
TransfQMix: Transformers for Leveraging the Graph Structure of
Multi-Agent Reinforcement Learning Problems

Matteo Gallici
KEMLG Research Group, Universitat

Politècnica de Catalunya
Barcelona, Spain
gallici@cs.upc.edu

Mario Martin
KEMLG Research Group, Universitat

Politècnica de Catalunya
Barcelona, Spain

mmartin@cs.upc.edu

Ivan Masmitja
Institut de Ciències del Mar (ICM),

CSIC
Barcelona, Spain

masmitja@icm.csic.es

ABSTRACT
Coordination is one of the most difficult aspects of multi-agent re-
inforcement learning (MARL). One reason is that agents normally
choose their actions independently of one another. In order to see
coordination strategies emerging from the combination of inde-
pendent policies, the recent research has focused on the use of a
centralized function (CF) that learns each agent’s contribution to
the team reward. However, the structure in which the environment
is presented to the agents and to the CF is typically overlooked. We
have observed that the features used to describe the coordination
problem can be represented as vertex features of a latent graph
structure. Here, we present TransfQMix 1, a new approach that
uses transformers to leverage this latent structure and learn better
coordination policies. Our transformer agents perform a graph rea-
soning over the state of the observable entities. Our transformer
Q-mixer learns a monotonic mixing-function from a larger graph
that includes the internal and external states of the agents. Trans-
fQMix is designed to be entirely transferable, meaning that same
parameters can be used to control and train larger or smaller teams
of agents. This enables to deploy promising approaches to save
training time and derive general policies in MARL, such as transfer
learning, zero-shot transfer, and curriculum learning. We report
TransfQMix’s performances in the Spread and StarCraft II environ-
ments. In both settings, it outperforms state-of-the-art Q-Learning
models, and it demonstrates effectiveness in solving problems that
other methods can not solve.

KEYWORDS
Multi-Agent Reinforcement Learning; Transformers; Coordination
Graphs; Transfer Learning

ACM Reference Format:
Matteo Gallici, Mario Martin, and Ivan Masmitja. 2023. TransfQMix: Trans-
formers for Leveraging the Graph Structure of Multi-Agent Reinforcement
Learning Problems. In Proc. of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
In order to solve cooperative multi-agent problems, it is critical
that agents behave in a coordinated manner. Deep reinforcement

1Codebase publicly availabe at https://github.com/mttga/pymarl_transformers

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

learning (RL) has been successfully applied to numerous multi-
agent optimization tasks [6, 9, 13]. When we try to apply RL to
learn coordination policies, however, we face numerous challenges.
Due to communication constraints, the deployment of a central
controller is not practical. Even when communication is allowed,
the large size of the observation and action spaces introduces the
curse of dimensionality, discouraging the use of a single actuator.
Agents should therefore choose their actions independently of one
another. In order to see coordinating strategies emerging from the
combination of independent policies, state-of-the-art multi-agent
reinforcement learning (MARL) models use one or more centralized
functions (CFs) to learn the contribution of the agents’ actions to
the team goal. The CFs allow to optimize the agents’ parameters
with respect to a global team reward. Once trained, they can still be
deployed autonomously since each agent is in charge of choosing
its own behavior. This approach is referred to as the centralized-
training-decentralized-execution (CTDE) paradigm [4, 8].

During the last years, most of the works have focused on the
CFs of CTDE. Methods such as Value Decomposition Networks
(VDN) [22], QMix [19], and QTran [21] extended the traditional
Q-Learning algorithm [29] with central networks that (learn to)
project the agent’s action-values over the q-value of the joint action.
Actor-critic models such as Multi-Agent Deep Deterministic Policy
gradient (MADDPG) [12] and Multi-Agent Proximal Policy Opti-
mization (MAPPO) [31], allow the critic networks to access global
observations during training. More recent approaches, like Deep
Implicit Coordination Graphs (DICG) [10] and QPlex [27] refined
the CF with the use of multi-head self-attention and graph neural
networks. Nonetheless, individual agents are usually kept simple
by employing recurrent neural networks (RNN) fed by observation
vectors that are large concatenations of various types of features
(see Figure 1a). By performing these concatenations a key infor-
mation is lost: the fact that many of the features are exactly of the
same type despite referring to separate entities (e.g., the position
in a map).

Our work shows that the structure of the observation space,
as well as the architecture used to deploy the agents and the CFs,
play an important role in solving complex coordination tasks. We
suggest that observation vectors contain mostly vertex features of
a latent graph structure that becomes explicit when we reconsider
how they are fed into neural networks. Consequently, instead of
chaining together many features to generate a vector that describes
the state of the world observed by the agent, we generalize a set
of features and we use them to describe the state of the entities
observed by the agent (or the CFs). Notice that with entities we
intend any type of information channel: information coming from

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1679

https://github.com/mttga/pymarl_transformers

MLP

RNN

(a) Traditional approach
Embedder

Self-Attention

(b) Our graph approach

Figure 1: A traditional observation vector and our graph approach.
In traditional approaches (a), the observation vector for the agent 𝑎
at the time step 𝑡 is defined by a concatenation of features relative
to itself, to the other 𝑘 − 1 entities, and to additional elements (e.g.,
previous actions). In our approach (b), we keep only the 𝑧 features
defined for all the entities to generate the vertices of a coordination
graph, the edges ofwhich are learned via a self-attentionmechanism.

agents’ own senses, messages from other agents or information
relative to any kind of object in the environment. Our approach is
depicted in Figure 1b. We do not include any additional information
in this process. On the contrary, sometimes we need to remove
data that is not accessible for all the observed entities. Two main
advantages of this approach are: (i) we can employ the sameweights
of an embedded feed forward network to process the same vertex
features, reducing the complexity of the feature space; and (ii), we
can learn the edges of the latent coordination graph using a self-
attention mechanism. In particular, we employ transformers [25],
which have been shown to be an effective graph-based architecture
in natural language processing [28], computer vision [30], and even
for developing a generalist agent [20].

Our transformer agents sample their actions after processing the
graph of entities observed at a specific time step. Our transformer
Q-mixer learns a monotonic mixing-function from a larger graph
that contains the agents’ internal and external states. Given the
strong temporal dependencies in RL problems, we add a recurrent
mechanism in both the agents and the mixer, which allows to affect
the graph reasoning at a certain time step with an embedding of the
precedings. The resulting model, TransfQMix, has the advantage of
being totally transferable, meaning that the same parameters can be
applied to control and train larger or smaller teams. This is allowed
since the networks’ weights constitute an attention mechanism
that is independent of the number of vertices to which it is applied.
Traditional models, conversely, must be re-trained every time we
introduce a new entity, because the dimension of the concatenated
vectors changes, and consequently also the number of parameters
of the neural networks. The total transferability of TransfQMix en-
ables to deploy transfer learning, zero-shot transfer, and curriculum
learning, which are crucial steps towards more general models in
MARL.

We tested TransfQMix in multiple scenarios of the Spread task
[12], and in the hardest maps of StarCraft II (SC2) [26]. TransfQMix
outperformed state-of-the-art Q-Learning models in both environ-
ments, and it could solve problems that others can not address,
showing in general faster convergence to better coordination poli-
cies.

The following is a list of the contributions of this paper:

(1) We formalize a new paradigm for cooperative MARL, which
consists of rethinking the coordination tasks as graph em-
bedding tasks.

(2) We present a new method, TransfQMix, that uses transform-
ers to leverage coordination graphs and outperforms state-
of-the-art Q-Learning methods.

(3) We introduce a graph-based recurrent mechanism for includ-
ing a time dependency in both the transformer agents and
mixer.

(4) We design TransfQMix to be able to process graphs of enti-
ties of varying sizes. This allows us to obtain a more general
methodwhich can be used to deploy zero-shot transfer, trans-
fer learning, and curriculum learning in MARL.

2 RELATEDWORK
Recent state-of-the-art methods tackle MARL problems using the
CTDE paradigm [4, 8]. The CTDE approach was deployed success-
fully with policy-based and value-based methods [10, 31, 32]. Here,
we have focused on value-based methods that use CTDE.

A necessary condition for implementing CTDE effectively in
multi-agent Q-Learning is that a greedy sampling of the joint ac-
tion is equivalent to sampling the actions greedily from the in-
dividual agents [26]. This principle is known as the individual-
global-max (IGM) [21]. VDN has been one of the first methods to
extend Q-Learning to MARL using CTDE [22]. It implements a not-
parameterized CFwhich computes the𝑄𝑡𝑜𝑡 of the joint action as the
sum of the individual agents’ action-values. Despite respecting IGM,
this CF is too simple to model effectively the agents’ contribution
to 𝑄𝑡𝑜𝑡 [19].

QMix [19] demonstrated that in order to satisfy IGM, it is suffi-
cient that the CF is monotonic with regard to the individual action-
values. As a result, the VDN’s sum-function is substituted with a
multi-layer perceptron (MLP). This mixer network can learn sophis-
ticated non-linear projections of several action-values over 𝑄𝑡𝑜𝑡 .
Its weights are generated by a set of hypernetworks conditioned by
the state 𝑠 and are forced to be positive by an absolute activation
function. Our proposed method is a refined version of QMix. In
particular, TransfQMix also learns a monotonic CF conditioned
by 𝑠 that serves to produce 𝑄𝑡𝑜𝑡 from the individual action-values.
Nonetheless, TransfQMix is a much more sophisticated method for
the use of transformers.

Previous methods have attempted to improve QMix. OWQMix
and CWQMix [18] used a weighting mechanism for learning non-
monotonic CFs, giving more importance to better joint actions.
QTran [21] learned a factorization of 𝑄𝑡𝑜𝑡 that was also free of
monotonicity, but it did this via several MLPs. QPlex [27] proposed
a dueling structure to learn non-monotonic CFs while adhering
to IGM principle. Notice that QPlex, like TransfQMix, employed
multi-head attention, but only for a subset of their centralized

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1680

dueling network. All of these approaches involved RNN agents and
large concatenated observation vectors. Despite showing significant
advantages in simple theoretical frameworks, it is still debated
whether relaxing the monotonicity constraint benefits modeling
complex problems [27]. Our refinement of QMix focuses on the
representation of cooperative games and the networks architecture
rather than monotonicity.

Transformers were successfully deployed in single agent RL [17],
but required architecture modifications. Such adjustments are un-
necessary for multi-agent problems, since they can be represented
more naturally as graph problems. DeepMind’s generalist agent
(Gato) [20] is a standard transformer that can solve a variety of RL
tasks, but it has not been tested in multi-agent settings. Further-
more, Gato is not trained using RL, but rather through a supervised
approach. A recent method proposed to use a transformer as the
mixer of QMix [7] to improve its performances in the SC2 domain.
However, this architecture keep using RNNs agents, so the general
architecture does not set apart from QPlex’s one. In a method called
universal policy decomposition transformer (UPDET) [5], trans-
formers were also applied to a subset of the SC2 tasks. In this case
the RNNs agents were replaced with transformers, while the central
MLP of QMix was used as the central mixer. This method also used
a decoupling policy system in which the q-values of entity-based
actions (particularly, the q-value of attacking a specific enemy in
SC2) were generated by the transformer embedding of that entity.
The model performed well in the SC2 subset, but it was not stated
how it could be applied to other MARL problems. Moreover, the
authors demonstrate that in the absence of the decoupling approach
QMix performed better when utilizing RNN rather than transform-
ers. Because policy decoupling is not applicable in many scenarios,
UPDET appears to be effective only for very specific problems.

Our method formalizes a generic framework that shows clear
benefits of using transformers also when policy decoupling is not
applicable. TransfQMix employees a transformer also in the cen-
tral mixer, whereas UPDET deploys the same MLPs of QMix. This
makes TransfQMix a totally transferable method. In contrast, UP-
DET is only partially transferable, because the mixer network must
be retrained every time the agents are applied to a new task. Trans-
fQMix uses a recurrent graph approach similar to the one intro-
duced by UPDET. However, TransfQMix makes a better use of the
hidden-state by sampling the non-decoupled actions directly from
it. TransfQMix also uses a more robust decoupling mechanism,
which involves an additional feed-forward layer for sampling the
decoupled actions (see Section 4.2). Moreover, TransfQMix employs
a recurrent mechanism as well in the mixer network. To our knowl-
edge, this is the first method that includes a temporal conditioning
in a CF.

Zero-shot transfer, transfer learning, and curriculum learning
were explored in MARL by [1] using an entity-based graph method
similar to ours. That technique, however, was limited to communi-
cation problems, whereas TransfQMix aims to be a general MARL
method.

3 BACKGROUND
Cooperative multi-agent tasks are formalized as decentralised par-
tially observable Markov decision process (Dec-POMDP) [14]. A tuple

𝐺 = ⟨𝑆,𝑈 , 𝑃, 𝑟, 𝑍,𝑂, 𝐻, 𝑛,𝛾⟩ describes the agents 𝑎 ∈ 𝐴 ≡ {1, . . . , 𝑛}
which at every time step choose an action 𝑢𝑎 ∈ 𝑈 from their hid-
den state ℎ𝑎 ∈ 𝐻 , forming a joint action u ∈ U ≡ 𝑈𝑛 . This causes
a transition on the environment according to the state transition
function 𝑃 (𝑠′ | 𝑠, u) : 𝑆 × U × 𝑆 → [0, 1], where 𝑠 ∈ 𝑆 is the true
state of the environment. All agents share the same reward func-
tion 𝑟 (𝑠, u) : 𝑆 × U → R and 𝛾 ∈ [0, 1) is a discount factor. The
agents have access only to partial observations of the environment,
𝑧 ∈ 𝑍 according to the observation function 𝑂 (𝑠, 𝑎) : 𝑆 × 𝐴 → 𝑍 .
Each agent has an action-observation history 𝜏𝑎 ∈ 𝑇 ≡ (𝑍 ×
𝑈)∗, on which it conditions a stochastic policy 𝜋𝑎 (𝑢𝑎 | 𝜏𝑎) : 𝑇×
𝑈 → [0, 1]. The joint policy 𝜋 has a joint action-value function:
𝑄𝜋 (𝑠𝑡 , u𝑡) = E𝑠𝑡+1:∞ , u𝑡+1:∞ [𝑅𝑡 | 𝑠𝑡 , u𝑡], where 𝑅𝑡 =

∑∞
𝑖=0 𝛾

𝑖𝑟𝑡+𝑖 is
the discounted return.

In order to find the optimal joint action-value function𝑄∗ (𝑠, 𝒖) =
𝑟 (𝑠, 𝒖) + 𝛾E𝑠′ [max𝒖′ 𝑄∗ (𝑠′, 𝒖′)], we use Q-Learning [29] with a
deep neural network parameterized by 𝜃 [24] to minimize the ex-
pected temporal difference (TD) error [27]:

L(𝜽) = E(𝝉 ,𝒖,𝑟 ,𝝉 ′) ∈𝐷
[(
𝑟 + 𝛾𝑉

(
𝝉 ′;𝜽−) −𝑄 (𝝉 , 𝒖;𝜽)

)2] (1)

where 𝑉 (𝝉 ′;𝜽−) = max𝒖′ 𝑄 (𝝉 ′, 𝒖′;𝜽−) is the one-step expected
future return of the TD target and 𝜃− are the parameters of the
target network, which will be periodically updated with 𝜃 . We use
a buffer 𝐷 to store the transition tuple (𝝉 , 𝒖, 𝑟 ,𝝉 ′), where 𝑟 is the
reward for taking action 𝒖 at joint action-observation history 𝝉
with a transition to 𝝉 ′.

We adopt a monotonic CTDE learning paradigm [4, 8, 19, 22].
Execution is decentralized, meaning that each agent’s learnt pol-
icy is conditioned only on its own action-observation history 𝜏𝑎 .
During training, a central mixer network has access to the global
state 𝑠 of the environment and the hidden states of the agents 𝐻 for
projecting the individual action-values over the 𝑄𝑡𝑜𝑡 of the joint
action, which is used in Equation (1) to train the model end to end.
The monotonic constraint imposed to the CF is the same formalized
by QMix:

𝜕𝑄𝑡𝑜𝑡

𝜕𝑄𝑎
≥ 0,∀𝑎 ∈ 𝐴 (2)

which ensures that the IGM principle is respected.
The neural networks in our method are transformers [25], which

make a large use of the attentionmechanism [2]. Specifically, we use
transformers to manipulate our graphs via multi-head self-attention
(MHSA) [11, 16, 25]. Given an embedded graph matrix X𝑛×ℎ of
𝑛 vertices represented with ℎ-dimensional vectors, a transformer
computes a set of queries Q = XW𝑄 , keys K = XW𝐾 , and values
V = XW𝑉 , whereW𝑄 ,W𝐾 ,W𝑉 are three different parameterized
matrices with dimensions ℎ×𝑘 . The self-attention is then computed
as:

Self-Attention(X) = Attention(Q,K,V) = softmax
(
QK⊤
√
𝑛

)
V (3)

A transformer uses𝑚 attentionmodules in parallel, and then con-
catenates all the outputs and projects them back to ℎ-dimensional
vectors using a final W𝑂 feed-forward layer:

MultiHeadSelfAttn(X) = 𝐶𝑜𝑛𝑐𝑎𝑡 (head 1, · · · , head𝑚)W𝑂

where ℎ𝑒𝑎𝑑𝑖 = Attention
(
XW𝑄

𝑖
,XW𝐾

𝑖 ,XW
𝑉
𝑖

)
.

(4)

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1681

Agent 1 Agent N

Mixing Network

Embedder

Transformer Block

Embedder

Transformer
Block

Figure 2: (a) Transformer Mixer. (b) Overall TransfQMix architecture. (c) Transformer Agent. The purple dotted lines represent the recurrent
connections. The green components are simple feed-forward layers (embedders and scalar projectors), and the green circles are the embedded
vertices. The purple circles are transformed vertices. The dotted green components represent the action decoupling mechanism.

4 METHOD
4.1 Graph Observations and State
Our method rethinks how cooperative problems are presented to
neural networks. For the sake of simplicity, here we assume that
an agent observes 𝑘 entities at each time step 𝑡 , where 𝑘 is the total
number of entities in the environment. In our approach, a set of 𝑧
features defines each entity. Because of the environment’s partial
observability, the features can take different values for each agent.
Therefore,

𝑒𝑛𝑡𝑎𝑖,𝑡 = [𝑓1, · · · , 𝑓𝑧]𝑎𝑖,𝑡 (5)

defines the entity 𝑖 as it is observed by the agent 𝑎 at the time step
𝑡 . We replace the traditional observation vectors with observation
matrices with dimensions 𝑘 × 𝑧 which includes all the 𝑘 entities
observed by an agent 𝑎 at 𝑡 :

O𝑎𝑡 =


𝑒𝑛𝑡1
.
.
.

𝑒𝑛𝑡𝑘


𝑎

𝑡

=


𝑓1,1 · · · 𝑓1,𝑧
.
.
.

. . .
.
.
.

𝑓𝑘,1 · · · 𝑓𝑘,𝑧


𝑎

𝑡

(6)

This structure allows the agents to process the features of the same
type using the same weights of a parameterized matrix Emb with
shape 𝑧 ×ℎ, where ℎ is an embedding dimension. The resulting ma-
trix E𝑎𝑡 = O𝑎𝑡 Emb𝑎 is formed by vertices embeddings [𝑒1, · · · , 𝑒𝑘]𝑎⊤𝑡
that will be further processed by transformers. Notice that Emb𝑎 is
independent from 𝑘 . Conversely, the encoding feed-forward layer
used by RNN agents has approximately 𝑘 × 𝑧 × ℎ parameters. Our
approach is therefore more scalable and transferable in respect to
the number of entities.

The observation vectors in the cooperative environments we
studied [12, 21, 26] already contained an implicit matrix structure or
required very little modifications to adopt it. Features like (relative)
map location, velocity, remaining life points, and so on, which
are frequently defined for all entities and then concatenated in

the same vector, can be easily rethought as vertex features of our
observation matrix. On the other hand, features such as one-hot-
encoding of agent’s last action or one-hot-encoding of agent’s id
(unique identifier) necessitate extra work. Moreover, since in our
method the features of the same types are processed by the same
weights, we lose the positional information implicitly present in the
concatenated vectors. A traditional encoder, indeed, can learn that
the features in some specific vector locations are relevant to some
specific entity and hence treat them differently from the others.

In our preliminary research, we found that we can compensate
for these drawbacks by using two additional binary features. The
first, IS_SELF, informs if the described entity is the agent to which
the observation matrix belongs:

𝑓 𝑎𝑖,IS_SELF =

{
1, if 𝑖 = 𝑎

0, otherwise.
(7)

This feature will be 1 for 𝑒𝑛𝑡𝑎𝑎,𝑡 and 0 for all the other entities.
IS_SELF can be thought as a re-adaptation of the one-hot-encoding
of the agent’s id, which is commonly employed by state-of-the-
art models [19, 27, 31]. The second feature tells us if the entity
described is a cooperative agent or not:

𝑓 𝑎𝑖,IS_AGENT =

{
1, if 𝑖 ∈ 𝐴

0, otherwise
(8)

allowing the vertex features of teammates to be treated differently
than others. Even though state-of-the-art methods do not always
include this feature, we argue that we are not using additional data
because this information is otherwise implicitly encoded in vector
positions.

We apply the same reformulation of the agents’ observations to
the global state. Usually, the state is defined as a vector of “real”
features relative to the entities (i.e., not partially observed by an
agent) and/or the concatenation of all agents’ observations. In our

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1682

approach, we define a state matrix S𝑡 of dimensions 𝑘 × 𝑧:

S𝑡 =


𝑒𝑛𝑡1
.
.
.

𝑒𝑛𝑡𝑘

𝑡 =

𝑓1,1 · · · 𝑓1,𝑧
.
.
.

. . .
.
.
.

𝑓𝑘,1 · · · 𝑓𝑘,𝑧

𝑡 (9)

which defines the vertex features for all the entities from a global
point of view. For simplicity, in the notation we assume that we are
using the same 𝑧 features in both S and O. We could use different
ones, though. For instance, adding IS_SELF to S does not make
sense since the features are not defined in respect to any agent, and
indeed in our experiments we do exclude IS_SELF from S. In the
environments that we took into account, the state vectors shown a
structure easily reshapable as in Equation (9). As for O, we can pro-
cess the same feature types in parallel with a parameterized matrix
Emb𝑠 to obtain embedded vertices that can be further processed by
a transformer, i.e. E𝑡 = [𝑒1, · · · 𝑒𝑘]⊤𝑡 = S𝑡Emb𝑠 .

4.2 Transformer Agent
Our transformer agent takes as input the embedded vertices E𝑎𝑡 =

[𝑒1, · · · , 𝑒𝑘]𝑎⊤𝑡 plus a hidden vector ℎ𝑎
𝑡−1, which has the same size

of any vector 𝑒𝑎
𝑖
and it is fullfilled with 0s at the beginning of an

episode. The final input matrix is X𝑎𝑡 = [ℎ𝑎
𝑡−1, 𝑒

𝑎
1,𝑡 , · · · , 𝑒

𝑎
𝑘,𝑡

]⊤. The
output of 𝑙 transformer blocks: X̃𝑎𝑡 = MultiHeadSelfAttn(X𝑎𝑡) is a
refined graph in which all the vertices were altered based on the
attention given to the others. In particular, ℎ𝑎𝑡 = ℎ̃𝑎

𝑡−1 can be con-
sidered as a transformation of the agent’s hidden state according
to the attention given to the new state of the entities. Similarly
to the approach used in natural language processing, where the
transformation of the first token ([CLS] in Bert [3]) is considered to
encode an entire sentence, we consider ℎ𝑎𝑡 to encode the general co-
ordination reasoning of an agent. We therefore sample the agent’s
actions-values from ℎ𝑎𝑡 using a feed-forward layer W𝑢 with dimen-
sions ℎ × 𝑢, where 𝑢 is the number of actions: 𝑄𝑎 (𝜏𝑎, ·) = ℎ𝑎𝑡W

𝑢 .
Finally, we passℎ𝑎𝑡 to the next time step so that the agent can update
its coordination reasoning recurrently. When some agent’s actions
are directly related to some of the observed entities (e.g., “attack the
enemy 𝑖” in StarCraft II), our transformer agents use a decoupling
mechanism similar to the one introduced in [5]. In particular, the
action-values of the entity-related actions are derived from their
respective entity embeddings. An additional feed-forward matrix
W�̂� of dimension ℎ × 1 is used in this case. For example, the q-
value of attacking the enemy 𝑖 is sampled as 𝑒𝑎

𝑖,𝑡
W�̂� . The q-values

of the non-entity-related and the entity-related actions are then
concatenated together to obtain 𝑄𝑎 (𝜏𝑎, ·).

4.3 Transformer Mixer
Exactly as QMix, TransfQMix uses a MLP in order to project 𝑄𝐴
(the q-values of the actions sampled by the individual agents) over
𝑄𝑡𝑜𝑡 (the q-value of the joint sampled action). Formally:

𝑄𝑡𝑜𝑡 = (𝑄 (1×𝑛)
𝐴

W1
(𝑛×ℎ) + b1 (1×ℎ))W2

(ℎ×1) + b2 (1×1) (10)

where W1, b1 and W2, b2 are the weights and biases of the hidden
and output layer, respectively. We explicitly state inside brackets
the dimensions of Equation 10 to show that only three values are
relevant: 𝑛, the number of agents; ℎ, a hidden dimension; and 1,

which accounts for 𝑄𝑡𝑜𝑡 being a scalar. This shows that in order to
arrange the MLP mixer we need 𝑛 + 2 vectors of size ℎ plus a scalar.

QMix generates the vectors using 4 MLP hypernetworks. We
propose to use the outputs of a transformer to generate the weights
of the mixer’s MLP. The input graph of our transformer mixer is:

X𝑡 =
[
ℎ1𝑡 , · · · , ℎ𝑛𝑡 ,𝑤

b1
𝑡−1,𝑤

W2
𝑡−1,𝑤

b2
𝑡−1, 𝑒1,𝑡 , · · · , 𝑒𝑘,𝑡

]⊤
(11)

where ℎ1𝑡 , · · · , ℎ𝑛𝑡 are the 𝑛 hidden states of the agents,𝑤b1
𝑡−1,𝑤

W2
𝑡−1,

𝑤
b2
𝑡−1 are three recurrent vectors fulfilled with 0s at the beginning

of an episode, and 𝑒1,𝑡 , · · · , 𝑒𝑘,𝑡 is the embedded state, i.e., E𝑡 =

S𝑡Emb𝑠 . The output consist in amatrix X̃𝑡 = MultiHeadSelfAttn(X𝑡)
that contains the same vertices ofX𝑡 transformed by the multi-head
self-attention mechanism. In particular, ℎ̃1𝑡 , · · · , ℎ̃𝑛𝑡 are the coordi-
nation reasonings of agents enhanced by global information to
which the agents had no access, namely the hidden state of the
other agents and the true state of the environment. These 𝑛 refined
vectors are used to build W1. 𝑄𝐴W1 is therefore a re-projection
of the individual q-values 𝑄𝐴 over a transformation of the agents’
hidden states. Notice that the individual q-values were generated
(or conditioned) exactly from ℎ1𝑡 , · · · , ℎ𝑛𝑡 by the agents. This means
that the primary goal of the transformer mixer is to combine and
refine the independent agents’ reasoning so that they represent the
team coordination.

The transformed embeddings of the recurrent vectors, 𝑤b1
𝑡 =

�̃�
b1
𝑡−1, 𝑤

W2
𝑡 = �̃�

W2
𝑡−1, 𝑤

b2
𝑡 = �̃�

b2
𝑡−1 are used to generate b1, W2,

b2, respectively. Since b2 is a scalar, an additional parameterized
matrix with dimensions ℎ × 1 is applied on𝑤b2

𝑡 . We use a recurrent
mechanism for two reasons: (i) to ensure that the transformer mixer
is totally independent of the number of entities in the environment;
and (ii) to incorporate a temporal dependence on the centralized
training, in accordance with the MDP formulation of the problem.
We argue that 𝑄𝑡𝑜𝑡 is heavily dependent on prior states and that
this reliance should be encoded explicitly on the mixer network.
This recurrent process allows the mixer to provide more consistent
targets across time steps, resulting in more stable training.

We employ the same strategy described by QMix to adhere to the
monotonicity constraint. Namely, we apply an absolute activation
function to the weights W1 and W2 and 𝑟𝑒𝑙𝑢 to b2.

5 EXPERIMENTAL SETUP
5.1 Spread
In the Spread environment [12], the goal of 𝑛 agents is to move as
close as possible to the random positions occupied by 𝑛 landmarks
while avoiding collisions with each other. The agents can move
in four directions or stay still. The optimal policy would have one
agent occupying one landmark, resulting in a perfect space distri-
bution. Since each agent must anticipate which target the other
agents will occupy and proceed to the remaining one, this calls for
robust coordination reasoning.

The global reward is the negative minimum distances from each
landmark to any agent. An additional term is added to punish
collisions among agents. It must be noticed that the original reward
function implemented by [12] was affected by a redundant factor,
i.e. it is multiplied by 2𝑛. Later on, PettingZoo [23] eliminated this
redundancy, which is the reward function we used here.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1683

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1
TransfQmix
Qtran
Qplex
Qmix
OwQmix
CwQmix

Time Steps

Te
st

 O
cc

up
ie

d
La

nd
m

ar
ks

 %

(a) 3 Agents, 3 Landmarks

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

(b) 4 Agents, 4 Landmarks

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

(c) 5 Agents, 5 Landmarks

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

(d) 6 Agents, 6 Landmarks

Figure 3: Comparative results in the Spread environment.

The Spread’s observation space for the agent 𝑎 consists of a vec-
tor containing the velocity and absolute position of itself together
with the relative positions of all the other agents and landmarks.
In order to convert it into an observation matrix, we only main-
tain the relative positions, which are the features defined for all
the entities observed by 𝑎. Every observed entity is therefore de-
fined by 𝑒𝑛𝑡𝑎

𝑖,𝑡
= [𝑝𝑜𝑠𝑥 , 𝑝𝑜𝑠𝑦, IS_SELF, IS_AGENT]𝑎𝑖,𝑡 where 𝑝𝑜𝑠𝑥

and 𝑝𝑜𝑠𝑦 are the relative positions of the entity 𝑖 in respect to 𝑎 in
the horizontal and vertical axes.

The Spread’s state space consist of the concatenation of all the
agents observations. Also in this case we keep the features that
are defined for all the entities, which are the absolute positions
and the velocities. In the final state matrix the entities are defined
by 𝑒𝑛𝑡𝑖,𝑡 = [ˆ𝑝𝑜𝑠𝑥 , ˆ𝑝𝑜𝑠𝑦, 𝑣𝑥 , 𝑣𝑦, IS_AGENT]𝑖,𝑡 where ˆ𝑝𝑜𝑠𝑥 and ˆ𝑝𝑜𝑠𝑦
are the absolute position of the entity 𝑖 , and 𝑣𝑥 and 𝑣𝑦 its velocity
(which is 0 in the case of the landmarks).

The standard reported metric for Spread is the global reward.
This metric, however, is not informative because it is a value that is
challenging to interpret and does not stay in the same range when
𝑛 changes. As a result, we present a new metric: the percentage
of landmarks occupied at the conclusion of an episode (POL). To
compute the POL we count the number of landmarks with an agent
closer than a predetermined threshold and we divide it for the total
number of landmarks. The POL is a more informative metric be-
cause it assesses the proper distribution of the agents. Additionally,
it maintains the same range (0, 1) when 𝑛 is changed. We found that
when the distance threshold is set to 0.3, the POL has a correlation
of 0.95 with the reward function, meaning that the data we are
presenting is still comparable with previous studies.

5.2 StarCraft II
This environment uses the StarCraft II Learning Environment [26],
which makes available a range of micromanagement tasks based
on the well-known real-time strategy game StarCraft II2. Each task
consists of a unique combat scenario in which a group of agents,
each managing a single unit, engage an army under the command
of the StarCraft game’s central AI. In order to win a game, agents
must develop coordinated action sequences that will allow them to
concentrate their attention on certain enemy units. We report the
results in SC2 for the 8 tasks that are considered the most difficult in
the literature [27, 31]: 5m_vs_6m, 8m_vs_9m, 27m_vs_30m, 5s10z,
3s5z_vs_3s6z, 6h_vs_8z, MMM2, and corridor.

2StarCraft II is a trademark of Blizzard EntertainmentTM

The SC2’s observation vector for the agent 𝑎 consists in a con-
catenation of features defined for the allies and the enemies that
are inside the sight range of the agent. These features include the
relative position of the entity in respect to 𝑎, the distance, the health,
the state of the shield, and a one-hot-encoding of the type of the
entity (which can be a marine, a marauder, a stalker, etc.). This
structure already defines an observation matrix which requires
only the addition of the IS_SELF and IS_AGENT features to be used
by TransfQMix. However, TransfQMix can not use some additional
features that are present in the original SC2’s observation vector,
which include a one-hot-encoding of the available and previous
actions and a representation of the map’s limits.

Our transformer mixer can be fed directly with the original state
vector of SC2, which is also a concatenation of features defined for
all 𝑘 entities. These features are the same of the observation vector
but defined from a global viewpoint, i.e., the position relative to
the center of the map. On the other hand, an additional feature
consisting of the actions taken by all the agents is not used by
TransfQMix since it is not compatible with the graph state approach.

The decoupling technique described in Section 4.2 is employed
for TransfQMix and UPDET, i.e., the q-value of attacking the enemy
𝑖 is determined from the transformer embedding of 𝑖 . When appro-
priate, the same process is used for actions that include healing
another agent.

5.3 Algorithms
Our codebase is built on top of pymarl [4, 19] and it is available at:
https://github.com/mttga/pymarl_transformers. It contains
TransfQMix and our wrappers for Spread and SC2, plus the original
implementations of the algorithms to which our method is com-
pared to: QMix, QTran, QPlex, OWQMix, CWQMix and UPDET.
For all the compared methods, we used the same hyper-parameters
reported in the original implementations. We kept the parameters
of each method constant in all the experiments we performed. No-
tice that in all our experiments we used the parameters sharing
technique, i.e., all the agents shared the same weights. This was
demonstrated to be very beneficial in several studies [15, 19, 31].

We fine-tuned TransfQMix in the SC2’s 5m_vs_6m task and we
used the same parameters for all the other settings (included the
Spread tasks). In particular, we used 32 as the hidden embedding
dimension, 4 attention heads, and 2 transformer blocks for both
the transformer agents and the mixer, resulting in a total of ∼ 50𝑘
parameters for both networks. The learning configuration for all
the transformers architectures (included UPDET) used the 𝐴𝑑𝑎𝑚

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1684

https://github.com/mttga/pymarl_transformers

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1 TransfQmix
Qtran
Qplex
Qmix
OwQmix
CwQmix
Updet

Time Steps

Te
st

 W
in

 R
at

e
%

(a) 5m_vs_6m

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

(b) 8m_vs_9m

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

(c) 27m_vs_30m

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

(d) 6h_vs_8z

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

Te
st

 W
in

 R
at

e
%

(e) 5s10z

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

(f) 3s5z_vs_3s6z

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

(g) MM2

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

(h) corridor

Figure 4: Comparative results in the SC2 environment.

optimizer with a learning rate of 0.001 and a 𝜆 of 0.6 for comput-
ing the twin delayed (td) targets. This setup is different from the
one used by the state-of-the-art RNN-based models (𝑅𝑀𝑆𝑃𝑟𝑜𝑝 op-
timizer, 0.0005 learning rate, and 0 for td’s 𝜆). However, we found
that the optimal learning configuration of TransfQMix did not work
with the other models, i.e., they performed better with their original
learning setup. Some parameters were shared by all the methods,
such as the buffer size (5000 episodes), the batch size (32 episodes),
the interval for updating the target network (200 episodes), and the
anneal time for the epsilon decay (100𝑘 time steps).

6 RESULTS AND DISCUSSION
6.1 Main Results
The performances of MARL methods in Spread are usually reported
using𝑛 = 3. We increased𝑛 up to 6 in order to analyze the scalability
of the methods. Figure 3 shows how the POL improved when the
considered methods were trained on the various scenarios. The POL
was computed every 40𝑘 time steps by running 30 independent
episodes with each agent performing greedy decentralised action
selection. In the standard task involving 3 agents, state-of-the-art
methods learned a good policy which covers on average the ∼80%
of the landmarks, with the exception of QTran and CWQMix (POL
of ∼50%). However, they did not perform significantly better than
QMix. The sole state-of-the-art method that could defeat QMix in
the tasks involving 4 or 5 agents was QPlex (POL of 50%), which
showed to be very unstable in 𝑛 = 6. Conversely, TransfQMix
significantly outperformed QMix and the other methods in every
scenario, reaching a steady POL of almost 90% in just 500𝑘 time
steps. Notice that in Spread the optimal policy was the same for
every 𝑛 (i.e., each agent occupying a landmark). State-of-the-art
methods could learn this strategy onlywhen the team size was small.
On the other hand, TransfQMix demonstrated a better agent-team
size invariance by obtaining similar results in all the scenarios.

Figure 4 shows the results of all the methods in the hardest tasks
of SC2. The reported metric is the average percentage of won games

Table 1: Results of zero-shot transfer in Spread.

POL Scenario

Model 3v3 4v4 5v5 6v6

TransfQMix (3v3) 0.98 0.88 0.8 0.75
TransfQMix (4v4) 0.96 0.93 0.9 0.86
TransfQMix (5v5) 0.88 0.85 0.82 0.82
TransfQMix (6v6) 0.91 0.88 0.85 0.84
TransfQMix (CL) 0.88 0.88 0.87 0.87
State-of-the-art 0.76 0.45 0.36 0.33

performing greedy action sampling every 100 episodes during train-
ing. The results for UPDET are reported only for tasks that include
marines, since the original implementation of this method does not
support other scenarios. It is noteworthy that UPDET did not per-
form better than RNN-based models and failed in the 27m_vs_30m
task, indicating that using a transformer agent with policy decou-
pling does not necessarily provide a clear advantage. Conversely,
our more sophisticated use of transformers significantly outper-
formed the other models in every task, and consistently defeats the
SC2’s central AI even in scenarios where previous methods could
not win any game. TransfQMix also demonstrated its effectiveness
in environments with a large number of entities, such as the corri-
dor map (which stays for 6 Zealots versus 24 Zerglings, for a total
of 30 entities) and the 27m_vs_30m (57 entities). While other ap-
proaches require their parameters to be increased according to the
number of entities, TransfQMix’s networks are (nearly) the same
size in all the tasks. This suggests that TransfQMix’s architecture
may be regarded as sufficiently generic to address various problems
without requiring structural changes.

6.2 Transfer Learning
We tested the zero-shot capabilities of TransfQMix by applying
the networks trained in a particular Spread task to the others. Ta-
ble 1 shows the POL averaged across 1000 episodes achieved by

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1685

0 0.5M 1M 1.5M

0.2

0.4

0.6

0.8

1 TransferLearning

Scratch

Time Steps

T
e
s
t
 W

in
 R

a
t
e
 %

(a) 8m_vs_9m to 5m_vs_6m

0 0.5M 1M 1.5M

0.2

0.4

0.6

0.8

1

Time Steps

(b) 5s10z to 3s5z_vs_3s6z

Figure 5: Transfer learning vs training from scratch in 2 SC2 tasks.

TransfQMix trained with 𝑛 agents in scenarios with different 𝑛.
As a benchmark, the best POLs obtained by state-of-the-art mod-
els trained in each specific task are reported. We also include the
performances of TransfQMix trained with a curriculum learning
(CL) approach, which consists of making the agents cooperate in
progressively larger teams. In particular, we trained the agents in
teams of 3, 4, 5 and 6 for 500𝑘 time steps each.

In general, every network showed excellent zero-shot capabili-
ties but worse performances for larger teams, except for the agents
trained with CL, which performed similarly in all the scenarios.
In this sense, CL seems a promising approach for obtaining gen-
eral coordination policies with TransfQMix. Surprisingly, the best
transferable policy was learned in the 4v4 task. This could be be-
cause the scenario is complex enough to necessitate the learning of
strong coordination policies, but not so complicated as to produce
instabilities or slow down the learning process. Finally, it is remark-
able that all the TransfQMix’s zero-shot transfers outperformed
state-of-the-art methods trained in the various scenarios.

The only constraint to using TransfQMix in different contexts is
that the vertex feature space must be the same. This is not always
guaranteed in the SC2 environment, because the unit type’s one-hot
encoding feature is dependent on the total number of unit types of
the scenario (a straightforward solution for future research would
be to include a one-hot encoding of all the possible unit types in
every map). Nonetheless, we can utilize the same networks in maps
with the same entity types. Figure 5 shows the results obtained in
the 5m_vs_6m and 3s5z_vs_3s6z tasks by fine-tuning the agents
trained in the 8m_vs_9m and 5s10z scenarios, respectively.

In both cases, we are transferring coordination strategies learnt
in simpler settings to more difficult tasks, implying that we are con-
ducting a minimal CL. We can see how fine-tuning helped Trans-
fQMix develop a significantly better policy (Figure 5b) or converge
faster (Figure 5a) than when it was trained from scratch. The initial
peak in the figures corresponds to the zero-shot performance, and
it is followed by a falling phase in which the weights were rapidly
adjusted for the new task.

In conclusion, the results demonstrate TransfQMix’s promising
capacity to transfer knowledge between scenarios, as well as how
transfer and curriculum learning could aid in the resolution of
complex MARL tasks.

6.3 Ablation
It might be claimed that the results obtained by TransfQMix in
Spread are not comparable with the previous methods because we

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1 TransfQmix
QmixTransfMixer
QmixTransfAgent
QmixGraphState
Qmix

Time Steps

Te
st

 W
in

 R
at

e
%

(a) SC2: 5m_vs_6m

0 0.5M 1M 1.5M 2M

0.2

0.4

0.6

0.8

1

Time Steps

Te
st

 O
cc

up
ie

d
La

nd
m

ar
ks

 %

(b) Spread

Figure 6: Ablation Study.

employ a state observation matrix that differs from the original
state vector. To test this argument, we ran QMix with the flattened
version of our state matrix in Spread.

The averaged test POL across all Spread tasks is shown in Fig-
ure 6b. We can see that QMix’s performance with a graph state
(QMixGraphState) was not considerably different from QMix’s per-
formance with the original state vector. The same figure shows
that replacing the QMix mixer’s hypernetworks with a transformer
mixer improved performance (QMixTransformerMixer). This in-
dicates that, in order to benefit from a graph-based state, a graph-
based network as a transformer should be used. We also provide the
results produced by our transformer agents in conjunction with the
traditional QMix hypernetworks. This framework clearly outper-
formed the original one based on RNNs in terms of coordination,
but it was not as stable or performant as TransfQMix.

The identical ablation studywas carried out in the SC2 5m_vs_6m
task (Figure 6a). In this scenario, the transformer agents and mixers
alone were unable to increase the performance of QMix, implying
that we need to utilize transformers in both the agent and mixer net-
works in order to leverage the graph structure of the observations
and state.

7 CONCLUSION
In this paper we proposed a novel graph-based formalization of
MARL problems that depicts coordination problems in a more natu-
ral way. We introduced TransfQMix, a method based on transform-
ers that makes use of this structure to enhance the coordination rea-
soning of the QMix’s agents and mixer. TransfQMix demonstrated
great learning capabilities by excelling in the most challenging
SC2 and Spread tasks without the need for task-specific hyper-
parameter tuning. In contrast to prior approaches that attempted
to enhance QMix, TransfQMix does not focus on the monotonicity
constraint or other aspects of the learning process. This shows that
in order to improve MARL methods, neural networks architectures
and environment representations need to receive greater focus.

The application of TransfQMix in transfer learning, zero-shot
transfer, and curricular learning yielded promising results. In future
research we aim to explore the method’s generalization abilities
by including several tasks into a single learning pipeline. For in-
stance, we aim to train the same agents to solve all the SC2 tasks.
Additionally, we want to investigate the feasibility of transferring
coordination policies between MARL domains. Finally, we want to
examine in greater detail the influence of multi-head self-attention
on coordination reasoning.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1686

ACKNOWLEDGMENTS
This project has received funding from the EU’s Horizon 2020
research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 893089. This work acknowledges the
‘SeveroOchoa Centre of Excellence’ accreditation (CEX2019-000928-
S). We gratefully acknowledge the David and Lucile Packard Foun-
dation. The work’s experiments were run at the Barcelona Super-
computing Center in collaboration with the HPAI group.

REFERENCES
[1] Akshat Agarwal, Sumit Kumar, Katia Sycara, and Michael Lewis. 2020. Learning

Transferable Cooperative Behavior in Multi-Agent Teams. In Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent Systems
(Auckland, New Zealand) (AAMAS ’20). 1741–1743.

[2] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate. 3rd International Conference
on Learning Representations, ICLR 2015 ; Conference date: 07-05-2015 Through
09-05-2015.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186.

[4] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-
mon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 32.

[5] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. 2020. UPDeT: Univer-
sal Multi-agent RL via Policy Decoupling with Transformers. In International
Conference on Learning Representations.

[6] Maximilian Hüttenrauch, Sosic Adrian, Gerhard Neumann, et al. 2019. Deep
reinforcement learning for swarm systems. Journal of Machine Learning Research
20, 54 (2019), 1–31.

[7] Muhammad Junaid Khan, Syed Hammad Ahmed, and Gita Sukthankar. 2022.
Transformer-Based Value Function Decomposition for Cooperative Multi-Agent
Reinforcement Learning in StarCraft. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, Vol. 18. 113–119.

[8] Landon Kraemer and Bikramjit Banerjee. 2016. Multi-agent reinforcement learn-
ing as a rehearsal for decentralized planning. Neurocomputing 190 (2016), 82–94.

[9] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning Research
17, 1 (2016), 1334–1373.

[10] Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer.
2021. Deep Implicit CoordinationGraphs forMulti-agent Reinforcement Learning.
In Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems. 764–772.

[11] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, and Yoshua Bengio. 2017. A Structured Self-Attentive Sentence
Embedding. In International Conference on Learning Representations.

[12] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. Advances in neural information processing systems 30 (2017).

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[14] Frans A Oliehoek and Christopher Amato. 2016. A concise introduction to decen-
tralized POMDPs. Springer.

[15] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht.
2021. Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in

Cooperative Tasks. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1).

[16] Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. A
Decomposable Attention Model for Natural Language Inference. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Austin, Texas, 2249–2255.

[17] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Sid-
dhant Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb
Noury, et al. 2020. Stabilizing transformers for reinforcement learning. In Inter-
national conference on machine learning. PMLR, 7487–7498.

[18] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. 2020.
Weighted qmix: Expanding monotonic value function factorisation for deep
multi-agent reinforcement learning. Advances in neural information processing
systems 33 (2020), 10199–10210.

[19] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In International conference
on machine learning. PMLR, 4295–4304.

[20] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexan-
der Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost To-
bias Springenberg, et al. 2022. A generalist agent. arXiv preprint arXiv:2205.06175
(2022).

[21] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung
Yi. 2019. Qtran: Learning to factorize with transformation for cooperative multi-
agent reinforcement learning. In International conference on machine learning.
PMLR, 5887–5896.

[22] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2018. Value-Decomposition Networks For Cooperative Multi-Agent
Learning Based On Team Reward. In Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, (AAMAS 2018), Vol. 3.
2085–2087.

[23] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari,
Ryan Sullivan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo
Perez-Vicente, et al. 2021. Pettingzoo: Gym for multi-agent reinforcement learn-
ing. Advances in Neural Information Processing Systems 34 (2021), 15032–15043.

[24] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 30.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[26] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou,
Julian Schrittwieser, et al. 2017. Starcraft ii: A new challenge for reinforcement
learning. arXiv preprint arXiv:1708.04782 (2017).

[27] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021.
QPLEX: Duplex Dueling Multi-Agent Q-Learning. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

[28] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and
Lidia S Chao. 2019. Learning Deep Transformer Models for Machine Translation.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 1810–1822.

[29] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3 (1992), 279–292.

[30] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng
Yan, Masayoshi Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. 2020.
Visual transformers: Token-based image representation and processing for com-
puter vision. arXiv preprint arXiv:2006.03677 (2020).

[31] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
2021. The surprising effectiveness of ppo in cooperative, multi-agent games.
arXiv preprint arXiv:2103.01955 (2021).

[32] Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. 2020. Learn-
ing implicit credit assignment for cooperative multi-agent reinforcement learning.
Advances in Neural Information Processing Systems 33 (2020), 11853–11864.

Session 5B: Graph Neural Networks + Transformers

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1687

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Method
	4.1 Graph Observations and State
	4.2 Transformer Agent
	4.3 Transformer Mixer

	5 Experimental Setup
	5.1 Spread
	5.2 StarCraft II
	5.3 Algorithms

	6 Results and Discussion
	6.1 Main Results
	6.2 Transfer Learning
	6.3 Ablation

	7 Conclusion
	Acknowledgments
	References

