
Learning Graph-Enhanced Commander-Executor
for Multi-Agent Navigation

Xinyi Yang
Tsinghua University

Beijing, China
yang-xy20@mails.tsinghua.edu.cn

Shiyu Huang
4Paradigm Inc.
Beijing, China

huangsy1314@163.com

Yiwen Sun
Fudan University
Shanghai, China

ywsun22@m.fudan.edu.cn

Yuxiang Yang
Tsinghua University

Beijing, China
yuxiang-18@mails.tsinghua.edu.cn

Chao Yu
Tsinghua University

Beijing, China
yc19@mails.tsinghua.edu.cn

Wei-Wei Tu
4Paradigm Inc.
Beijing, China

tuweiwei@4paradigm.com

Huazhong Yang
Tsinghua University

Beijing, China
yanghz@tsinghua.edu.cn

Yu Wang
Tsinghua University

Beijing, China
yu-wang@tsinghua.edu.cn

Abstract
This paper investigates the multi-agent navigation problem, which
requires multiple agents to reach the target goals in a limited time.
Multi-agent reinforcement learning (MARL) has shown promising
results for solving this issue. However, it is inefficient for MARL
to directly explore the (nearly) optimal policy in the large search
space, which is exacerbated as the agent number increases (e.g., 10+
agents) or the environment is more complex (e.g., 3𝐷 simulator).
Goal-conditioned hierarchical reinforcement learning (HRL) pro-
vides a promising direction to tackle this challenge by introducing
a hierarchical structure to decompose the search space, where the
low-level policy predicts primitive actions in the guidance of the
goals derived from the high-level policy. In this paper, we propose
Multi-Agent Graph-Enhanced Commander-EXecutor (MAGE-X), a
graph-based goal-conditioned hierarchical method for multi-agent
navigation tasks. MAGE-X comprises a high-level Goal Commander
and a low-level Action Executor. The Goal Commander predicts the
probability distribution of the goals and leverages them to assign
the most appropriate final target to each agent. The Action Execu-
tor utilizes graph neural networks (GNN) to construct a subgraph
for each agent that only contains its crucial partners to improve
cooperation. Additionally, the Goal Encoder in the Action Executor
captures the relationship between the agent and the designated
goal to encourage the agent to reach the final target. The results
show that MAGE-X outperforms the state-of-the-art MARL base-
lines with a 100% success rate with only 3 million training steps
in multi-agent particle environments (MPE) with 50 agents, and at
least a 12% higher success rate and 2× higher data efficiency in a
more complicated quadrotor 3𝐷 navigation task.

Keywords
Multi-agent Reinforcement Learning; Goal-conditioned Reinforce-
ment Learning; Multi-agent Navigation; Graph Neural Network

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

ACM Reference Format:
Xinyi Yang, Shiyu Huang, Yiwen Sun, Yuxiang Yang, Chao Yu, Wei-Wei Tu,
Huazhong Yang, and YuWang. 2023. LearningGraph-Enhanced Commander-
Executor for Multi-Agent Navigation. In Proc. of the 22nd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023),
London, United Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 Introduction
Navigation is a typical task in the intelligent agent system, applied
in a wide range of applications, such as autonomous driving [1, 7],
logistics and transportation [6, 22], and search and rescue for disas-
ters [2, 16]. In this paper, we consider a multi-agent navigation task
where multiple agents simultaneously move to the target goals in a
cooperative fashion. Multi-agent reinforcement learning (MARL)
has attracted significant attention due to its powerful expressive-
ness in multi-agent navigation tasks [12, 25, 38, 41].

The common approach to searching for the near-optimal solu-
tion in MARL [37, 40] is to directly train a policy that produces
environmental actions for agents. However, learning the strategy
directly from large search space results in low data efficiency, which
is more severe as the number of agents or the complexity of the en-
vironment increases. Therefore, the existing methods in navigation
tasks target simple scenarios with few agents. Goal-conditioned
HRL [5, 8, 14, 19, 20, 26, 42] has been recognized as an effective par-
adigm to address this problem, comprising a high-level policy that
breaks the original task into a series of subgoals and a low-level pol-
icy that aims at the arrival of these subgoals. Recent works [4, 10]
in goal-conditioned HRL mainly focus on developing high-level
policies for providing agents with appropriate subgoals. However,
designating the subgoals may confuse agents on which target goals
they should reach.

Graph neural networks (GNN) have been widely applied in multi-
agent cooperative tasks due to their effective learning of agents’
graph representations. The literature on GNN [11, 21, 28] in MARL
constructs a graph whose nodes represent agents’ information to
model the interaction among them and encourage agents to coop-
erate. To enhance the cooperation among agents, we can leverage

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1652

GNN in the low-level policy in HRL to capture the relationship of
agents and express preferences for different teammates.

To improve data efficiency and cooperation, we propose Multi-
Agent Graph-Enhanced Commander-EXecutor (MAGE-X), a graph-
based goal-conditioned hierarchical framework in multi-agent nav-
igation tasks. MAGE-X consists of two components, the high-level
Goal Commander and the low-level Action Executor. For the
target-goal assignment, the Goal Commander infers the proba-
bility distribution of target goals to assign the most appropriate
target goal for each agent instead of the subgoal. As a result, the
multi-agent navigation is converted to multiple single-agent navi-
gation tasks in the multi-agent environment, in which each agent
is required to reach the designated goal while avoiding collisions.
In the Action Executor, we take advantage of GNN to perceive
the relationship among agents and produce a subgraph for each
agent to decide to whom they should pay attention. After that,
the State Extractor receives the correlation between the agent and
its target goal from the Goal Encoder and the agent’s embedded
feature in the subgraph to empower the team representation with
strong goal guidance, promoting agents to reach target goals. The
suggested scheme is challenged against MARL baselines in multi-
agent particle environments (MPE) [23] with a massive number
of agents and a more complicated quadrotor navigation task [29].
The experimental results demonstrate that MAGE-X outperforms
the MARL baselines, achieving a 100% success rate with only 3 mil-
lion training steps in MPE with 50 agents. Furthermore, MAGE-X
attains at least a 12% higher success rate and 2× higher data effi-
ciency in the quadrotor navigation task. We would suggest to visit
https://sites.google.com/view/mage-x23 for more information.

Our contributions can be summarized as follows:
• We introduce a graph-based goal-conditioned framework in
multi-agent navigation tasks, Multi-Agent Graph-enhanced
Commander-Executor (MAGE-X), to solve the problem of
data efficiency and cooperation in large search space.
• We develop a high-level Goal Commander, which utilizes
the probability distribution of goals to allocate each agent to
the most appropriate target goal.
• We propose the low-level Action Executor, which adopts
GNN to improve the coordination, and the Goal Encoder and
the State Extractor to encourage agents to complete the task.
• MAGE-X converges much faster and substantially outper-
forms MARL algorithms in multi-agent particle environ-
ments (MPE) [23] with a massive number of agents and a
quadrotor navigation task [29].

2 Related Work

2.1 Navigation
Navigation has been widely investigated in recent years, where RL
has shown its ability to solve various applications [17, 24, 39, 43].
For example, Rao [31] presents a model-embedded actor-critic ar-
chitecture for the multi-goal visual navigation task. Furthermore,
Zhu [43] introduces a target-driven actor-critic model to achieve
greater adaptability and flexibility for the target-driven visual navi-
gation task.

As for multi-agent navigation tasks in MARL [12, 25, 38, 41],
the difficulties lie in data efficiency and cooperation in large space

spaces, which is exacerbated as agent number increases and the en-
vironment becomes more complicated. EPS [25] is introduced to en-
hance exploration efficiency and improve sample efficiency in multi-
robot mapless navigation, which uses the evolutionary population
periodically generated from robots’ policies to search for different
and novel states. Furthermore, Xia [38] proposes an inference-based
hierarchical reinforcement learning framework (IHRL) to address
the multi-agent cooperative navigation problem via the interplay of
high-level inference and low-level actions. The proposed MAGE-X
specializes in navigation tasks and outperforms the MARL baselines
with high sample efficiency.

2.2 Goal-conditioned HRL

Goal-conditioned hierarchical reinforcement Learning (HRL) has
shown its capability in a wide range of tasks [3, 27, 30] with a
hierarchy consisting of high-level and low-level policies. The high-
level policy generates intermediate subgoals every global timestep,
which is regarded as a goal guidance of the low-level policy.

Kreidieh [18] addresses the challenges of the interactions be-
tween high-level and low-level agents by introducing inter-level
cooperation. This inter-level cooperation is given by modifying
the high-level policy’s objective function and subsequent gradients.
Another representative is LGA [4], where the subgoal assignment
is parameterized as latent variables to be trained. LGA directly pro-
vides primitive actions for agents depending on latent variables to
accomplish multi-agent tasks. MASER [10] automatically produces
subgoals for agents from the experience replay buffer relying on
both individual and total Q-values. Besides, it adopts the individual
intrinsic reward for each agent to reach the assigned subgoals and
maximize the joint action value. However, the generation of sub-
goals may be inefficient since the correspondence between subgoals
and the final goals is implicit. In this paper, MAGE-X utilizes the
goal-conditioned hierarchical framework in multi-agent navigation
tasks to improve the sample efficiency, where the high-level policy
deals with target-goal assignment and the low-level policy deals
with the action execution for each agent.

2.3 Graph Neural Networks

Graph neural networks (GNN) [34] are broadly used due to their
effective learning of graph representations and the ability to capture
the relationships of different graphs. Recently, several works have
applied GNN in multi-agent systems to model agents’ interactions.
HAMA [33] proposes a hierarchical graph attention network that
captures the underlying relationships at the agent-level and the
group-level, enhancing generalization and scalability. MAGIC [28]
is a novel graph communication protocol that implies the topology
of agents’ interactions, helping agents decide when to communicate
and with whom to communicate. DICG [21] leverages dynamic
coordination graphs to infer joint actions and values implicitly.
GCS [32] learns coordinated behaviors by factorizing the joint team
policy into a graph generator and a graph-based coordinated policy.
The Action Executor of MAGE-X benefits from GNN to capture
the team representation and introduces a Goal Encoder and a State
Extractor to strengthen the expression of target goals.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1653

https://sites.google.com/view/mage-x23

Figure 1: Overview of Multi-Agent Graph-enhanced Commander-Executor (MAGE-X).

3 Preliminary
3.1 Dec-MDPs
In this paper, we consider a variant of MDP to solve the decentral-
ized control problem in stochastic environments called Decentral-
ized Markov Decision Processes (Dec-MDPs).

Here, the multi-agent Dec-MDPs problem is formulated as:

< N ,S,A,T , 𝑅,𝐺,O, 𝛾 >, (1)

where N ≡ {1, ..., 𝑛} is a set of 𝑁 = |N | agents. Note that S is a
set of global states in the assumption that S is jointly observable.
A is the action space of each agent, and A ≡ A𝑁 is the joint
action space. O is the observation space. 𝑅 represents the reward
function, and 𝑅(𝑠, a, 𝑠′) is the reward obtained from the transition
of joint actions a ∈ A from the state 𝑠 ∈ S to the state 𝑠′ ∈ S.
𝛾 ∈ [0, 1) is the discount factor. T (𝑠, a, 𝑠′) : S × A × S ↦→ [0, 1] is
the dynamics function denoting the transition probability. 𝐺 is the
observation function, and 𝐺 (𝑠, a, 𝑠′, 𝑜𝑖) is the probability of agents
𝑖 ∈ N seeing observation𝑜𝑖 ∈ O. Each agent has a policy 𝜋𝑖 (𝑎𝑖𝑡 |𝑜𝑖1:𝑡)
to produce action 𝑎𝑖𝑡 from observations 𝑜𝑖𝑡 at step 𝑡 . And agents need
to maximize the expected discounted return E

∑inf
𝑙=0 𝛾

𝑙𝑟𝑡+𝑙 , where
𝑟𝑡 = 𝑅(𝑠𝑡 , a𝑡 , 𝑠𝑡+1) is the joint reward at step 𝑡 .

3.2 Graph Neural Networks
Graph neural networks (GNN) are a special type of neural network
capable of dealing with data in the graph structure. The critical
ingredient of GNN is pairwise message passing, i.e., graph nodes
iteratively update their representations by exchanging information
with their neighbors. The general formula is given as below:

ℎ
(𝑙)
𝑖

= 𝜎 (
∑︁
𝑗∈𝑁𝑖

1√︁
𝑑𝑖𝑑 𝑗
(ℎ𝑙−1𝑗 𝑊 (𝑙))), (2)

where ℎ𝑖 is the feature vector of node 𝑖 . 𝑁𝑖 represents a set of neigh-
bouring nodes of 𝑖 and𝑊 (𝑙) is the learnable weights in the layer 𝑙 .
𝜎 is the activation function. 𝑑𝑖 is the dimension of feature stored
in node 𝑖 . Equation 2 shows that the feature of node 𝑖 will be influ-
enced by its neighbors. In this paper, we use graph convolutional
networks (GCN) [15] to model the interaction of agents. GCN is a
variant of convolution neural networks (CNN) to be applied in the
data with graph structure.

4 Methodology
In this section, we introduce the proposed framework, MAGE-X,
to improve sample efficiency and the cooperation in multi-agent
navigation tasks. The overview of our framework is demonstrated
in Fig. 1. MAGE-X comprises two components, the Goal Comman-
der and the Action Executor. The high-level Goal Commander fol-
lows the principles of centralized-training-centralized-execution
(CTCE). In contrast, the low-level Action Executor is in a decen-
tralized setting with partial observation of 𝑁 agents, where agent
𝑘 receives local observation, 𝑜𝑘𝑡 , at step 𝑡 . Agent 𝑘 learns the pol-
icy, 𝜋𝑘 , to produce a distribution over actions at each time step
𝑡 , 𝑎𝑘𝑡 ∼ 𝜋𝑘 (𝑎𝑘𝑡 |𝑜𝑘𝑡). The process of a navigation task begins with
the Goal Scheduler in the Goal Commander receiving the spawn
locations of all the agents and the target goals. The probability dis-
tribution of the target goals is predicted by the scheduler, and each
agent is assigned the most appropriate target goal rather than the
subgoal. Therefore, the multi-agent navigation is converted to mul-
tiple single-agent navigation tasks in the multi-agent environment,
where each agent is required to reach the given goal as quickly as
possible while avoiding collisions. Take agent 𝑘 as an example. The
Subgraph Extractor takes in the observation of agent 𝑘 and other
agents and produces the subgraph of agent 𝑘 only including its cru-
cial neighbors to improve cooperation. The relationship of agent
𝑘 and its target goal is extracted from the Goal Encoder, which is
then sent to the State Extractor combined with the feature of agent
𝑘 in the subgraph to endow the team representation with strong
goal guidance. Finally, agent 𝑘 takes the preliminary action from
the Action Generator to complete the navigation task.

4.1 Goal Commander

Goal assignment is a long-studied maximal matching problem, es-
pecially in scenarios with large-scale agents. The Goal Commander
builds upon a Goal Scheduler module for target-goal assignment,
which produces the probability distribution of target goals. The
designed reward is related to the distance cost of the Hungarian
algorithm [13], a state-of-the-art classical method to tackle the
combinatorial optimization algorithm in graph theory.

Goal Scheduler: This module is made up by a Multi-Layer
Perception (MLP) layer, 𝑓𝑠𝑐ℎ𝑒 , that takes the positions of all agents,

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1654

Figure 2: Workflow of Action Executor, including a Subgraph Extractor, a Goal Encoder, a State Extractor and an Action
Generator.

𝑃𝑎 , and the positions of target goals, 𝑃𝑔 , as input. We obtain the
probability of the target goals, 𝑃𝑔𝑜𝑎𝑙 , by computing the softmax
operator over the output of 𝑓𝑠𝑐ℎ𝑒 :

𝑃𝑔𝑜𝑎𝑙 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓𝑠𝑐ℎ𝑒 (𝑃𝑎, 𝑃𝑔)). (3)

Thereafter, 𝑃𝑔𝑜𝑎𝑙 is ranked in decreasing order and the reordered
goals 1...𝑁 are sequentially assigned to agent 1...𝑁 . The reward
of the Goal Scheduler, 𝑅𝑐 , represents the distance cost of our as-
signment strategy, 𝐶𝑐 , against the distance cost of the Hungarian
algorithm, 𝐶ℎ :

𝑅𝑐 = 1 − 𝐶𝑐

𝐶ℎ
. (4)

4.2 Action Executor
The Action Executor is designed for high cooperation where agents
speedily reach the designated goal with little collision in the multi-
agent environment. The workflow of the Action Executor is illus-
trated in Fig. 2. It consists of the Subgraph Extractor, the Goal
Encoder, the State Extractor, and the Action Generator. The Sub-
graph Extractor encodes the observations of all agents and yields a
subgraph for agent 𝑘 only containing the crucial teammates. The
Goal Encoder extracts the correlation of agent 𝑘 and its assigned
goal, which is then fed into the State Extractor with the feature of
agent 𝑘 in the subgraph to endow the team representation with
target goal guidance. Finally, the Action Generator produces the
action for the agent 𝑘 .

The environmental reward for each agent, 𝑅𝑒 , is the linear com-
bination of the complete bonus, 𝑅𝑏 , the distance penalty, 𝑅𝑑 , and
the collision penalty, 𝑅𝑐 :

𝑅𝑒 = 𝛼𝑅𝑏 + 𝛽𝑅𝑑 + 𝛾𝑅𝑐 , (5)

where 𝛼 , 𝛽 and 𝛾 are the coefficient of 𝑅𝑏 , 𝑅𝑑 and 𝑅𝑐 , respectively.
Subgraph Extractor: The Subgraph Extractor is comprised of

the Observation Encoder and the Graph Encoder. In the Observation

Encoder, we apply an MLP layer 𝑓𝑜 to encode the observations of
all agents and GCN to produce a fully connected graph of agents,
𝐺𝑎 . This can be formulated as:

𝐺𝑎 = 𝐺𝐶𝑁

((
𝑓𝑜 (𝑜1), 𝑓𝑜 (𝑜2), ..𝑓𝑜 (𝑜𝑁)

)
, 𝐴𝑓

)
, (6)

where 𝐴𝑓 is denoted as an adjacent matrix of a fully connected
graph. In the Graph Encoder, we compute the gumbel softmax [9]
over the feature of 𝐺𝑎 updated by an MLP layer, 𝑓𝑔 . Thus, we can
obtain an adjacent matrix of 𝐴𝑘

𝑠 through it:

𝐴𝑠 = 𝐺𝑢𝑚𝑏𝑒𝑙_𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓𝑔 (𝐺𝑎)). (7)

Afterwards, we use GCN to generate 𝐺𝑘
𝑠 :

𝐺𝑘
𝑠 = 𝐺𝐶𝑁 (𝐺𝑎, 𝐴

𝑘
𝑠). (8)

The feature of the agent 𝑘 in 𝐺𝑘
𝑠 is then sent to the State Extractor.

Note that there are 𝑙𝑔 blocks in the Graph Encoder.
Goal Encoder and State Extractor: To capture the correlation

between the agent 𝑘 and its assigned goal, the Goal Encoder com-
prises an MLP layer 𝑓𝑔𝑜𝑎𝑙 , and takes in the target goal’s position
𝑃𝑘𝑔 , and the agent’s observation 𝑜𝑘 . This can be formulated as:

𝐸𝑘
𝑔𝑜𝑎𝑙

= 𝑓𝑔𝑜𝑎𝑙 (𝑃𝑘𝑔 , 𝑜𝑘). (9)

Receiving the relationship between the agent and its target goal
and the embedded feature of agent 𝑘 in 𝐺𝑠 , 𝐸𝑘𝑎 , we leverage the
State Extractor to enhance the team representation with target goal
guidance and output 𝐸𝑘

𝑎𝑙𝑙
. The State Extractor consists of an MLP

layer 𝑓𝑠𝑡𝑎𝑡𝑒 , and recurrent neural networks (RNN) in consideration
of the high correlation between current and historical states:

𝐸𝑘
𝑎𝑙𝑙

= 𝑅𝑁𝑁

(
𝑓𝑠𝑡𝑎𝑡𝑒

(
𝑐𝑜𝑛𝑐𝑎𝑡

(
𝐸𝑘
𝑔𝑜𝑎𝑙

, 𝐸𝑘𝑎

)))
. (10)

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1655

Algorithm 1 Training Procedure of MAGE-X

Input : The positions 𝑃𝑎 of all agents, the joint observation o of
all agents , and the positions 𝑃𝑔 of target goals.

Output : Final policy 𝜋𝜃 for the Goal Commander and 𝜋𝜃 ′ for the
Action Executor.

1: Initialize: agents number 𝑁 , maximal steps in an episode 𝑇𝑒 ,
params in the Goal Commander 𝜃 , 𝜙 , params in the Action
Executor 𝜃 ′, 𝜙 ′, the Goal Commander buffer 𝐷 , the Action
Executor buffer 𝐷′.

2: while 𝜃 and 𝜃 ′ not converges do
3: Reset environment and get 𝑃𝑎 , 𝑃𝑔 .
4: Initialize: the step-count 𝑡 ← 1 in 𝐷 , the step-count 𝑡 ′ ← 1

in 𝐷′.
5: 𝑃𝑔𝑜𝑎𝑙 ← Goal_Commander(𝑃𝑎 , 𝑃𝑔).
6: Calculate 𝜋𝜃 (𝑎𝑡 |o𝑡) and 𝑉𝜙 (o𝑡).
7: Perform 𝑎𝑡 ∼ 𝜋𝜃 (𝑎𝑡 |o𝑡).
8: while 𝑡 ′ < 𝑇𝑒 and not terminal do
9: 𝐸𝑘

𝑎𝑙𝑙
← Action Executor (o, 𝑃𝑘𝑔) for each agent 𝑘

10: Calculate 𝜋𝜃 ′ (𝑎′𝑘𝑡 ′ |𝑜
′𝑘
𝑡 ′) and 𝑉𝜙 ′ (𝑜

′𝑘
𝑡 ′) for each agent 𝑘 .

11: Perform 𝑎′𝑘
𝑡 ′ ∼ 𝜋𝜃 ′ (𝑎′𝑘𝑡 ′ |𝑜

′𝑘
𝑡 ′) for each agent 𝑘 .

12: Receive 𝑟 ′
𝑡 ′ and 𝑜

′𝑘
𝑡 ′+1 for each agent 𝑘 .

13: Store (𝑜′𝑘
𝑡 ′ , 𝑎

′𝑘
𝑡 ′ , 𝜋𝜃 ′ , (𝑎

′𝑘
𝑡 ′ |𝑜
′
𝑡 ′),𝑉𝜙 ′ (𝑜

′𝑘
𝑡 ′), 𝑟

′
𝑡 ′ , 𝑜
′𝑘
𝑡 ′+1) in 𝐷′.

14: 𝑡 ′ ← 𝑡 ′ + 1
15: end while
16: Receive 𝑟𝑡 and 𝑜𝑡+1.
17: 𝑡 ← 𝑡 + 1
18: Store (𝑜𝑡 , 𝑎𝑡 , 𝜋𝜃 , (a𝑡 |o𝑡),𝑉𝜙 (𝑜𝑡), 𝑟𝑡 , 𝑜𝑡+1) in D.
19: Perform update of 𝜃 , 𝜙 , 𝜃 ′ and 𝜙 ′.
20: end while

4.3 Multi-agent Commander-Executor Training

MAGE-X, following the goal-conditioned MARL framework,
trains two policy networks for the Goal Commander and the Action
Executor separately, which are optimized by maximizing the accu-
mulated reward in the entire episode via reinforcement learning.
We use Multi-agent Proximal Policy Optimization (MAPPO) [40], a
multi-agent variant of Proximal Policy Optimization (PPO) [35], as
the policy optimizer.

As shown in Algorithm 1, MAGE-X takes in the positions of
agents, the observations of agents, and the positions of landmarks.
Then, it produces the final policy 𝜋𝜃 for the Goal Commander
and 𝜋𝜃 ′ for the Action Executor. First, we initialize the number
of agents along with several training parameters, including max-
imal steps, parameters in the Goal Commander, parameters in the
Action Executor, the Goal Commander reply buffer, 𝐷 , and the Ac-
tion Executor reply buffer, 𝐷′ (Line 1). The Goal Commander only
performs one action every episode to assign the goals to agents
in the beginning (Line 5 ∼ 7) and receives the reward 𝑟𝑡 and the
subsequent observation 𝑜 (𝑡+1) at the end of each episode, where 𝑡
represents the step-count in 𝐷 (Line 15 and 16). Thereafter, we up-
date 𝜃 for the policy network 𝜋𝜃 , and 𝜙 for the value network𝑉𝜙 , in
the Goal Commander. Regarding the Action Executor, it outputs the
action 𝑎′𝑘𝑡 ′ for each agent 𝑘 , and stores a group of data in 𝐷

′
at each

timestep 𝑡 ′ (Line 9 ∼ 13). Similarly, we update 𝜃 ′ for the policy net-
work 𝜋𝜃 ′ , and 𝜙 ′ for the value network 𝑉𝜙 ′ , in the Action Executor.

5 Experiments

5.1 Task Setup
To evaluate the effectiveness of our algorithm in large search space,
we considerMPE [23]with amassive number of agents and pybullet-
gym-drones [29] in 3𝐷 space as the experimental environments, as
shown in Fig. 3 and Fig. 4. We select three typical tasks from these
two environments: Simple Spread, Push Ball, and Drones. Then,
we conduct experiments with 𝑁 ∈ {5, 20, 50} agents in Simple
Spread and 𝑁 ∈ {5, 20} agents in Push Ball in MPE. Drone is a more
complicated quadrotor navigation task in gym-pybullet-drones,
which adopts aerodynamic models of quadrotors to narrow the gap
between the simulation and the real world. Therefore, quadrotors in
Drone require stronger cooperation to avoid the crash. We conduct
experiments with 2 and 4 quadrotors in this 3𝐷 simulator.

5.1.1 Simple Spread We utilize Simple Spread environment in
MPE [23], a classical 2D navigation task. The episode starts with
the initialization of 𝑁 agents and 𝑁 landmarks. When all the agents
reach the landmarks, this task is 100% successful. The consequence
of the collision between agents is that they will bounce off each
other, which is detrimental to navigation efficiency. The available
discrete actions of agents include Up, Down, Left, and Right. The
task’s difficulty increases with a larger agent number andmap space.
The experiment is conducted on 5, 20, and 50 agents. In the 5-agent
setting, the spawn locations of agents and landmarks are random
on the map with a size of 4. In the setting of 𝑁 ∈ {20, 50}, the
spawn locations of agents and landmarks are randomly initialized
in four challenging maps with the size of 36 and 100, respectively,
as shown in Fig 3(b). The horizons of steps in 𝑁 = 5, 20, 50 are 60,
100, and 120, respectively.

5.1.2 Push Ball Push Ball is a more complicated two-stage navi-
gation task in MPE [23], requiring each agent to find the ball first,
then push it into the landmark. At the beginning of each episode, 𝑁
agents, 𝑁 balls, and 𝑁 landmarks are initialized in the environment.
The success rate of the task is the number of agents reaching the
landmarks with the balls to the total number of all agents. The avail-
able discrete actions of agents include Up, Down, Left, and Right.
We conduct the experiments in the setting of 5 and 20 agents. In the
scenarios of 𝑁 = 5, the spawn locations of agents, balls, and land-
marks are randomly distributed on the map of size 16. For 𝑁 = 20,
their initialization follows four challenging space arrangements on
the map with a size of 144, as displayed in Fig 3(d). The horizons of
the steps in 𝑁 = 5 and 20 are 100 and 200, respectively.

5.1.3 Drone We further adopt Drone in pybullet-gym-drones [29],
a 3D simulator for flying quadrotors based on pybullet. Drone mod-
els the dynamics of quadrotors and controls them by adjusting
the torque. Unlike MPE, the collision between quadrotors will lead
to a crash and the failure of the task. In our navigation task, the
spawn locations of 𝑁 quadrotors and 𝑁 landmark are random
in the coordinates 𝑥 and 𝑦, but fixed in the coordinate 𝑧, with
𝑥 ∈ (−1.5, 1.5), 𝑦 ∈ (−1.5, 1.5) and 𝑧 = 1.5. The task’s objective is
that quadrotors are required to reach all the landmarks on a limited
time budget. The action space of each quadrotor is the direction of

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1656

(a) Simple Spread (b) Simple Spread with 20, 50 agents

(c) Push Ball (d) Push Ball with 20 agents

Figure 3: Experimental environments of Simple Spread and Push Ball in MPE. We remark that (b) represents simplified
demonstration of 4 challenging task modes in Simple Spread, where the spawn locations of agents and landmarks are
randomly distributed in the orange lines and the blue lines, respectively. (d) expresses simplified demonstration of 4 typical
task modes in Push Ball, where the spawn locations of agents and landmarks are randomly distributed in the orange lines, and
the spawn locations of balls are randomly distributed in the pink lines.

Figure 4: Experiment environments of Drone.

the acceleration in 𝑥 ,𝑦, 𝑧 coordinate, containing Forward, Backward,
and Stop in each coordinate. We consider the experiments with 2
and 4 quadrotors. In our setting, the frequency at which the physics
engine steps is 120𝐻𝑍 ; the max speed is 2𝑚/𝑠 , and the acceleration
is 5𝑚/𝑠2. In every low-level step, we utilize the predicted acceler-
ation direction to calculate each quadrotor’s target velocity, and
then the quadrotor executes the action every four physics engine
steps. The horizon of the steps in 𝑁 = 2 and 4 is 120.

5.2 Implementation Details
Each RL training is performed over 3 random seeds for a fair com-
parison. Each evaluation score is expressed in the format of "mean
(standard deviation)", which is averaged over a total of 300 testing
episodes, i.e., 100 episodes per random seed. In addition, we use
the success rate, the number of landmarks reached by the agents to

the total number of landmarks, to express the performance of each
algorithm. In the Drone, we additionally consider the collision rate,
the number of crashed quadrotors to the total number of quadrotors,
to express the capability of cooperation. Our experimental platform
involves a 128-core CPU, 256GB RAM, and an NVIDIA GeForce
RTX 3090Ti with 24GB VRAM.

5.3 Baselines
To demonstrate the effectiveness of our methods, we challenge it
against four MARL baseline approaches.
• MAPPO [40]: This is the first and the most direct approach
for applying PPO in MARL. It equips all agents with one
shared set of parameters and updates the shared policy
through agents’ aggregated trajectories.
• Multi-Agent-Transformer (MAT) [37]: This is an encoder-
decoder architecture that leverages the multi-agent advan-
tage decomposition theorem to transform the joint policy
search problem into a sequential decision-making process.
• DICG [21]: This graph-based method comprises a module
that infers the dynamic coordination graph structure and a
GNN module that implicitly reasons about the joint actions
or value based on the former module’s output.
• Maser [10]: This is a goal-conditioned MARLmethod that au-
tomatically generates subgoals for multiple agents from the
experience replay buffer by considering both the individual
Q-value and the total Q-value.

5.4 Main Results
We present and analyze the experiment results of MAGE-X and
MARL baselines in three competitive environments.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1657

Figure 5: Comparison between MAGE-X and other baselines in Simple Spread with 𝑁 = 5, 20, 50.

Figure 6: Comparison between MAGE-X and other baselines
in Push Ball with 𝑁 = 5, 20.

Figure 7: Evaluation performance of the success rate and the
collision rate between MAGE-X and baselines in Drone. The
node in the upper left corner of the figure represents higher
performance.

5.4.1 Simple Spread We demonstrate the training curves in
Fig. 5 and the evaluation performance in Table 1. The results sug-
gest that MAGE-X performs the best, especially in scenarios with
50 agents, where it converges to the near-optimal solution quickly
with a success rate of 100%, attaining training efficiency more than
10× higher than other competitors. The results show that our algo-
rithm performs the best, especially in the scenario with 50 agents.
This graph-enhanced hierarchical framework helps agents quickly
handle the problem of reaching targets with high cooperation. MAT
excels in other MARL baselines and can achieve a success rate of
100% in the 5-agent setting, indicating that MAT agents profit from
the action information of their teammates. However, as the number
of agents increases, the performance of MAT degrades significantly.

Table 1: Evaluation performance of the success rate between
MAGE-X and baselines in Simple Spread.

MAPPO MAT DICG MASER MAGE-X

5 agents 0.82(0.03) 1.00(0.01) 0.71(0.05) 0.06(0.12) 1.00(0.01)

20 agents 0.50(0.31) 0.56(0.26) 0.41(0.04) 0.02(0.23) 1.00(0.01)

50 agents 0.13(0.02) 0.11(0.01) 0.12(0.02) 0.01(0.05) 1.00(0.01)

Table 2: Evaluation performance of the success rate between
MAGE-X and baselines in Push Ball.

MAPPO MAT DICG MASER MAGE-X

5 agents 0.20(0.01) 0.32(0.04) 0.20(0.01) 0.01(0.01) 1.00(0.01)

20 agents 0.26(0.01) 0.25(0.02) 0.36(0.01) 0.01(0.01) 1.00(0.01)

Table 3: Evaluation performance of the success rate and the
collision rate between MAGE-X and baselines in Drones.

2 agents 4 agents

Suc. Rate Colli. Rate Suc. Rate Colli. Rate

MAPPO 0.83(0.03) 0.10(0.01) 0.64 (0.01) 0.18 (0.02)

MAT 0.61(0.01) 0.09 (0.01) 0.34(0.04) 0.06(0.01)

DICG 0.45(0.02) 0.03(0.02) 0.12(0.01) 0.07(0.01)

MAGE-X 0.95(0.03) 0.02(0.01) 0.79(0.07) 0.12 (0.01)

DiCG is on-par with MAPPO, which indicates that directly utiliz-
ing the graph-based method can’t contribute to better cooperation
and efficiency. Although MASER is also a goal-conditioned HRL
method, it is the worst among all the competitors. It implies that the
value-based method, MASER, fails to discover effective cooperation
strategies within limited training steps since it infers subgoals from
the experience replay buffer and lacks a strong connection between
agents and target goals.

5.4.2 Push Ball As shown in Fig. 6 and Table 2, we conduct the
experiments with 𝑁 ∈ {20, 50} agents in Push Ball. The difficulty
of Push Ball lies in that it requires a two-stage goal assignment, i.e.,
the agents first get the designated ball and then reach the target
landmark with the ball. Nevertheless, MAGE-X still achieves a 100%
success rate with few training timsteps. In contrast, except for MAT,
whose success rate slightly increases, other baselines obtain subop-
timal policies with a success rate of 20% in the 5-agent setting. In

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1658

Figure 8: Comparison between MAGE-X and other baselines in Drone.

Table 4: Evaluation performance of Success Rate between
MAGE-X and its variants in Simple Spread.

MAGE-X w. RG MAGE-X-Atten MAGE-X-MLP MAGE-X

Suc. Rate 0.83(0.01) 0.93(0.01) 0.50(0.08) 1.00(0.01)

the scenario with 20 agents, all baselines fail to reach the goals. The
results express that the high-level Goal Commander in MAGE-X
has the potential to simultaneously tackle multiple goal assignment
problems, for it breaks this 𝑀stage goal assignment into 𝑀 inde-
pendent tasks, only requiring the information of assigned targets.

5.4.3 Drones We report the training performance in Fig. 8 and
the evaluation results in Fig. 7 and Table 3. The experiment shows
that MAGE-X is superior to other competitors with a success rate
of 95% in 𝑁 = 2 and 79% in 𝑁 = 4 in the physically realistic 3D envi-
ronment, Drone. Unlike MPE, the best competitor in Drone among
baselines is MAPPO rather than MAT, indicating that MAPPO has
better competence in complex tasks with few agents. Specifically,
MAGE-X outperforms MAPPO, with 12% higher and 15% higher
success rates in 𝑁 = 2 and 4, respectively. Furthermore, MAGE-X
manifests high coordination with a low collision rate of 0.02% in
𝑁 = 2 and 0.12% in 𝑁 = 4, demonstrating that MAGE-X succeeds
in assigning target goals to agents to coordinate and capture the
interaction among agents. Although MAPPO performs best among
baselines, its collision rate is remarkably high. We speculate that
MAPPO agent pursues high individual capability instead of cooper-
ation. Furthermore, the sample efficiency of MAGE-X is 2× higher
than that of MAPPO in the 4-agent setting.

5.5 Ablation Study
To illustrate the effectiveness of each component of MAGE-X, we
consider 3 variants of our method in Simple Spread with 50 agents:
• MAGE-X w. RG: We substitute the Goal Scheduler in the
Goal Commander with random sampling without replace-
ment to assign each agent a random target goal.
• MAGE-X-Atten: We remove GCN in the Obs. Encoder and
replace the Graph Encoder in the Action Executor with the
attention module [36] to extract the relationship of agents.
The concatenation of (𝑓𝑜 (𝑜1), 𝑓𝑜 (𝑜2), ..𝑓𝑜 (𝑜𝑁)) is fed into the
attention module.
• MAGE-X-MLP: We consider the MLP layer as the alter-
native to the Action Executor to capture the correlation
between agents and goals. The MLP layer takes the concate-
nation of (𝑓𝑜 (𝑜1), 𝑓𝑜 (𝑜2), ..𝑓𝑜 (𝑜𝑁), 𝑃𝑔) as input.

Figure 9: Ablation study on MAGE-X in Simple Spread with
50 agents.

Fig. 9 and Table 4 summarize the performance of MAGE-X and
its variants on training and evaluation, respectively. MAGE-X ex-
cels in data efficiency and final performance with a 100% success
rate. MAGE-X-MLP degrades most, implying that the MLP layer
is incapable of distinguishing the correlation of agents and target
goals from the given information.MAGE-X w. RG lacks an appropri-
ate Goal scheduler in the high-level Goal Commander, which may
lead to agents being assigned distant goals. Therefore, MAGE-X w.
RG reveals a worse performance with an 83% success rate. MAGE-
X-Atten is slightly inferior to MAGE-X with a 7% lower success rate.
We hypothesize that MAGE-X-Atten provides each agent with the
attention weights of all the neighbors, where needless teammates
may influence agents. On the contrary, MAGE-X agent only concen-
trates on crucial neighbors in the subgraph with useful information.

6 Conclusion and Future Work
In this paper, we propose a goal-conditioned MARL framework,
Multi-Agent Commander-Executor (MAGE-X), to improve data effi-
ciency and cooperation in multi-agent navigation tasks, especially
in scenarios with large space spaces (e.g., a massive number of
agents or complex 3𝐷 simulator). MAGE-X consists of a high-level
Goal Commander and a low-level Action Executor, where the Com-
mander allocates target goals to agents via the probability distribu-
tion of goals and the Executor leverages GNN and a Goal Encoder to
capture team representation with strong goal guidance. Thorough
experiments demonstrate that MAGE-X achieves higher sample
efficiency and better performances than all the state-of-the-art
MARL baselines in multi-agent particle environments (MPE) with
large-scale agents and a more complicated quadrotor navigation
task. Currently, MAGE-X mainly focuses on multi-agent navigation
tasks, and we will try to apply MAGE-X to other multi-agent tasks
beyond navigation in the future.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1659

ACKNOWLEDGMENT

This research was supported by National Natural Science Foun-
dation of China (No.62203257, U19B2019, M-0248), Tsinghua Uni-
versity Initiative Scientific Research Program, Tsinghua-Meituan
Joint Institute for Digital Life, Beijing National Research Center for
Information Science, Technology (BNRist) and Beijing Innovation
Center for Future Chips.

References
[1] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser. 2017. Simultane-

ous localization and mapping: A survey of current trends in autonomous driving.
IEEE Transactions on Intelligent Vehicles 2, 3 (2017), 194–220.

[2] Daniele Calisi, Alessandro Farinelli, Luca Iocchi, and Daniele Nardi. 2005. Au-
tonomous navigation and exploration in a rescue environment. In IEEE Interna-
tional Safety, Security and Rescue Rototics, Workshop, 2005. IEEE, 54–59.

[3] Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. 2021. Goal-conditioned
reinforcement learning with imagined subgoals. In International Conference on
Machine Learning. PMLR, 1430–1440.

[4] Rui Chen, Peide Huang, and Laixi Shi. 2021. Latent Goal Allocation for Multi-
Agent Goal-Conditioned Self-Supervised Imitation Learning. In Advances in
Neural Information Processing Systems.

[5] Peter Dayan and Geoffrey E Hinton. 1992. Feudal reinforcement learning. Ad-
vances in neural information processing systems 5 (1992).

[6] Kaivuan Gao, Jing Xin, Han Cheng, Ding Liu, and Jiang Li. 2018. Multi-mobile
robot autonomous navigation system for intelligent logistics. In 2018 Chinese
Automation Congress (CAC). IEEE, 2603–2609.

[7] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. 2020.
A survey of deep learning techniques for autonomous driving. Journal of Field
Robotics 37, 3 (2020), 362–386.

[8] Christopher Hoang, Sungryull Sohn, Jongwook Choi, Wilka Carvalho, and
Honglak Lee. 2021. Successor Feature Landmarks for Long-Horizon Goal-
Conditioned Reinforcement Learning. Advances in Neural Information Processing
Systems 34 (2021), 26963–26975.

[9] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[10] Jeewon Jeon, Woojun Kim, Whiyoung Jung, and Youngchul Sung. 2022. MASER:
Multi-Agent Reinforcement Learning with Subgoals Generated from Experience
Replay Buffer. In International Conference on Machine Learning. PMLR, 10041–
10052.

[11] Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. 2018. Graph convo-
lutional reinforcement learning. arXiv preprint arXiv:1810.09202 (2018).

[12] Yue Jin, Yaodong Zhang, Jian Yuan, and Xudong Zhang. 2019. Efficient multi-
agent cooperative navigation in unknown environments with interlaced deep
reinforcement learning. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2897–2901.

[13] Roy Jonker and Ton Volgenant. 1986. Improving the Hungarian assignment
algorithm. Operations Research Letters 5, 4 (1986), 171–175.

[14] Junsu Kim, Younggyo Seo, and Jinwoo Shin. 2021. Landmark-guided subgoal
generation in hierarchical reinforcement learning. Advances in Neural Information
Processing Systems 34 (2021), 28336–28349.

[15] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[16] Alexander Kleiner, Johann Prediger, and Bernhard Nebel. 2006. RFID technology-
based exploration and SLAM for search and rescue. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 4054–4059.

[17] Songsang Koh, Bo Zhou, Hui Fang, Po Yang, Zaili Yang, Qiang Yang, Lin Guan,
and Zhigang Ji. 2020. Real-time deep reinforcement learning based vehicle
navigation. Applied Soft Computing 96 (2020), 106694.

[18] Abdul Rahman Kreidieh, Glen Berseth, Brandon Trabucco, Samyak Parajuli,
Sergey Levine, and Alexandre M Bayen. 2019. Inter-level cooperation in hierar-
chical reinforcement learning. arXiv preprint arXiv:1912.02368 (2019).

[19] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
2016. Hierarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation. Advances in neural information processing systems 29
(2016).

[20] Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. 2017. Learning
multi-level hierarchies with hindsight. arXiv preprint arXiv:1712.00948 (2017).

[21] Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer.
2020. Deep implicit coordination graphs for multi-agent reinforcement learning.
arXiv preprint arXiv:2006.11438 (2020).

[22] Shaotang Liu and Lixin Hu. 2009. Application of beidou navigation satellite
system in logistics and transportation. In Logistics: The Emerging Frontiers of
Transportation and Development in China. 1789–1794.

[23] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. Advances in neural information processing systems 30 (2017).

[24] Enrico Marchesini and Alessandro Farinelli. 2020. Discrete deep reinforcement
learning for mapless navigation. In 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 10688–10694.

[25] Enrico Marchesini and Alessandro Farinelli. 2022. Enhancing deep reinforcement
learning approaches for multi-robot navigation via single-robot evolutionary
policy search. In 2022 International Conference on Robotics and Automation (ICRA).
IEEE, 5525–5531.

[26] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. 2018. Data-
efficient hierarchical reinforcement learning. Advances in neural information
processing systems 31 (2018).

[27] Suraj Nair and Chelsea Finn. 2019. Hierarchical foresight: Self-supervised
learning of long-horizon tasks via visual subgoal generation. arXiv preprint
arXiv:1909.05829 (2019).

[28] Yaru Niu, Rohan R Paleja, and Matthew C Gombolay. 2021. Multi-Agent Graph-
Attention Communication and Teaming.. In AAMAS. 964–973.

[29] Jacopo Panerati, Hehui Zheng, SiQi Zhou, James Xu, Amanda Prorok, and An-
gela P Schoellig. 2021. Learning to fly—a gym environment with pybullet physics
for reinforcement learning of multi-agent quadcopter control. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 7512–
7519.

[30] Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman,
Chelsea Finn, and Sergey Levine. 2020. Long-horizon visual planning with goal-
conditioned hierarchical predictors. Advances in Neural Information Processing
Systems 33 (2020), 17321–17333.

[31] Zhenhuan Rao, Yuechen Wu, Zifei Yang, Wei Zhang, Shijian Lu, Weizhi Lu,
and ZhengJun Zha. 2021. Visual navigation with multiple goals based on deep
reinforcement learning. IEEE Transactions on Neural Networks and Learning
Systems 32, 12 (2021), 5445–5455.

[32] Jingqing Ruan, Yali Du, XuantangXiong, DengpengXing, Xiyun Li, LinghuiMeng,
Haifeng Zhang, Jun Wang, and Bo Xu. 2022. GCS: Graph-Based Coordination
Strategy forMulti-Agent Reinforcement Learning. arXiv preprint arXiv:2201.06257
(2022).

[33] Heechang Ryu, Hayong Shin, and Jinkyoo Park. 2020. Multi-agent actor-critic
with hierarchical graph attention network. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34. 7236–7243.

[34] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[37] Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun
Wang, and Yaodong Yang. 2022. Multi-Agent Reinforcement Learning is a Se-
quence Modeling Problem. arXiv preprint arXiv:2205.14953 (2022).

[38] Lijun Xia, Chao Yu, and Zifan Wu. 2021. Inference-based Hierarchical Rein-
forcement Learning for Cooperative Multi-agent Navigation. In 2021 IEEE 33rd
International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 57–64.

[39] Xinyi Yang, Chao Yu, Jiaxuan Gao, Yu Wang, and Huazhong Yang. 2022. SAVE:
Spatial-Attention Visual Exploration. In 2022 IEEE International Conference on
Image Processing (ICIP). IEEE, 1356–1360.

[40] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
2021. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games.
arXiv preprint arXiv:2103.01955 (2021).

[41] Chao Yu, Xinyi Yang, Jiaxuan Gao, Huazhong Yang, Yu Wang, and Yi Wu. 2022.
Learning efficient multi-agent cooperative visual exploration. In European Con-
ference on Computer Vision. Springer, 497–515.

[42] Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. 2020. Gen-
erating adjacency-constrained subgoals in hierarchical reinforcement learning.
Advances in Neural Information Processing Systems 33 (2020), 21579–21590.

[43] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei,
and Ali Farhadi. 2017. Target-driven visual navigation in indoor scenes using
deep reinforcement learning. In 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, 3357–3364.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1660

	Abstract
	1 Introduction
	2 Related Work
	2.1 Navigation
	2.2 Goal-conditioned HRL
	2.3 Graph Neural Networks

	3 Preliminary
	3.1 Dec-MDPs
	3.2 Graph Neural Networks

	4 Methodology
	4.1 Goal Commander
	4.2 Action Executor
	4.3 Multi-agent Commander-Executor Training

	5 Experiments
	5.1 Task Setup
	5.2 Implementation Details
	5.3 Baselines
	5.4 Main Results
	5.5 Ablation Study

	6 Conclusion and Future Work
	References

