 1)

We present the first solution specifically designed for the offline

MT-MARL problem. 2) We introduce a novel discrete policy repre-

sentation learning method for multi-task transfer with theoretical

analysis, where we propose an agent-invariant network to extract

agent-sharing policy representation and an efficient way for con-

text incorporation. 3) Our method achieves state-of-the-art results

on challenging MT-MARL tasks.

2 RELATEDWORK

Offline MARL. Typically, in offline (MA)RL, a policy is trained

based on previously collected static demonstrations or trajectories

offline and evaluated directly in the online environment [13, 24].

It is mainly motivated by the expensive cost of interacting with

the environment. In addition, the offline RL algorithms will con-

strain the off-policy learning to fix the distributional shift problem

between offline and online stages [14, 22, 51]. In addition to these,

pre-training a policy from offline data and fine-tuning it by inter-

acting with the online environment arises in the need for efficient

reinforcement learning [27]. Furthermore, Chen et al. [6], Janner

et al. [21] propose that utilizing Transformers to encode trajectories

offline outperforms many state-of-the-art offline RL methods [45].

In addition, Meng et al. [26] extend the decision transformer to the
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multi-agent field, aiming at pre-training a policy and fine-tuning it

on downstream tasks. They collect samples from demonstrations in

which the buffer of the state-of-the-art policies on SMAC is used as

the multi-agent offline datasets [36]. They mainly conduct single-

task offline pre-training, and online fine-tuning, the related to us is

its variants by padding zero across multiple tasks. Therefore, we

set its variants as our baseline in experimental validation. In this

work, we apply this paradigm to the multi-task domain. Our ap-

proach learns the policy representation explicitly and modularizes

the hidden space in pre-training with a multi-task learning process.

In addition, we represent the policy well to capture a policy that

can be generalized quickly to subtasks.

Multi-task learning in RL. Multi-task reinforcement learn-

ing is mainly divided into two directions in research: online and

offline multi-task RL [12]. Early attempts at using multi-task in

RL online regard a single environment as a task and aggregate

multiple environments together [2, 5, 8]. A line for this branch

is to share a backbone across multiple tasks with task-specific

heads [10, 19], learn to effectively communicate among agents em-

ploying meta-reinforcement learning to identify communication

behaviors and extract information that facilitates the multi-task

training process [44], learn to distillation a unified policy from

single-task [30], or learn a skill-based hierarchical framework to

generalize [28]. Another line is to set the modular network for

multiple tasks using different combinations [11, 50]. Recently, the

other multi-task RL method has attracted more attention in of-

fline learning by utilizing static experiences collected from multiple

tasks [26] via meta-learning for fine-tuning or conservatively shar-

ing data [53, 57]. Also, related works on multi-objective MARL [34],

while mainly focusing on the perspective of utility or reward in a

fine granularity that is parallel with the task level. However, it has

not been investigated in offline MT-MARL settings. We split the of-

fline datasets based on the minimap types, pre-train a policy offline,

and fine-tune it in few-shot or zero-shot settings. A closely related

line of work is modular multi-task learning [3, 11, 50], which learns

the compositional models representing the different modules of the

multiple tasks to generalize to unseen tasks. In addition, Sodhani

et al. [38, 39] attempt to represent the policy in the latent space

by incorporating the task information for the multi-task problem.

In this work, we propose learning discrete policy representations

from offline multi-task data. Furthermore, similar to the intuition

of role-based methods for assigning agents with various roles auto-

matically [7, 47, 48], we further propose to improve the intra-agent

transfer to combine multi-agent with the offline multi-task settings

by introducing the agent-invariant module for fine-tuning online.

Representation Learning in RL. The need to learn generaliz-

able representations of observations, dynamics, actions, or policies

arises in the RL field. Srinivas et al. [40], Stooke et al. [41], Zhang

et al. [56] use contrastive learning and bisimulation methods to

extract hidden representations from observations. In action repre-

sentation, Agarwal et al. [1] attempt to learn transferable behaviors

across different scenarios. In addition, Hafner et al. [16, 17], Ozair

et al. [32] learn the world model in the latent space for better plan-

ning, and Grover et al. [15] learns policy representations in the

multi-agent field to transfer the learned policy to another task.

However, policy representation learning in offline MT-MARL has

not been well explored. Discrete latent-variable models dominate

many challenging tasks under semi-supervised and even unsu-

pervised learning, such as speech recognition and image classifica-

tion [4, 35, 58]. We hypothesize that discrete learnable hidden repre-

sentations can use VQ-VAE as an inductive bias to assist multi-task

learning with different combinations. In this work, we leverage the

discrete latent-variable model, VQ-VAE [31], to learn policy repre-

sentations from offline multi-agent trajectories, in which the latent

variable priors should be discretized by quantizing the continuous

hidden space in a variational autoencoder.

3 PRELIMINARY

3.1 Contextual Markov Games

We denote the Contextual Markov Games (CMG) as an extension of

the Contextual Markov Decision Process (CMDP) proposed by [18]

in a multi-agent setting and depict it in Figure 1.

Definition 3.1. (Contextual Markov Games): A Contextual

Markov Game with 𝑛 agents can be regarded as an extension of the

Contextual Markov Decision Process. Therefore, it is also defined with

a tuple 〈C,S,A,M, 𝑛,𝛾〉. M is a function which maps a context

𝑐 ∈ C to the reward and transition functionM(𝑐) = {𝑅𝑐 ,P𝑐 }.

The contexts can be viewed as task prompts in the multi-task

setting, where each task has a context for demonstrating the meta-

information. Here 𝑐 ∈ C denotes the context corresponding to

a task. C is the context space, S is the shared state space, A is

a joint action space across 𝑛 agents: A1 × · · · × A𝑛 −→ A, one

for each agent. P𝑐 (𝑠
′
|𝑠, 𝑎1, . . . , 𝑎𝑛) : S × A −→ S represents the

transition probability, 𝑅𝑐 (𝑠, 𝑎1, . . . , 𝑎𝑛) : S × A −→ R denotes the

reward function, 𝛾 is the discount factor, and 𝑛 is the agent number.

In this paper, we consider a shared state space but partial access

to the global state with local observation 𝑜𝑖 ∈ Ω according to an

observation function O(𝑠, 𝑖),𝑖 ∈ [1, 𝑛] for each agent, which is also

called Partial-Observed MDP (POMDP) [29]. We consider the CMG,

where each agent 𝑖 ∈ [1, 𝑛] maps the input observation 𝑜𝑖 ∈ Ω
and context 𝑐 ∈ C for a specific task to the action with the policy

𝜋𝑖 (𝑎 |𝑜𝑖 , 𝑐) : Ω×C −→ A𝑖 . Each agent aims to cooperate to maximize

their shared long-term team reward
∑
𝑡 𝛾
𝑡𝑟𝑡 , where 𝛾 denotes the

discount factor, 𝑟𝑡 ∈ 𝑅𝑐 denotes the team reward sharing by 𝑛
agents at step 𝑡 . To clarify the notation, we denote the time 𝑡 for
variables of all agents by sub-scripts but the time for variables with

agent index by super-scripts. Moreover, multiple agents share a

reward that suits the cooperative MARL, especially when applied to

the challenging task, the Starcraft multi-agent challenge (SMAC).

3.2 Offline Pre-Training MT-MARL

Multi-Task Offline Pre-Training RL is to learn a policy from offline

datasets collected from different tasks and generalize it properly

to downstream tasks based on pre-training and fine-tuning. An

extension of the above setting in multi-agent is offline pre-training

MT-MARL. The goal of offline pre-training MT-MARL in this work

is to find a multi-agent policy learned from multi-task datasets that

can generalize well on each task in the few-shot or even zero-shot

setting following a CMG. Each task presents a different reward

function 𝑅𝑐 , but we assume that the dynamics, P are shared across

tasks. Under this assumption, we give a solid theoretical analysis

of the generalization bound. In spite of this setting not being fully
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general, there is a range of practical problem settings in which only

the reward changes, including a variety of navigation tasks, distinct

manipulation objectives, and a wide range of user preferences. We

will explore the relaxed assumption further in the future. In this

work, we focus on learning a multi-agent task-conditioned policy

𝜋 (𝑎𝑖 |𝑜𝑖 , 𝑐) by sharing parameters. We formulate the problem of

policy optimization in terms of finding a policy that maximizes

expected return across all tasks:

𝜋∗(𝑎 |𝑜, ·) = argmax
𝜋
E𝑐∼C,𝜋 ( · | ·,𝑐 )

[∑
𝑡

𝛾𝑡𝑅𝑐 (𝑠𝑡 , 𝑎𝑡 )

]
(1)

Conventional offline MARL in POMDP is concerned with learn-

ing policies 𝜋 using only a given static dataset of transitions D =
{(𝑠, 𝑜𝑖 , 𝑎𝑖 , 𝑜

′

𝑖 , 𝑟 )}
𝑛
𝑖=1, collected by a behavior policy 𝜋𝛽 (𝑎𝑖 |𝑜𝑖 ), with-

out any additional environment interaction to test the performance.

In the multi-task setting, the dataset D is partitioned into multi-

ple subsets in terms of tasks, D = ∪𝑐D𝑐 , where D𝑐 consists of

experience under the context 𝑐 . While algorithms can choose to

directly test on the environment with pre-training on task 𝑐 only on
D𝑐 , in this paper, we are interested in generalizing the pre-trained

policy online to interact with another environment with context

𝑐𝑡𝑒𝑠𝑡 is equal to 𝑐𝑡𝑟𝑎𝑖𝑛 or not with the reward function 𝑟𝑐 , and learn
𝜋 (·|𝑜, 𝑐) on the combined data. The critical challenges of this prob-

lem are mainly reflected in reducing the generalization error of

learning and transferring in our settingΦ =
��� 1𝑁 ∑𝑁

𝑗=1 𝑅(𝝉
𝑗 , 𝑐𝑡𝑟𝑎𝑖𝑛)−

E𝝉∼D
′

�̂�
𝑅(𝝉 , 𝑐𝑡𝑒𝑠𝑡 )

���. The challenges are caused by a variety of tasks

𝑐𝑡𝑟𝑎𝑖𝑛 ≠ 𝑐𝑡𝑒𝑠𝑡 and data collection sources D𝜋 ≠ D
′

𝜋
, where 𝜋

denotes the source policy underlying on the offline data, and 𝜋
denotes the adapted online learning policy. This paper aims to im-

prove the multi-agent policy learning generalizable representations

by combining multiple tasks with offline data.

4 METHODOLOGY

In this section, we first introduce the objective of our M3 for solving

the offline pre-training MT-MARL problem defined in Section 3.

Then to demonstrate each module in this method, we describe the

training paradigm. The overall pipeline of M3 is shown in Figure 2.

4.1 Main Objective

We separately introduce objectives for offlinemulti-task pre-training

and online single-task fine-tuning. In the offline stage, each agent’s

policy takes the previously collected trajectories as input and opti-

mizes the objective in Equation 6. In the next stage, the pre-trained

policy is loaded as an initial policy for online fine-tuning and in-

teracts with the environment to maximize the expected return in

Equation 7. We provide the pseudocode of our algorithm M3 for

offline pre-training and online fine-tuning.

Offline Learning. In this stage, given the observation 𝑜𝑡𝑖 and

previous action 𝑎𝑡−1𝑖 of an agent 𝑖 at timestep 𝑡 , we first aim to

learn an encoder taking as input the action-observation history,

𝝉𝑡𝑖 , where 𝝉
𝑡
𝑖 := {𝑜

𝑗
𝑖 , 𝑎

𝑗−1
𝑖 }𝑡𝑗=1 denotes the set of observations and

actions, to represent the trajectories in the invariant hidden space.

Then the decoder can reconstruct them with a variational autoen-

coder by maximizing the log 𝑝 (𝝉𝑖 ). Note that we share the encoder

across all agents and tasks. The encoder 𝑝 (𝒛 |𝝉𝑖 ) encodes the tra-
jectory into the embedding space. In order to transfer intra-agent,

we induce the agent-invariant term by partitioning the latent space

encoded above. We suppose the hidden space is split into two parts:

agent-sharing 𝒛𝝉 and agent-specific 𝒛𝑖 from 𝒛. Agent-sharing can be
leveraged for policy representation across agents. Following CMG,

we incorporate the context 𝑐 , which is the task meta-information

from the context space C across the multi-agent tasks. To utilize

the task information for each agent in the encoding results with

context 𝑐 , the sharing vector 𝒛𝝉 is then incorporated with the con-

text information as 𝒛𝑒 (𝝉 ) = 𝑝 (𝑐)𝒛𝝉 . The encoder output 𝒛𝑒 (𝝉 ) is
then quantized with a learnable expert dictionary to discrete space.

In addition, 𝒛𝑒 (𝝉 ) is also encoded to map the action space to predict

the action with 𝑎𝑡𝑖 . We regard this model as VAE where we can

bound log 𝑝 (𝝉 ) with the ELBO by minimizing the Kullback-Leibler

divergence between true priors 𝑞𝝉 (𝒛), 𝑞𝑖 (𝑧) and hidden estimator

𝑝 (𝒛𝑖 |𝝉 ), 𝑝 (𝒛𝝉 |𝝉 ) as follows:

2 log𝑝 (𝝉 ) − E 𝒛𝑖∼𝑞𝑖 (𝒛),
𝒛𝝉 ∼𝑞𝝉 (𝒛)

[log 𝑝 (𝝉 |𝑧𝑖 , 𝑧𝝉 )]

+ 𝐾𝐿[𝑞𝑖 (𝒛) | |𝑝 (𝒛𝑖 )] + 𝐾𝐿[𝑞𝝉 (𝒛) | |𝑝 (𝒛𝝉 )]
(2)

Regarding the maximizing likelihood method, we get the like-

lihood of trajectories in Equation 3. When the hidden space is

partitioned into two parts representing agent-sharing 𝒛𝝉 and agent-

specific 𝒛𝑖 , the reconstruction loss can be changed. Therefore, we de-
rive the reconstruction objective when inducing the agent-invariant

part with ELBO bounds by minimizing the Kullback-Leibler di-

vergence between true priors 𝑞𝝉 (𝒛), 𝑞𝑖 (𝑧) and hidden estimator

𝑝 (𝒛𝑖 |𝝉 ), 𝑝 (𝒛𝝉 |𝝉 ) as follows:

𝐾𝐿[𝑞𝝉 (𝒛) | |𝑝 (𝒛𝝉 |𝝉 )] + 𝐾𝐿[𝑞𝑖 (𝒛) | |𝑝 (𝒛𝑖 |𝝉 )]

= E𝒛∼𝑞𝝉 (𝒛 ) [log𝑞𝝉 (𝒛) − log 𝑝 (𝒛𝝉 |𝝉 )]

+ E𝒛∼𝑞𝑖 (𝒛 ) [log𝑞𝑖 (𝒛 |𝝉 ) − log 𝑝 (𝒛𝑖 |𝝉 )]

= 2 log𝑝 (𝝉 ) − E 𝒛𝑖∼𝑞𝑖 (𝒛),
𝒛𝝉 ∼𝑞𝝉 (𝒛)

[log 𝑝 (𝝉 |𝑧𝑖 , 𝑧𝝉 )]

+ 𝐾𝐿[𝑞𝑖 (𝒛) | |𝑝 (𝒛𝑖 )] + 𝐾𝐿[𝑞𝝉 (𝒛) | |𝑝 (𝒛𝝉 )]

In terms of themaximum likelihoodmethod and the non-negativity

of KL divergence. We get the likelihood of trajectories as follows:

log 𝑝 (𝝉 ) ≥ E 𝒛𝑖∼𝑞𝑖 (𝒛),
𝒛𝝉 ∼𝑞𝝉 (𝒛)

[log 𝑝 (𝝉 |𝑧𝑖 , 𝑧𝝉 )]

− 𝐾𝐿[𝑞𝑖 (𝒛) | |𝑝 (𝒛𝑖 )] − 𝐾𝐿[𝑞𝝉 (𝒛) | |𝑝 (𝒛𝝉 )]
(3)

To maximize the likelihood above, we maximize the lower bound

shown on the right of Equation 3. Therefore, we train the pre-

trained model with the reconstructive objective on the right of

Equation 3, in which the first term can be found as L𝑟𝑒𝑐𝑜𝑛𝑠 in

our paper. The third term can be found as the L𝑎𝑠 loss for agent-

invariant network learning. Note that we replace the second term

with discrete latent-variable models using a stop-gradient operator

to update the corresponding parameters in L𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 .

For the reconstruction objective, the decoder takes as input the

concatenation of agent-specific and discrete hidden vectors to re-

construct the input that is to maximize the log-likelihood as follows:

L𝑟𝑒𝑐𝑜𝑛𝑠 = E 𝒛𝑖∼𝑞𝑖 (𝒛),
𝒛𝝉 ∼𝑞𝝉 (𝒛)

[log 𝑝 (𝝉 |𝒛𝑞 (𝝉 ), 𝒛𝑖 )],

where 𝒛𝑞 (𝝉 ) = 𝒆𝑘 , 𝑘 = argmin
𝑗

��𝒛𝑒 (𝝉 ) − 𝒆 𝑗
��
2

(4)
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Figure 2: An overview of the M3 pipeline for multi-agent multi-task offline pre-training and online fine-tuning. The offline

pre-trained model takes task metadata embeddings and offline trajectories as input to reconstruct the input and simultaneously

predict the ground truth actions. Then the pre-trained policy is optimized with online interactions.

where 𝒆 𝑗 denotes the 𝑗𝑡ℎ item of the expert dictionary, 𝒛𝑒 denotes
the encoder output that equals to 𝒛𝝉 in Equation 3. Like the dis-

crete latent variable method (VQ-VAE) [31], we optimize the expert

dictionary with 𝑙2 error moving the embedding vectors to the en-

coder outputs. Furthermore, the agent-invariant network is learned

through an agent-specific objective L𝑎𝑠 = 𝐾𝐿[𝑞𝑖 (𝒛) | |𝑝 (𝒛𝑖 )] to min-

imize the divergence in hidden space. Additionally, we aim to map

the encoded hidden into the ground truth actions 𝑎𝑖 with supervised
learning objective L𝑆𝐿 = log 𝑝 (𝑎𝑖 |𝒛𝑒 ). Therefore, the pre-trained
policy for each agent 𝑖 can be represented as 𝜋 (·|𝑜𝑖 , 𝑐) = 𝑝 (𝑎𝑖 |𝒛𝑒 ).
Another term of objective in the offline phase is learning to quan-

tize the embedding space into the codebook with stop-gradient

techniques learned from the expert dictionary. The intuition of this

design is to utilize an expert library across multi-task and multi-

agent while the library is dynamic and learnable through large

amounts of offline data pairs. However, the quantization operation

is intractable due to the gradient clipping. We refer to the vector

quantization method to update the embedding library with the stop

gradient technique in Equation 5.

L𝑒𝑚𝑏 = ‖𝑠𝑔 [𝒛𝑒 (𝝉 )] − 𝒆‖22 + 𝛽 ‖𝒛𝑒 (𝝉 ) − 𝑠𝑔[𝒆] ‖
2
2 (5)

where 𝑠𝑔 is the stop-gradient operator defined as an identity at for-

warding computation time and has zero partial derivatives, and 𝛽 is
a hyperparameter described in [31]. Therefore, our offline objective

optimized with gradient ascent can be shown in Equation 6:

L𝑜 𝑓 𝑓 𝑙𝑖𝑛𝑒 = L𝑆𝐿 + L𝑟𝑒𝑐𝑜𝑛𝑠 + L𝑎𝑠 + L𝑒𝑚𝑏 (6)

The first term, L𝑆𝐿 , is the supervised learning objective for pol-

icy pre-training, showing the performance on the offline dataset.

L𝑟𝑒𝑐𝑜𝑛𝑠 is the reconstruction objective, which depicts how well the

policy is represented in the latent space. L𝑎𝑠 is the agent-specific

objective that forces agents to behave differently for better coor-

dination. The last term, L𝑒𝑚𝑏 , is the embedding objective and is

necessary to discretize policy representation, enabling agents to

reuse parts of representations in each task. The four objectives aim

to assign different policies to each agent under each task.

Online Fing-tuning. In this stage, we employ the pre-trained

model to fine-tune it online as a multi-agent policy by sharing

parameters. Yu et al. [52] conduct the multi-agent PPO by sharing

actor and global critic to solve the multi-agent decision-making

problem online. Therefore, we load the pre-trained model as the

shared actor across agents to fine-tune it as the multi-agent PPO

scheme. Multi-Agent PPO [52] leverage the CTDE framework to

train a shared policy for each agent by maximizing the sum of their

PPO-clip objectives as follows:
𝑛∑
𝑖=1

Es∼𝜌𝜽old ,a∼𝝅𝜃old

[
min

(
𝑟, clip (𝑟 )1+𝜖1−𝜖

)
𝐴( s, a)

]
(7)

where 𝑟 =
𝜋𝜽 (a𝑖 |s)
𝜋𝜽old (a

𝑖 |s)
is the clip ratio, 𝜃 is initialized with the pre-

trained policy parameter as the actor model, 𝐴 denotes the advan-

tage function computed by the actor and critic models. The clip

operator aims at stabilizing the policy update.

4.2 Algorithm and Training Paradigm

This section aims to introduce each module in the pipeline and

demonstrate its necessity.

Discrete Latent-Variable Models. To learn high-level transfer-

able policy representations from trajectories, we leverage a discrete

latent variable model. To learn a policy library that can vary with

observations and specific tasks, we quantize continuous hidden vec-

tors from the encoder based on task embeddings. Typically, vector

quantization methods aim to learn discrete codebooks with stop-

gradient operators, as the first term in Equation 5. The discrete

representations can be seen as a modularization method for the

multi-task setting like that in single-agent [50].

Task Prompting. To fine-tune our pre-trained model in the

online stage following CMG, even on unseen tasks, we enforce the

model to encode task meta information as the context both offline

and online. Under a similar assumption in [57] that task embeddings

have a stationary distribution across tasks, the multi-task model

can be optimized with context representation learning. Moreover,

learning context representation is an exciting topic in single-agent

offline methods like Prompt DT [49]. We will explore it in the future

in multi-agent cases. In the final version of M3, we use the semantic

task description as the context to improve generalization.

Agent Invariant Module. By introducing the agent invariant

module, we hypothesize that policy representation across multiple

agents can be split into agent sharing and specific. As the example

of UAV and football games in the introduction, we suppose that
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agent-specific is necessary for heterogeneous environments such

as SMAC and MPE. The pre-trained policy should be learned by

splitting the latent representations. Empirically, we utilize the max-

imum likelihood method to derive the modified reconstruction loss.

Therefore, we give this loss after introducing the agent-specific

properties with ELBO bounds by minimizing the marginal probabil-

ity and Kullback-Leibler divergence as shown in Equation 3, where

we need to specify the agent-specific hidden vector 𝒛𝑖 of agent 𝑖 .
We show more detailed derivative in Appendix B.

AWAC. To fix the data distribution shift between offline and

online, Nair et al. [27] derives an objective with the Karush Kuhn

Tucker(KKT) conditions with 𝐷𝐾𝐿 (𝜋𝜃 ‖𝜋𝛽 ) ≤ 𝜖 , where 𝜋𝜃 is the

actor being updated and 𝜋𝛽 represents the behavior policy gener-

ated the previous offline data. We utilize this trick and show the

necessity with a guarantee bound in Section 5. Results of the abla-

tion study in Section 6 also validate its benefits to fix the bootstrap

error accumulation as observed in some prior works [23, 25] for

fine-tuning the pre-trained policy online well.

5 THEORETICAL ANALYSIS

We use empirical risk minimization (ERM) in the pre-training stage

to fit the experience distribution in the offline dataset D = ∪𝑐D𝑐

with a sharing policy across agents 𝜋 (𝑎 |𝑜, 𝑐), where each task-

specific dataset D𝑐 is collected from a behavior policy 𝜋𝛽 . In the of-

fline pre-training stage, we denote the return 𝑅(𝑠, 𝜋𝛽 (·|𝑠)) as 𝑅𝛽 (𝝉 ).
Furthermore, the multi-task policy 𝜋 (𝑎 |𝑜, 𝑐) is retrained online

on another task. In offline pre-training MT-MARL setting, the pre-

trained policy is fine-tuned on a seen or unseen task tomaximize the

corresponding discounted return 𝑅(𝝉 , 𝑐𝑡𝑒𝑠𝑡 ) =
∑
𝑡 𝛾
𝑡𝑟𝑐

𝑡𝑒𝑠𝑡
(𝑠𝑡 , 𝒂𝑡 ),

where 𝒂 := {𝑎𝑖 ∼ 𝜋
′
(𝑎𝑖 |𝑜𝑖 , 𝑐

𝑡𝑒𝑠𝑡 )}𝑛𝑖=1, 𝑜𝑖 = O(𝑠, 𝑖). Moreover,

we derive the generalization gap as: Φ =
��� 1𝑁 ∑𝑁

𝑗=1 𝑅(𝝉
𝑗 , 𝑐𝑡𝑟𝑎𝑖𝑛) −

E𝝉∼D
′

�̂�
𝑅(𝝉 , 𝑐𝑡𝑒𝑠𝑡 )

���. The gap can be upper-bounded by

2Φ ≤

��� 1
𝑁

𝑁∑
𝑗=1

𝑅(𝝉 𝑗 , 𝑐𝑡𝑟𝑎𝑖𝑛) − E𝝉∼D𝑅𝛽 (𝝉 )
���

︸�����������������������������������������︷︷�����������������������������������������︸
offline gap

+

��� 1
𝑁

𝑁∑
𝑗=1

𝑅(𝝉 𝑗 , 𝑐𝑡𝑟𝑎𝑖𝑛) − E𝝉∼D�̂�
𝑅(𝝉 , 𝑐𝑡𝑒𝑠𝑡 )

���
︸������������������������������������������������︷︷������������������������������������������������︸

intrinsic error

+

���E𝝉∼D𝑅𝛽 (𝝉 ) − E𝝉∼D′

�̂�
𝑅(𝝉 , 𝑐𝑡𝑒𝑠𝑡 )

���︸��������������������������������������︷︷��������������������������������������︸
online gap

+

���E𝝉∼D�̂�
𝑅(𝝉 , 𝑐𝑡𝑒𝑠𝑡 ) − E𝝉∼D′

�̂�
𝑅(𝝉 , 𝑐𝑡𝑒𝑠𝑡 )

���︸����������������������������������������������︷︷����������������������������������������������︸
external error

(8)

using the triangle inequality, where 𝑐𝑡𝑟𝑎𝑖𝑛 denotes the task con-

texts in the training data, 𝑐𝑡𝑒𝑠𝑡 denotes the online task on which

the policy is to be fine-tuned. The offline gap emerges when the

offline pre-trained policy 𝜋𝜃 converges under 𝑐𝑡𝑟𝑎𝑖𝑛 according to

Equation 6. We deal with the online gap term via AWAC. The other

intrinsic and external error terms result from online policy 𝜋𝜃

based on Equation 7 facing the intrinsic randomness of the envi-

ronment and the transition distribution shift in terms of different

contexts. Especially, when it comes to online MTRL without offline

pre-training, the generalization gap above becomes intrinsic and

external errors shown in recent work [46]. We give more detailed

theoretical derivatives in Appendix B.

6 EXPERIMENTAL EVALUATION

Our experiments aim at demonstrating the effectiveness of M3 on

offline pre-training MT-MARL in few-shot and even zero-shot set-

tings. The offline multi-task datasets are collected from the running

policy, MAPPO [52], on the well-known SMAC task [36], released

by [26]. This offline dataset contains millions of timesteps from

all subtasks in the challenging SMAC, which is appropriate for

the multi-task setting. Each dataset contains amounts of trajecto-

ries: 𝝉 := (𝑠𝑡 , 𝑜𝑡 , 𝒂𝑡 , 𝑟𝑡 )𝑇𝑡=1. All experiments are developed with ten

different random seeds.

Baselines. In offline multi-task multi-agent reinforcement learn-

ing settings, few well-matched comparative methods for baseline

selection are available. To this end, we modify SOTA in online

single-agent multi-task (CARE [39]) and offline multi-agent single-

task (MADT [26]) to fit this setting.

• MAPPO [52]: An multi-agent extension of PPO [37] algo-

rithm by setting the sharing actor taking the local obser-

vation of each agent, and sending the global state into a

centralized critic to optimize the policy as PPO-style. We

compare our method with it as an online MARL baseline.

• CARE [39]:ContextualAttention-basedREpresentation learn-

ing (CARE) proposes to share contextual encoding across

tasks in the single-agent case. We extend it by sharing poli-

cies across agents for our multi-agent setting as an online

MT-MARL baseline.

• MADT [26]: Multi-Agent Decision Transformer (MADT) has

shown high performance in [26, 43] with extensive results

in offline pre-training including Fill-In, Equal Space, Grid-

World, Highway, and SMAC. We pad the state and action

space across tasks with zero for the offline MT-MARL setting.

In addition, in Appendix E, we set another method, UPDeT [19]:

Universal Policy Decoupling Transformer (UPDeT), which utilizes

transformer-based value networks to tackle the adaptations among

various inputs, as online MT-MARL baseline. Our method outper-

forms its sample efficiency online on several SMAC maps.

Implementation details. We train a MAPPO [52] policy for

one task and compare it with our method fine-tuned on that task.

We develop experiments on the challenging SMAC with multiple

tasks, which is suitable for offline pre-training MT-MARL. In ad-

dition, the information regarding computational resources used is

Enterprise Linux Server with 256 CPU cores and 1 NVIDIA A100

GPU (40G memory). More implementation details, such as offline

episode number, training epoch, and hyperparameters used in our

experiments, can be found in Appendix D.
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Table 1: JP/TT : Jump point (JP: the initial performance/returns of agents online) and Time to Threshold (TT : the extra rollout

timesteps needed to reach the certain return threshold 18.0 online)) results of online and offline MARL/MTRL algorithms on

five easy and mixed tasks from SMAC. The ♦ and  is black denotes the method whether is multi-task and offline or not.

Method Type 2m vs. 1z (easy) 2s vs. 1sc (easy) 3m (easy) 3s vs. 3z (easy) 3s vs. 4z (easy)

MAPPO [52] ♦ /1.5 (±0.4)e5 /8.3 (±0.6)e4 /4.0 (±1.5)e5 /3.2 (±0.2)e5 /1 (±0.4)e6

CARE [39] � 5.2 (±0.8)/∞ 15.8 (±2.5)/1 (±0.5)e6 7.4 (±1.9)/∞ 8.2 (±2.2)/∞ 5.4 (±3.3)/∞

MADT [26] �� 17.6 (±0.8)/1 (±0.3)e3 18.3 (±0.2)/0 18.8 (±0.5)/0 17.7 (±0.5)/1.9 (±1.1)e4 18.4 (±0.1)/0

M3 (ours) �� 20.0/0 20.0/0 19.6 (±0.2)/0 17.7 (±0.3)/1.9 (±0.5)e3 20.0/0

Method Type 3m (easy) 8m (easy) 3s vs. 5z (hard) MMM (easy) MMM2 (super hard)

MAPPO [52] ♦ /4 (±0.5)e5 /6.4 (±0.8)e5 /1.1 (±0.2)e6 /2.1 (±0.3)e6 /1.2 (±0.5)e7

CARE [39] � 17.7 (±1.8)/6.4 (±0.4)e5 10.9 (±0.5)/∞ 4.1 (±0.3)/∞ 1.9 (±0.3)/∞ 1.4 (±0.5)/∞

MADT [26] �� 9.5 (±2.6)/7.9 (±0.4)e4 6.7 (±0.6)/1.8 (±2.2)e5 5.4 (±1.3)/2.6 (±0.5)e6 9.1 (±2.4)/1.2 (±1.5)e5 7.5 (±1.7)/∞

M3 (ours) �� 20.0/0 20.0/0 11.8 (±1.3)/6.8 (±1.8)e4 16.2 (±0.8)/5.5 (±1.2)e4 11.3 (±1.2)/1.5 (±0.1)e6

6.1 How M3 compares with existing online and
offline MTRL baselines in few-shot settings?

To validate the sample efficiency of the proposed M3 method in

the multi-task setting, we compare it with some existing baselines.

Recent works have studied MTRL mainly in two ways: i) online

learning with the modularized structure, knowledge transfer, or

shared backbone with a task-specific head; ii) offline pre-training

from collected multi-task data and fine-tuning the pre-trained pol-

icy on the downstream task online. In this section, we compare

M3 with state-of-the-art methods specifically extending in multi-

agent setup from offline to online. From the online perspective,

we compare a well-known state-of-the-art MARL algorithm called

MAPPO [52] to validate the effectiveness of the pre-trained model.

In addition, [39] shows the supreme performance on the online

single-agent MTRL benchmark meta-world [55]. Here we extend

the single-agent MTRL algorithm by sharing the policy structure

across multiple agents, and the task metadata is replaced with the

task information in our SMAC tasks. Besides, we compare our

method with MADT [26] by similarly taking multi-task offline data

to show the benefit of M3 in the offline MT-MARL setting. We

validate M3 effectiveness compared with the baselines mentioned

above based on two sets of experiments. In the first set, we firstly

pre-train M3 and MADT on offline trajectories from five easy maps

(2m_vs_1z, 2s_vs_1sc, 3m, 3s_vs_3z, 3s_vs_4z) provided by
MADT. We then continuously fine-tune the pre-trained policies

on each of these five subtasks. The second set includes five sub-

sets from maps with easy, hard, and super-hard difficulty (3m, 8m,
3s_vs_5z, MMM, MMM2), and fine-tunes the pre-trained policy sim-

ilarly as above. The evaluation metrics mainly focus on the JP and

TT described in Table 1. Note that we do not record JP of MAPPO

because the model is trained from scratch on each task as a single-

task method. Table 1 shows our method can outperform baselines

not only on the JP but the convergence speed online on TT on each

subtask. As described in the table caption, we set Time-to-threshold

to measure the online sample efficiency. We choose 18.0 for two

reasons: 1) The threshold is determined based on the SMAC domain.

The reward is normalized in 0∼20 and proportional to the win rate.

2) The expert data is divided with the reward from 18.0 to 20. Since

18.0 is very close to 20, we suppose M3 could still outperform the as-

ymptotic performance by setting the threshold as 20. That indicates

our method can improve the online MARL sample efficiency in the

multi-task setting with explicit policy representation learning.

6.2 Can the pre-trained policy be generalized to
unseen tasks?

Table 2: JP/TT described in Table 1 when the algorithm is

fine-tuned on the following unseen maps (3m, and MMM2).

Method 3s_vs_4z (easy) MMM2 (super hard)

CARE [39] 8.3 (±1.3)/∞ 1.4 (±0.4)/∞

MADT [26] 4.2 (±1.2)/7.0 (±0.6)e5 8.6 (±2.3)/∞

M3 (ours) 15.3 (±1.1)/4.6 (±0.9)e5 12.5 (±2.6)/1.3 (±0.2)e6

To validate the generalization ability ofM3 on unseen tasks in the

multi-task setting, we fine-tune the pre-trained policy on unseen

maps in which the policy is trained on four previously determined

maps. MAPPO in the baselines above is not considered due to the

single-task reason. In practice, eight maps are selected from two

difficulty levels (easy and mixture). In terms of similarity, the test

map can be close or not to the training map. In this subsection,

we pre-train two policies (M3-easy, M3-mixture) on eight maps

(4 maps per difficulty), and fine-tune them on another held-out

map. To test these pre-trained policies, we set 3s_vs_4z and MMM2
aside for fine-tuning M3-easy and M3-mixture respectively. Table 2

shows M3 can generalize to unseen tasks better than other online

and offline multi-task baselines.

6.3 What the policy library learns?

To determine whether the policy representation in M3 can discrim-

inate different tasks and execute distinct policies automatically, we

show the two sets mentioned in Section 6.1 of task similarity based

on task embedding of the map information in Figure 4. Furthermore,

we visualize our encoded hidden vectors when inferred from differ-

ent maps. We leverage the pre-trained M3-easy policy for rollout

with different map information (3m, 3s_vs_3z, and 3s_vs_4z for
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(a) (b)

Figure 3: Ablation experiments to validate the necessity of each module in M3 with offline evaluation and online fine-tune

returns. In this experiment, the pre-trained policy is trained from the five easy maps sed in Section 6.

M3-easy). We note that the scatters shown in Figure 4 indicate that

M3 can discriminate different tasks by task information prompt.

The visualization in Figure 4(a) shows our model can discriminate

the different tasks in various latent spaces. The similarity factor

causes the super close representations between them in Figure 4(b).

In addition, similar tasks, such as 3s_vs_3z and 3s_vs_4z, have
learned almost the same policy representation compared with other

tasks (e.g., 3m). There is also a little overlap between red and blue

points. We hypothesize that different tasks may contain similar op-

timal strategies in the interactions, and our model can discriminate

different tasks in absolutely most cases. We want to explore this

overlap as a degree of multi-task policy representation in the future.

3m
3s vs. 3z
3s vs. 4z

(a)

2m vs. 1z

2s vs. 1sc

3m

3s vs. 3z

3s vs. 4z

(b)

Figure 4: (a) Policy representations of M3 on three tasks. (b)

Task similarity measured with the cosine distance of five

easy task embeddings.

6.4 Ablation Study

In this section, we validate the necessity of each module in our

method. To answer the research questions: RQ1: Can VQ-VAE help

multi-task learning in multi-agent offline pre-training? RQ2: Can

the task embedding improve the performance inmulti-task settings?

RQ3: Is the agent-invariant network necessary? RQ4: Does awac

work for online fine-tuning? We consider four types of ablations:

(1) Remove the reconstruction loss based on vector quantized VAE

and replace the pre-train policy structure with causal transformers,

where the removed policy structure is the same as the MADT that

shares a policy across agents; (2) Remove the injection of task

embeddings in the encoder where the pre-trained policy does not

have offline or online access to any task-specific information; (3)

Remove the agent-invariant part of the hidden space, where the

hidden space is used to predict agent actions rather than split into

two parts (agent-sharing and specific); (4) Remove the awac to

test the online fine-tuning performance, which we hypothesize it

benefits the online policy close to the offline pre-trained policy. In

Figure 3(a) and 3(b), we show M3 variants comparison results with

above modifications. The discrete representations and context with

task embedding are effective, especially in the online fine-tuning

stage. Moreover, the awac and agent-specific modules are important

for offline and online performance. In particular, after removing

awac and agent-specific modules, the fine-tuning average return

online decreases over time. We suppose this phenomenon is caused

by the bootstrap error from the offline and online data mismatch,

which harms the online fine-tuning process.

7 CONCLUSION

In this work, we propose to solve the offline multi-task multi-agent

reinforcement learning problem by modularizing offline multi-

agent pre-training M3, a representation learning approach for pre-

training policy across diverse tasks. M3 leverages context-based

methods to reconstruct inputs and predict actions while learning

policy representations in offline data. In order to fit the multi-task

setting, we use vector quantization techniques and discrete policy

representations in the hidden space. To tackle the non-stationarity

and heterogeneity of multiple agents, we induce the agent-specific

module to improve intra-agent transfer. Furthermore, we use task

metadata to prompt generalization to unseen tasks.We theoretically

analyze the generalization error for fine-tuning our pre-trained pol-

icy. Empirically, regardless of the online and offline settings of the

StarCraftII Multi-Agent Challenge, the multi-task pre-trained policy

outperforms the state-of-the-art algorithm in terms of effective-

ness and generalization on various maps with different difficulties.

Moreover, our pre-trained policy shows that it can discriminate

tasks from hidden policy representations. We believe this is the

first solution specifically designed for the offline MT-MARL prob-

lem and hope to inspire more work in this practical setting. Future

research may consider improving the adaptation error analyzed in

Equation 8 when the pre-trained policies are learned from subopti-

mal offline data. We will also investigate a suitable measurement

as the degree of multi-task policy learning.
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