
Infomaxformer: Maximum Entropy Transformer for Long
Time-Series Forecasting Problem

Peiwang Tang
Institute of Advanced Technology, University of Science

and Technology of China
Hefei 230026, China

G60 STI Valley Industry & Innovation Institute, Jiaxing
University

Jiaxing 314001, China
tpw@mail.ustc.edu.cn

Xianchao Zhang∗

Key Laboratory of Medical Electronics and Digital Health
of Zhejiang Province, Jiaxing University

Jiaxing 314001, China
Engineering Research Center of Intelligent Human Health

Situation Awareness of Zhejiang Provincey, Jiaxing
University

Jiaxing 314001, China
zhangxianchao@zjxu.edu.cn

ABSTRACT

The Transformer architecture yields state-of-the-art results in many
tasks such as natural language processing (NLP) and computer vi-
sion (CV), since the ability to efficiently capture the precise long-
range dependency coupling between input sequences. With this
advanced capability, however, the quadratic time complexity and
high memory usage prevents the Transformer from dealing with
long time-series forecasting problem (LTFP). To address these diffi-
culties: (i) we revisit the learned attention patterns of the vanilla self-
attention, redesigned the calculation method of self-attention based
the Maximum Entropy Principle. (ii) we propose a new method
to sparse the self-attention, which can prevent the loss of more
important self-attention scores due to random sampling.(iii) We pro-
pose Keys/Values Distilling method motivated that a large amount
of feature in the original self-attention map is redundant, which
can further reduce the time and spatial complexity and make it pos-
sible to input longer time-series. Finally, we propose a method that
combines the encoder-decoder architecture with seasonal-trend
decomposition, i.e., using the encoder-decoder architecture to cap-
ture more specific seasonal parts. A large number of experiments
on several large-scale datasets show that our Infomaxformer is
obviously superior to the existing methods. We expect this to open
up a new solution for Transformer to solve LTFP, and exploring
the ability of the Transformer architecture to capture much longer
temporal dependencies.

KEYWORDS

Maximum Entropy; Transformer; Time-Series; Forecasting

ACM Reference Format:

Peiwang Tang and Xianchao Zhang. 2023. Infomaxformer: Maximum En-

tropy Transformer for Long Time-Series Forecasting Problem. In Proc. of

the 22nd International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023,

IFAAMAS, 9 pages.

∗corresponding author

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION

Defined as an ordered dataset formed with time change, time-series
refer to a series of ordered observations acquired according to time
sequence [9], which is widely used in commercial and industrial
fields, such as biomedical field [31], economic and financial field
[11], electric power [52] and transportation field [49]. As an im-
portant part of time-series analysis, time-series forecasting mainly
analyze the trend, periodicity, volatility and other time-series pat-
terns of time-series by using the time-series data observed in history
and the relevant rules that have been mastered, so as to predict the
situation in the future [3, 25, 46]. In practical applications, we can
use a large number of past time-series to achieve long-term predic-
tion for the future, i.e., long time-series forecasting problem (LTFP).
Recent deep prediction models have made great progress, especially
Transformer based models [21, 27, 32, 43, 47]. The Transformer [45]
shows better performance than the recurrent neural network (RNN)
model in modeling the long-term dependence of sequence data, and
has achieved the best results in the natural language processing
(NLP) [10, 36] and computer vision (CV) [12, 15] fields, since its
advanced self-attention mechanism.

However, there are still some problems in solving LTFP of exist-
ing Transformer models. First, the self-attention mechanism has
high performance, but also brings high time complexity and mem-
ory usage [33, 50]. Although some large-scale Transformer models
have produced impressive results in the NLP and CV fields [4, 37],
they often require dozens or even hundreds of GPUs during training,
which limits the possibility of Transformer models to solve LTFP.
Although there have been some researches on reducing the time
complexity and memory usage of the self-attention mechanism,
only realize a limited reduce of complexity to O(𝐿𝑙𝑜𝑔𝐿) [23, 26, 52].
Moreover, some methods for reducing the complexity only ran-
domly select dot-product pairs, which will cause some performance
loss and lead to the long-term dependence of the sequences that
cannot be well captured by the self-attention mechanism. Second,
it is unreliable to find the time dependence directly from the time-
series, because these dependencies may be masked by the entangled
temporal patterns.

In order to better solve LTFP, our work explicitly and deeply
discussed the above problems, studied the sparsity of self-attention
mechanism, decomposed the time-series, and updated the network
components. Finally, we have conducted extensive experiments on
five different datasets. The final experimental results show that our

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1670

Figure 1: Infomaxformer architecture

proposed Infomaxformer can significantly improve the accuracy
of prediction, and is superior to other state-of-the-art models. The
contributions of this paper are summarized as follows:

• We review the calculation method of self-attention mecha-
nism from the perspective of information entropy [41], and
sparse the calculation of self-attention by using theMaxi-

mum Entropy Principle [20] to reduce the time complex-
ity.

• In view of the data characteristic that local information of
time-series is heavy spatial redundancy, we propose the
Keys/Values Distilling method, which can further reduce the
time and space complexity to O(𝐿), and help the model to
accept longer sequence inputs.

• In order to decompose time-series and explain complex time-
series patterns, we propose a decomposition method, which
is combined with self-attention mechanism, to process com-
plex time-series and extract more useful features.

• We have conducted extensive experiments on datasets in
many different fields, and the final results show that our
proposed model achieves the most advanced performance
in a variety of experimental settings.

2 RELATEDWORK

2.1 Time-Series Forecasting

The classical convolutional neural network (CNN) [24] model can
extract the local information unrelated to the spatial position in
the data [28]. In order to allow CNN to be used in the time-series,
scholars designed multi-layer causal convolutions to ensure that
only past information can be used for prediction [3, 6]. For the
processing of long-term dependencies, the Temporal Convolutional
Network (TCN) introduces the dilated convolutions, which changes
the interval of original look-back window from 1 to 𝑑𝑙 , where 𝑑𝑙
is a layer-specific division rate. In traditional modeling, recurrent
neural networ (RNN) is also widely used in the field of time-series
prediction owing to its architecture naturally supports inputs and
outputs with sequential relationships [29, 38, 40, 42]. The main idea
is to use the memory state of RNN neurons to store all past effective

information. However, RNN variants may be limited in learning
the long-term dependency in the data. Since all the information
in the past will decay with time and the difficult for RNN to learn
the long-term memory [17]. Long Short-Term Memory networks
(LSTM) [18] introduces some different operation gates to solve this
problem, but it does not solve the long-term dependency well. To
further these effort, attention mechanism is proposed to help the
neural network to learn long-term memory information [2]. In
short, the attention mechanism of time-series is to calculate the
dynamic weight, find the weighted sum of past hidden states, and
predict the output value with the summed state. In this way, the
vector used for prediction can contain information that predicts a
more informative time point for the current time point [13, 21, 27].

2.2 Sparse Attention

In the standard self-attention mechanism, each token needs to
pay attention to all other tokens [45]. However, for the trained
transformer, the learned attention matrix A is often very sparse
across most data points [7]. Therefore, the computational complex-
ity can be reduced by limiting the number of queries that want
to participate in the query-key pairs through the incorporating
structural bias. The existing methods can be divided into two cate-
gories: position-based and content-based sparse attention [30]. In
position-based sparse attention, the attention matrix is limited to
some predefined patterns [34, 48]. Although these spark patterns
change in different ways, some of them can be decomposed into
some atomic sparse patterns, e.g., global attention, band attention,
dilated attention, random attention, block local attention [5, 14].
Many spark patterns include one or more of the above atomic sparse
patterns [51]. Another work is to create a sparse graph based on
the input content. A simple method is to select keywords that may
have a large similarity score with a given query. In order to con-
struct the sparse graph effectively, the maximum inner product
search problem can be repeated, i.e, the key with the maximum
dot product can be found by a query without calculating all dot-
product terms [26, 52]. For example, Routing transformer [39] uses
K-means clustering to cluster queries and keys on the same group
of centroid vectors. Each query only focuses on the keys belonging

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1671

(a) Softmax scores at Head1@Encoder layer (b) Softmax scores at Head7@Encoder layer

Figure 2: The Softmax scores in the self-attention from canonical Transformer trained on ETTh1 dataset

to the same cluster. Reformer [23] uses location sensitive hash-
ing (LSH) to select key-value pairs for each query. The proposed
LSH allows each token to attend only to the tokens in the same
hash bucket. In Informer [52], based on query and key similarity
sampling dot-product pairs, ProbSparse self-attention is proposed
to reduce the time complexity of Transformer to O(𝐿 log𝐿) and
allows it to accept longer input.

3 METHODOLOGY

The problem of long time-series forecasting is to input the past

sequence X =
{
𝑥1, · · · , 𝑥𝐿𝑥 |𝑥𝑖 ∈ R𝑑𝑥

}
, and the output is to predict

corresponding future sequenceY =
{
𝑦𝐿𝑥+1, · · · , 𝑦𝐿𝑥+𝐿𝑦 |𝑦𝑖 ∈ R𝑑𝑦

}
,

where 𝐿𝑥 and 𝐿𝑦 are the lengths of input and output sequences
respectively, and 𝑑𝑥 and 𝑑𝑦 are the feature dimensions of input X
and output Y respectively. The LTFP encourages a longer input’s
length 𝐿𝑥 and a longer output’s length 𝐿𝑦 than previous works.

Our proposed Infomaxformer holds the encoder-decoder archi-
tecture and combines it with the decomposition structure to solve
LTFP. Please refer to Figure 1 for an overview and the following
sections for details.

3.1 Vanilla Self-attention Mechanism

The scaled dot-product attention mechanism in original Trans-
former [45] performs as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (QK
𝑇

√
𝑑

)V (1)

i.e., 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is defined as an operation of ternary matrix, where

Q(𝑞𝑢𝑒𝑟𝑖𝑒𝑠) ∈ R𝐿𝑄×𝑑 , K(𝑘𝑒𝑦𝑠) ∈ R𝐿𝐾 ×𝑑 , V(𝑣𝑎𝑙𝑢𝑒𝑠) ∈ R𝐿𝑉 ×𝑑 , and
𝑑 is the feature dimension. To further discuss the self-attention
mechanism, the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 function is expanded, and use 𝑞𝑖 , 𝑘𝑖 and
𝑣𝑖 to represent the 𝑖-th row in Q, K and V respectively. For the time-
series with input length 𝐿, 𝑖 represents the 𝑖-th data. Therefore, the
original self-attention mechanism for the 𝑖-th data can be expressed
as:

A(𝑖) =
𝐿∑
𝑗

𝑒

𝑞𝑖𝑘
𝑇
𝑗√
𝑑

∑𝐿
𝑙 𝑒

𝑞𝑖𝑘
𝑇
𝑙√
𝑑

𝑣 𝑗 =
𝐿∑
𝑗

𝑘 (𝑞𝑖 , 𝑘 𝑗)∑𝐿
𝑙 𝑘 (𝑞𝑖 , 𝑘𝑙)

𝑣 𝑗 (2)

which 𝑘 (𝑞𝑖 , 𝑘 𝑗) = 𝑒𝑥𝑝 (𝑞𝑖𝑘𝑇𝑗 /
√
𝑑) [44].

Let 𝑝 (𝑞𝑖 , 𝑘 𝑗) = 𝑘 (𝑞𝑖 , 𝑘 𝑗)/
∑𝐿
𝑙 𝑘 (𝑞𝑖 , 𝑘𝑙), 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 can be abbrevi-

ated as:

A(𝑖) =
𝐿∑
𝑗

𝑝
(
𝑞𝑖 , 𝑘 𝑗

)
𝑣 𝑗 (3)

where 𝑝
(
𝑞𝑖 , 𝑘 𝑗

)
is the probability of 𝑣𝑖 , then A(𝑖) is the expec-

tation of matrix V. For the probability 𝑝 (𝑞𝑖 , 𝑘 𝑗), it requires the
quadratic times dot-product computation and O(𝐿𝑄𝐿𝐾) memory
usage, which is the main reason why the traditional self-attention
mechanism cannot handle long time-series (it is easy to lead to
out-of-memory), and also the main disadvantage that limits its
prediction ability.

Many previous studies have shown that the probability distribu-
tion of self-attention mechanism has potential sparsity [7, 30], and a
selection strategy is designed for all 𝑝 (𝑞𝑖 , 𝑘 𝑗) without significantly
affecting the performance of the model [5, 14, 34, 48]. To motivate
our approach, we first revisit the learned attention patterns of the
vanilla self-attention and make a qualitative evaluation. Accord-
ing to Figure 2, in the first layer of encoder, the scores follows an
obvious long tail distribution, and the Softmax scores has obvious
blocking phenomenon, especially in the second and third layers.
So a few dot-product pairs contribute to the major attention, and
others generate negligible attention. Then, how to “select” them?

3.2 Reformulation Via The Lens of Information
Entropy

We now provide the intuition to reformulate Equation (3) via the
lens of information entropy [41]. Information entropy is a basic
concept of information theory, which describes the uncertainty of
possible events of information sources. Its formula is as follows:

𝐻 (𝑥𝑖) = −
𝐿∑
𝑖=1

𝑝 (𝑥𝑖)𝑙𝑛𝑝 (𝑥𝑖) (4)

where 𝑝 (𝑥𝑖) represents the probability that the random event𝑋 is 𝑥𝑖 .
Any information has redundancy, which is related to the occurrence
probability (uncertainty) of each symbol in the information. The
probability and the amout of information generated are positively
correlated. Information is used to eliminate random uncertainty,

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1672

and information entropy is a measure of the amount of information
needed to eliminate uncertainty, i.e., the amount of information
that an unknown event may contain.

MaximumEntropyPrincipleWhen only some knowledge about

the unknown distribution is mastered, the probability distribution

with the largest entropy value should be selected [20].

It is difficult to determine the probability distribution of random
variables. Generally, only the average values or the values under
certain limited conditions can be measured. There can be many
(even infinite) distributions that meet the measured values. The
maximum entropy principle is a criterion for selecting the statistical
characteristics of random variables that best meet the objective
conditions, also known as the Maximum Information Principle.
Based on this principle, it is effective to select a distribution with
maximum entropy as the distribution of the random variable.

Maximum Entropy Self-attention From Equation (3), the 𝑖-th
query’s attention on all the keys are defined as a probability distri-
butions p𝑖 and the output is its composition with values V. Accord-
ing to the maximum entropy principle, the dominant dot-product
pairs encourage the corresponding entropy of p𝑖 to be maximum.
However, the traversing of all the p𝑖 still needs to calculate each

dot-product pair, i.e., the time complexity is O(𝐿2). Motivated by
this, we propose a very simple but effective approximation method
to obtain the query information entropy measurement.

Proposition 3.1. For all probability distributions p𝑖 and p𝑗 , if

𝜎𝑝𝑖 < 𝜎𝑝 𝑗 , it can be considered that 𝐻 (𝑖) > 𝐻 (𝑗).
If the 𝑖-th query’s p𝑖 gains a smaller variance, its information en-

tropy is larger and has a higher possibility to contain the dominate
dot-product pairs. Variance is a measure of the degree of dispersion
of a group of data. The variance of data subject to the same distri-
bution is the same, so we only need to randomly sample constant
𝑈 from K to calculate the variance of the 𝑖-th query’s probability
distribution p𝑖 , which only need to calculate O(𝐿𝑄) dot-product
for each query-key lookup and the layer memory usage maintains
O(𝐿𝑄). Then, select sparse Top-𝑢 from Q as Q̄ to calculate the
standard dot-product pair, so the time complexity and memory
usage maintains O(𝑢𝐿𝐾). However, the rest of queries can’t be left
without any calculation.

Theorem 3.2. In the case of discrete sources, for discrete sources

with L symbols, the information entropy can reach the maximum

value only when they appear with equal probability, that is, the

average uncertainty of sources with equal probability distribution is

the maximum

Based on the proposed measurement and Theorem 3.2, we have
the maximum entropy self-attention, i.e., MEA (the pseudo-code is
in Appendix):

A(𝑖) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑𝐿
𝑗 𝑝

(
𝑞𝑖 , 𝑘 𝑗

)
𝑣 𝑗 , if top-u

∑𝐿
𝑗 𝑣 𝑗/𝐿 , otherwise

(5)

3.3 Embedding Method

As shown in Figure 3, the input embedding consists of three parts,
a scalar, a local position and a global time stamp. We use scalar

Conv2d

Feature

Map
Stack

Figure 3: The Embedding Method

projection SP, local position embedding PE [45] and time embedding
TE [52] to deal with the above parts respectively:

𝑆𝑃 = 𝐶𝑜𝑛𝑣1𝑑 (𝑥𝑡𝑖) (6)

𝑃𝐸 (𝑖,2𝑗) = 𝑠𝑖𝑛
(
𝑖/100002𝑗/𝑑𝑚𝑜𝑑𝑒𝑙

)

𝑃𝐸 (𝑖,2𝑗+1) = 𝑐𝑜𝑠
(
𝑖/100002𝑗/𝑑𝑚𝑜𝑑𝑒𝑙

) (7)

𝑇𝐸 = 𝐸 (𝑚𝑜𝑛𝑡ℎ) + 𝐸 (𝑑𝑎𝑦) + 𝐸 (ℎ𝑜𝑢𝑟) + 𝐸 (𝑚𝑖𝑛𝑢𝑡𝑒) (8)

For the Equation (6), we project the scalar context 𝑥𝑡𝑖 into 𝑑𝑚𝑜𝑑𝑒𝑙 -
dim vector with 1-D convolutional filters. The kernel width is 3,
stride is 1, the input channel is 𝑑𝑥 and the output channel is 𝑑𝑚𝑜𝑑𝑒𝑙 .
For the Equation (7), 𝑖 ∈ {1, . . . , 𝐿𝑥 }, 𝑗 ∈ {1, . . . , �𝑑𝑚𝑜𝑑𝑒𝑙/2�},
𝑑𝑚𝑜𝑑𝑒𝑙 is the feature dimension after embedding. For the Equa-
tion (8), 𝐸 is a learnable stamp embeddings with limited vocab size
(up to 60, namely taking minutes as the finest granularity).

For the three different features finally obtained, instead of the
method of addition [46, 52], we stacked them together and reduced
their dimension through a two-dimensional convolution, that is,
the input channel of convolution is 3 and the output channel is 1:

X = 𝐶𝑜𝑛𝑣2𝑑 (𝑆𝑡𝑎𝑐𝑘 (𝑆𝑃, 𝑃𝐸,𝑇𝐸)) (9)

where the kernel width and stride is (1, 1).

3.4 Keys/Values Distilling

In previous works, a feed-forward network with a single hidden
layer is proposed to linearly project the queries, keys and values
[45, 52]. As the natural consequence of the original sequence linear
project, the queries, keys and values have a lot of redundant features.
We use the distilling operation to privilege the superior keys and
values with dominating features and make a focused feature map
in the self-attention mechanism. It trims the time dimension of the
input sharply, does not arbitrarily delete the feature of the input
sequence, but recombines them into a new heads weights matrix.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1673

K/V

Figure 4: The Keys/Values Distilling

As shown in Figure 4, we distilling keys/values using a three-step
convolution operation:

K1 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑 (𝑅𝑒𝑙𝑢 (𝐶𝑜𝑛𝑣2𝑑 (X)))
K2 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑 (𝑅𝑒𝑙𝑢 (𝐶𝑜𝑛𝑣2𝑑 (K1)))
K3 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑 (𝑅𝑒𝑙𝑢 (𝐶𝑜𝑛𝑣2𝑑 (K2)))

(10)

where X ∈ R𝐿𝑥×𝑑𝑚𝑜𝑑𝑒𝑙 . 𝐶𝑜𝑛𝑣2𝑑 () performs an 2-D convolutional
filters (kernel size=(2, 2)) with the 𝑅𝑒𝑙𝑢 activation function, the
number of input channels is the number of heads, and the num-
ber of output channels is ℎ times the number of input channels,
so after three-step convolution, the number of output channels,
i.e., the number of heads, is ℎ3 (this can be modified as needed).
𝑀𝑎𝑥𝑝𝑜𝑜𝑙2𝑑 () performs an 2-D max pooling (kernel size and stride

is (𝑙 , h)). Therefore, after three-step convolution,K3 ∈ R
𝐿𝑋
𝑙3

× 𝑑𝑚𝑜𝑑𝑒𝑙
ℎ3 ,

i.e. K ∈ R𝐿𝐾 × 𝑑𝑚𝑜𝑑𝑒𝑙
ℎ3 ,V ∈ R𝐿𝑉 × 𝑑𝑚𝑜𝑑𝑒𝑙

ℎ3 , 𝐿𝐾 and 𝐿𝑉 is 𝐿𝑋 /𝑙3.
Complexity Analysis: Now we know that 𝐿𝐾 is 𝐿𝑋 /𝑙3, so the

time complexity and space complexity of our MEA is O(𝑢𝐿𝑋 /𝑙3).
We set 𝑢 = 𝑐

√
𝐿𝑄 , 𝑙 = 𝐿

1/6
𝑋 , 𝑐 is a constant sampling factor, 𝑢 varies

linearly with 𝐿𝑄 , so:

𝑢𝐿𝑋 /𝑙3 = 𝑐
√
𝐿𝑄𝐿𝑋 /(𝐿1/6𝑋)3 = 𝑐

√
𝐿𝑄

√
𝐿𝑋 (11)

where 𝐿𝑄 = 𝐿𝑋 = 𝐿. Consequently, our time complexity and space
complexit can reach linear O(𝐿).

3.5 Time-Series Decomposition

In order to make long-term prediction under the input of long time-
series, we use the concept of decomposition to learn complex time
patterns, which can separate the time-series into trend and seasonal
[8, 19, 46]. These two parts respectively represent two features
including long-term development trend and seasonality of the time-
series, which are different in different time-series. To overcome such
a problem, we introduce a time-series decomposition block (TSD),
which can propose the development trend and seasonality of the
time-series from the input. Specifically, we use the moving average
to smooth out periodic fluctuations, extract long-term trends, and

highlight seasonality. For an input sequence X ∈ R𝐿×𝑑 of length 𝐿,
this process can be formulated as:

X𝑡 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (X)
X𝑠 = X − X𝑡 (12)

where X𝑠 ,X𝑡 ∈ R𝐿×𝑑 represent extracted seasonal and trend, re-
spectively. We use X𝑡 ,X𝑠 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝 (X) to summarize
above equations.

3.6 Encoder and Decoder

Encoder: As shown in Figure 1, the encoder focuses on modeling
of the seasonal part. Our encoder layers are composed of two sub-
blocks. The first is a MEA mechanism, and the second is a simple,
position-wise fully connected feed-forward network (MLP). We
employ residual connections [16] around each of the sub-blocks,
but unlike previous structures [12, 45], layer normalization [1] was
not performed. The input of the encoder is only the seasonal partX𝑠
of the input sequence X, and the output only contains the seasonal
information of the past and will be used as cross information to help
the decoder better predict the seasonal information of the future
sequence.

X𝑡 ,X𝑠 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝 (X)
X𝑛𝑠1 = X𝑛−1𝑠 +𝑀𝐸𝐴(X𝑛−1𝑠)
X𝑛𝑠 = X𝑛𝑠1 +𝑀𝐿𝑃 (X𝑛𝑠1)

(13)

where 𝑛 = 1 . . . 𝑁 , X0
𝑡 = X𝑡 , X𝑒𝑛𝑜 = X𝑁𝑡 , 𝑁 is the number of layers

of the encoder, and MLP consists of two 1-D convolution operations.
Decoder: In addition to the two sub-blocks in each encoder layer,

the decoder in classic Transformer also inserts a third sub-block in
the two sub-blocks, which performs self-attention on the output
of the encoder layers. On this basis, we insert the fourth sub-block
in the decoder, i.e., the time-series decomposition block. Similar to
the encoder, we employ residual connections around each of the
sub-blocks, but did not perform layer normalization. We input the
following vectors to the decoder:

X𝑑𝑒𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 (X𝑙𝑎𝑏𝑒𝑙 ,X0) ∈ R(𝐿𝑙𝑎𝑏𝑒𝑙+𝐿𝑦)×𝑑𝑚𝑜𝑑𝑒𝑙 (14)

where X𝑙𝑎𝑏𝑒𝑙 ∈ R𝐿𝑙𝑎𝑏𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 is start token, 𝐿𝑙𝑎𝑏𝑒𝑙 is the label

length,X0 ∈ R𝐿𝑦×𝑑𝑚𝑜𝑑𝑒𝑙 is a placeholder for the target sequence (set
the scalar to 0). By setting masked dot-products to negative infinity,
masked multi-head attention is applied to the MEA calculation
(MMEA). This masking ensures that the prediction of position 𝑖
can only rely on the known outputs of positions less than 𝑖 , which
avoids auto-regressive. A fully connected layer acquires the final
output, and its outsize is 𝑑𝑦 . For the time-series, the trend changes
are not obvious, but the specific seasonal is different. We use the
decoder to predict the seasonal of future data, and use the average
of input data to approximate the trend part of future data.

X𝑛1 = X𝑛−1 +𝑀𝐸𝐴(X𝑛−1)
X𝑛𝑡 ,X𝑛𝑠 = 𝑇𝑖𝑚𝑒𝑆𝑒𝑟𝑖𝑒𝑠𝐷𝑒𝑐𝑜𝑚𝑝 (X𝑛1)

X𝑛𝑠1 = X𝑛𝑠 +𝑀𝑀𝐸𝐴(X𝑛𝑠 ,X𝑒𝑛𝑜)
X𝑛 = X𝑛𝑠1 +𝑀𝐿𝑃 (X𝑛𝑠1) + X𝑛𝑡
Y = 𝑀𝑒𝑎𝑛(X𝑡) + X𝑀

(15)

where 𝑛 = 1 . . . 𝑀 , X0 = X𝑑𝑒𝑖 , 𝑀 is the number of layers of the
decoder.

Loss Function: Our loss function is calculated by the mean
square error (MSE) between the model output data 𝑦𝑜 and the real
data 𝑦. and the loss is propagated back from the decoder’s outputs
across the entire model.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1674

Table 1: Multivariate long time-series forecasting results on five cases

Methods Infomaxformer Autoformer Informer Reformer LogTrans Transformer LSTM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
C
L

24 0.190 0.305 0.195 0.312 0.310 0.400 0.280 0.381 0.231 0.338 0.244 0.350 0.338 0.419
48 0.209 0.321 0.221 0.332 0.357 0.425 0.273 0.370 0.287 0.373 0.260 0.359 0.334 0.412
96 0.218 0.328 0.230 0.340 0.367 0.434 0.291 0.381 0.292 0.377 0.278 0.373 0.330 0.409
192 0.239 0.346 0.280 0.347 0.362 0.434 0.344 0.420 0.295 0.385 0.286 0.377 0.327 0.407
384 0.278 0.377 - 0.450 0.483 0.327 0.404 0.323 0.397 0.290 0.378 0.320 0.403

E
T
T
h
1

24 0.478 0.489 0.499 0.516 1.130 0.871 0.624 0.578 0.505 0.513 0.882 0.723 1.232 0.839
48 0.552 0.528 0.562 0.552 1.231 0.905 0.727 0.638 0.568 0.544 1.311 0.954 1.261 0.873
96 0.564 0.543 0.611 0.579 1.345 0.953 0.930 0.743 0.714 0.629 1.957 1.199 1.268 0.873
192 0.556 0.544 0.724 0.625 1.643 1.061 1.124 0.821 0.865 0.717 1.758 1.136 1.266 0.871
384 0.597 0.570 - 1.499 1.004 1.270 0.862 0.952 0.749 1.405 0.981 1.273 0.873

E
T
T
h
2

24 0.436 0.476 0.437 0.493 2.048 1.173 0.975 0.787 0.621 0.617 1.016 0.814 3.291 1.385
48 0.629 0.544 0.658 0.643 3.047 1.471 1.652 1.027 1.168 0.985 2.199 1.242 3.378 1.408
96 0.593 0.533 0.686 0.646 6.882 2.258 3.301 1.427 2.279 1.265 5.862 2.052 3.488 1.432
192 0.703 0.607 0.792 0.671 5.070 1.885 3.774 1.617 4.207 1.776 4.045 1.675 3.489 1.434
384 0.575 0.557 - 4.080 1.669 3.363 1.465 3.032 1.526 3.549 1.516 3.486 1.430

E
T
T
m
1

24 0.330 0.397 0.414 0.438 0.354 0.401 0.430 0.453 0.882 0.666 0.355 0.403 1.121 0.791
48 0.418 0.454 0.537 0.505 0.533 0.521 0.578 0.544 0.951 0.707 0.514 0.526 1.130 0.799
96 0.494 0.502 0.545 0.517 0.592 0.571 0.710 0.612 0.558 0.540 0.740 0.657 1.141 0.805
192 0.558 0.531 0.605 0.534 0.768 0.682 0.896 0.702 0.591 0.565 0.700 0.641 1.141 0.806
384 0.611 0.561 - 0.938 0.765 1.072 0.781 0.767 0.650 0.838 0.719 1.153 0.810

W
ea
th
er

24 0.307 0.357 0.455 0.489 0.348 0.401 0.370 0.426 0.385 0.427 0.326 0.378 0.492 0.500
48 0.381 0.422 0.544 0.542 0.488 0.505 0.443 0.475 0.498 0.505 0.447 0.664 0.497 0.504
96 0.456 0.481 0.554 0.546 0.603 0.574 0.511 0.520 0.562 0.550 0.548 0.532 0.500 0.506
192 0.508 0.517 0.585 0.560 0.700 0.632 0.537 0.541 0.591 0.570 0.620 0.575 0.503 0.517
384 0.511 0.514 - 0.681 0.621 0.536 0.535 0.622 0.585 0.630 0.579 0.513 0.524

1: A lower MSE or MAE indicates a better prediction, and we use black numbers to indicate the best performance.
2: Due to the limitation of memory, the batch size of some models is changed to 16, which is indicated by underlined numbers.
3: The ‘-’ indicates that there is still not enough memory after the batch size is changed to 16.

4 EXPERIMENT

4.1 Datasets

ETT(Electricity Transformer Temperature):1 The ETT is a key
indicator for long-term deployment of the electric power, which
collects data from two counties in China from July 2016 to July 2018
for a total of two years.

ECL (Electricity Consuming Load):2 It collects the electricity
consumption (Kwh) of 321 customers. Due to the lack of data [26],
we follow the settings in Informer [52] to convert the dataset to
hourly consumption for 2 years.

Weather:3 This dataset contains the local climatologicale data
of nearly 1600 locations in the United States. The data are collected
by once an hour from 2010 to 2013.

1ETT dataset was acquired at [52].
2ECL dataset was acquired at https://archive.ics.uci.edu/ml/datasets/

ElectricityLoadDiagrams20112014.
3Weather dataset was acquired at https://www.ncei.noaa.gov/data/local-

climatological-data/.

4.2 Experimental Details

Baselines:We selected sixmethods as comparison, including Trans-
former [45], four latest state-of-the-art Transformer-based mod-
els: Reformer [23], LogTrans [26], Informer [52], Autoformer [46],
and one RNN-based models: LSTM (Long Short-Term Memory net-
works) [18].

Experiment Setting: Our experiment was implemented in Py-
toch [35], and all the experiments are conducted on a single Nvidia
RTX 3090 GPU (24GB memory). The input of each dataset is zero-
mean normalized. We use two evaluation metrics, including mean
square error (MSE) and mean absolute error (MAE):

𝑀𝑆𝐸 =
1

𝑛

𝑛∑
𝑖=1

𝑑∑
𝑗=1

(𝑦 − 𝑦)2
𝑑

(16)

𝑀𝐴𝐸 =
1

𝑛

𝑛∑
𝑖=1

𝑑∑
𝑗=1

|𝑦 − 𝑦 |
𝑑

(17)

where 𝑛 is the length of the sequence and 𝑑 is the dimension of
data at each time point. We use these two evaluation metrics on
each prediction window to calculate the average of forecasts and
roll the whole set with 𝑠𝑡𝑟𝑖𝑑𝑒 = 1.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1675

Table 2: Different input lengths for two prediction lengths in ETTh1

Predicition length 336 480

Encoder’s input 336 480 720 960 1200 1440 480 720 960 1200 1440

Informer
MSE 1.474 1.576 1.644 1.607 1.580 1.766 1.441 1.531 1.508 1.428 1.520
MAE 0.999 1.024 1.045 1.043 1.037 1.124 0.971 0.998 0.997 0.967 1.017

Reformer
MSE 1.000 1.043 1.200 1.159

- -
1.148 1.259

- - -
MAE 0.766 0.790 0.842 0.829 0.827 0.870

Transformer
MSE 1.085 1.161 1.630 1.922

- -
1.083 1.410

- - -
MAE 0.830 0.858 1.065 1.159 0.836 0.969

LogTrans
MSE 1.136 1.127 1.059 1.075 1.060 1.067 0.888 0.940 0.892 0.885 0.914
MAE 0.851 0.849 0.817 0.823 0.818 0.816 0.733 0.764 0.736 0.732 0.745

Autoformer
MSE 0.581 0.560 0.748

- - -
0.573

- - - -
MAE 0.547 0.547 0.650 0.558

Infomaxformer
MSE 0.567 0.556 0.544 0.566 0.568 0.624 0.537 0.583 0.597 0.599 0.709

MAE 0.545 0.547 0.543 0.563 0.564 0.602 0.551 0.581 0.587 0.585 0.653

1: The ‘-’ indicates failure for the out-of-memory.

Our implementation details follows common practice of Informer
[52] training, and all experiments are repeated five times. We use
Adam [22] optimizer for optimization with a learning rate starts
from 1𝑒−4, decaying two times smaller every epoch, and the batch
size is 32. The number of encoder layers is 3 and the number of
decoder layers is 2. There is no limit to the total number of epochs,
with appropriate early stopping, i.e., when the loss of the validation
set does not decrease on three epochs, the training will be stopped.
More detailed settings can be found in Appendix 4.2.

4.3 Multivariate Time-series Forecasting

To compare the performance of different prediction lengths, we
fixed the input length 𝐿𝑥 to 784 and gradually extended the predic-
tion length 𝐿𝑦 , i.e., {24, 48, 96, 192, 384}, representing {6h, 12h, 24h,
48h, 96h} in ETTm, {1d, 2d, 4d, 8d, 16d} in {ETTh, ECL, Weather},
and we set the length of the label to double 𝐿𝑦 .

As shown in Table 1, our proposed Infomaxformermodel achieves
the best performance in all benchmarks and all predicted length
settings. Although the performance of Autoformer is closest to our
model, it can only set the batch size to 32 when the prediction
length is 24. When the prediction length is 384, the batch size to
16 will also lead to out-of-memory. This shows that our proposed
Infomaxformer model can increase the prediction ability, while
greatly reducing the use of memory. In addition, we also found that
with the increase of prediction length, the prediction performance
of Infomaxformer is more stable, and there is no sudden drop in
performance, which means that Infomaxformer maintains good
long-term robustness. Low memory usage, good robustness, high-
performance prediction, etc., which is very meaningful for practical
applications, and our model has the above advantages.

4.4 Parameter Sensitivity

We perform the sensitivity analysis of the proposed Infomaxformer
model on ETTh1.

Input Length: As shown in the Table 2, we gradually extended
the size of the input sequence 𝐿𝑥 , i.e., {336, 480, 720, 960, 1200, 1440},
while keeping the predicted length 𝐿𝑦 unchanged, and the length
𝐿𝑙𝑎𝑏𝑒𝑙 of the label sequence is consistent with 𝐿𝑦 . Our 𝐿𝑦 selected
two values, 336 and 480. In Table 2, it can be seen that increasing
the input length will lead to the decrease of MSE and MAE, because
long input will bring repeated short-term patterns. However, as the
input sequence increases, there may be more dependencies between
the inputs, and the influence of noise in the input data will also
increase. Some models can not effectively eliminate the influence
of these noises and can not better grasp the dependence of long
time-series, so MSE and MAE may increase. In this experiment,
the batch size of Autoformer is set to 16, because too large batch
size will directly lead to out-of-memory. It can be seen that there
is still a certain gap between the memory usage of many model
theories and the actual application. It seems that the Autoformer
with memory usage of O(𝐿 log𝐿) is not better than the original
Transformer with memory usage of O(𝐿2).

Sampling Factor 𝑐: The sampling factor 𝑐 controls the infor-
mation bandwidth of MEA in Equation (5). We start with small
factors (=1) and gradually increase to large factors (=9). As can be
seen in Figure 5(a), the performance of our Infomaxformer does not
change much, and it is not similar to the case that the performance
of Informer is slightly improved with the change of sampling factor.

This is because our initial sampling is
√
𝐿, not log𝐿 in Informer [52],

so enough dominant queries is selected to calculate the dot-product
to prevent the loss of important features.

Sampling Factor𝑈 : The sampling factor𝑈 controls how many
keys are selected to calculate the variance. Although the variance

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1676

(a) Sampling Factor 𝑐 (b) Sampling Factor𝑈

Figure 5: The parameter sensitivity of two components in Infomaxformer

of data subject to the same distribution is the same, too few data
samples will cause the calculated variance to be not the actual
variance. It can be seen from Figure 5(b) that when 𝑈 is too low,
the performance of the Infomaxformer model will indeed be af-
fected. However, when𝑈 gradually increases, the performance of
the model tends to be stable.

Table 3: Ablation study of the Infomaxformer

Encoder’s input 720 960 1200 1440

Infomaxformer
MSE 0.566 0.588 0.633 0.573

MAE 0.579 0.585 0.617 0.585

Infomaxformer1
MSE 1.326 1.237 0.880 1.290
MAE 0.911 0.891 0.736 0.882

Infomaxformer2
MSE 0.906 0.681 0.839 0.831
MAE 0.763 0.638 0.727 0.720

Infomaxformer3
MSE 1.074 1.018 0.964 1.121
MAE 0.822 0.823 0.789 0.846

4.5 Ablation Study

We also performed some additional experiments for ablation analy-
sis on ETTh1. Infomaxformer1 indicates that Keys/Values Distilling
is replaced with the original projection operation, Infomaxformer2

indicates that MEA is replaced with the canonical self-attention
mechanism, and Infomaxformer3 indicates that we have not taken
our proposed Time-Series Decomposition. In this experiment, we
set the predicted length 𝐿𝑦 to 720 and select four ultra long input
lengths. As shown in the Table 3, without any part of the Info-
maxformer model, the performance will be degraded. Only the
complete Infomaxformer can achieve the best performance. The
impact of MEA mechanism on the performance of Infomaxformer
is not as obvious as the other two, because the mechanism focuses
on sparing self-attention and reducing time complexity.

Different Time-Series Decomposition: In order to better com-
pare the TSD proposed by us with the Series decomposition block
(SDB) proposed by Autoformer [46], we freely combined MEA,
Auto-Correlation (AC) [46] with TSD, SDB. As shown in the Table
4, we found an interesting phenomenon. No matter Infomaxformer
(TSD+MEA) or Autoformer (SDB+AC), only the complete state

Table 4: Comparative experiment of different Decomposition

Block in Infomaxformer and Autoformer

Predicition length 96 192 384 720

TSD+MEA
MSE 0.554 0.496 0.567 0.551

MAE 0.540 0.513 0.555 0.559

SDB+MEA
MSE 0.709 0.770 0.683 0.677
MAE 0.624 0.662 0.626 0.626

TSD+AC
MSE 0.706 0.677 - -
MAE 0.627 0.605 - -

SDB+AC
MSE 0.623 0.699 - -
MAE 0.577 0.619 - -

model has the best performance. Our TSD is inferior to SDB in
short sequence prediction (𝐿𝑦 = 96), but superior to SDB in long
sequence prediction (𝐿𝑦 = 192). The sparsity of MEA results in
the model being able to output longer sequences, but it is precisely
because of this sparsity that the performance of MEA is inferior
to AC when memory allows. However, the perfect combination of
TSD and MEA proposed by us can output longer sequences and
maintain better prediction performance.

5 CONCLUSION

In this paper, we studied the long time-series forecasting prob-
lem (LTFP) and proposed Infomaxformer to predict time-series.
Specifically, we designed the Maximum Enterprise Self-attention
mechanism and Keys/Values Distilling operation to deal with the
challenges of quadratic time complexity and quadratic memory us-
age in vanilla Transformers. Finally, we reduce the time complexity
and memory usage to O(𝐿). In addition, the well-designed time-
series decomposition and the perfect combinationwith Transformer
architecture can effectively deal with the complex time-series pat-
terns of time-series, thus alleviating the limitations of the traditional
decomposition architecture. The experiments on real-word data
have proved the effectiveness of Infomaxformer in improving the
prediction ability of LTFP.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1677

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450 (2016).
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271 (2018).

[4] Hangbo Bao, Li Dong, and Furu Wei. 2021. Beit: Bert pre-training of image
transformers. arXiv preprint arXiv:2106.08254 (2021).

[5] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

[6] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. 2017. Condi-
tional time series forecasting with convolutional neural networks. arXiv preprint
arXiv:1703.04691 (2017).

[7] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating
long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019).

[8] Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning.
1990. STL: A seasonal-trend decomposition. J. Off. Stat 6, 1 (1990), 3–73.

[9] Jonathan D Cryer. 1986. Time series analysis. Vol. 286. Springer.
[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[11] Luca Di Persio and Oleksandr Honchar. 2016. Artificial neural networks archi-
tectures for stock price prediction: Comparisons and applications. International
journal of circuits, systems and signal processing 10, 2016 (2016), 403–413.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, and Sylvain and Gelly. 2021. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In International Conference on Learning
Representations.

[13] Chenyou Fan, Yuze Zhang, Yi Pan, Xiaoyue Li, Chi Zhang, Rong Yuan, Di Wu,
Wensheng Wang, Jian Pei, and Heng Huang. 2019. Multi-horizon time series
forecasting with temporal attention learning. In Proceedings of the 25th ACM
SIGKDD International conference on knowledge discovery & data mining. 2527–
2535.

[14] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng
Zhang. 2019. Star-Transformer. In Proceedings of NAACL-HLT. 1315–1325.

[15] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16000–16009.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[17] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. 2001.
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[19] Rob J Hyndman and George Athanasopoulos. 2018. Forecasting: principles and
practice. OTexts.

[20] Edwin T Jaynes. 1957. Information theory and statistical mechanics. Physical
review 106, 4 (1957), 620.

[21] Hao Jiang, Mingyao Cui, Derrick Wing Kwan Ng, and Linglong Dai. 2022. Ac-
curate Channel Prediction Based on Transformer: Making Mobility Negligible.
IEEE Journal on Selected Areas in Communications (2022).

[22] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In International Conference on Learning Representations. http:
//arxiv.org/abs/1412.6980

[23] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2019. Reformer: The Efficient
Transformer. In ICLR.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[25] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling
long-and short-term temporal patterns with deep neural networks. In The 41st
international ACM SIGIR conference on research & development in information
retrieval. 95–104.

[26] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the locality and breaking the memory bottle-
neck of transformer on time series forecasting. Advances in neural information
processing systems 32 (2019).

[27] Bryan Lim, Sercan ÖArık, Nicolas Loeff, and Tomas Pfister. 2021. Temporal fusion
transformers for interpretable multi-horizon time series forecasting. International
Journal of Forecasting 37, 4 (2021), 1748–1764.

[28] Bryan Lim and Stefan Zohren. 2021. Time-series forecasting with deep learning:
a survey. Philosophical Transactions of the Royal Society A 379, 2194 (2021),

20200209.
[29] Bryan Lim, Stefan Zohren, and Stephen Roberts. 2020. Recurrent neural filters:

Learning independent bayesian filtering steps for time series prediction. In 2020
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[30] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. 2021. A survey of
transformers. arXiv preprint arXiv:2106.04554 (2021).

[31] Luchen Liu, Jianhao Shen, Ming Zhang, Zichang Wang, and Jian Tang. 2018.
Learning the joint representation of heterogeneous temporal events for clinical
endpoint prediction. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, Vol. 32.

[32] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and
Schahram Dustdar. 2021. Pyraformer: Low-complexity pyramidal attention for
long-range time series modeling and forecasting. In International Conference on
Learning Representations.

[33] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 10012–10022.

[34] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. 2018. Image transformer. In International confer-
ence on machine learning. PMLR, 4055–4064.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[36] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[37] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[38] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,
Yuyang Wang, and Tim Januschowski. 2018. Deep state space models for time
series forecasting. Advances in neural information processing systems 31 (2018).

[39] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. 2021. Effi-
cient content-based sparse attention with routing transformers. Transactions of
the Association for Computational Linguistics 9 (2021), 53–68.

[40] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020.
DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Inter-
national Journal of Forecasting 36, 3 (2020), 1181–1191.

[41] Claude Elwood Shannon. 1948. A mathematical theory of communication. The
Bell system technical journal 27, 3 (1948), 379–423.

[42] Peiwang Tang and Xianchao Zhang. 2022. Features Fusion Framework for Multi-
modal Irregular Time-series Events. In Pacific Rim International Conference on
Artificial Intelligence. Springer, 366–379.

[43] Peiwang Tang and Xianchao Zhang. 2022. MTSMAE: Masked Autoencoders for
Multivariate Time-Series Forecasting. arXiv preprint arXiv:2210.02199 (2022).

[44] Yao-HungHubert Tsai, Shaojie Bai, Makoto Yamada, Louis-PhilippeMorency, and
Ruslan Salakhutdinov. 2019. Transformer Dissection: An Unified Understanding
for Transformer’s Attention via the Lens of Kernel. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
4344–4353.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[46] HaixuWu, Jiehui Xu, JianminWang, and Mingsheng Long. 2021. Autoformer: De-
composition transformers with auto-correlation for long-term series forecasting.
Advances in Neural Information Processing Systems 34 (2021), 22419–22430.

[47] Sifan Wu, Xi Xiao, Qianggang Ding, Peilin Zhao, Ying Wei, and Junzhou Huang.
2020. Adversarial sparse transformer for time series forecasting. Advances in
neural information processing systems 33 (2020), 17105–17115.

[48] Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. 2019. Bp-
transformer: Modelling long-range context via binary partitioning. arXiv preprint
arXiv:1911.04070 (2019).

[49] Yi Yin and Pengjian Shang. 2016. Multivariate multiscale sample entropy of
traffic time series. Nonlinear Dynamics 86, 1 (2016), 479–488.

[50] Qihang Yu, Yingda Xia, Yutong Bai, Yongyi Lu, Alan L Yuille, and Wei Shen. 2021.
Glance-and-gaze vision transformer. Advances in Neural Information Processing
Systems 34 (2021), 12992–13003.

[51] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big bird: Transformers for longer sequences. Advances in Neural
Information Processing Systems 33 (2020), 17283–17297.

[52] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-
quence time-series forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 11106–11115.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1678

