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ABSTRACT
Determining how close a winner of an election is to becoming a

loser, or distinguishing between different possible winners of an

election, are major problems in computational social choice. We

tackle these problems for so-called weighted tournament solutions

by generalizing the notion of margin of victory (MoV) for tourna-

ment solutions by Brill et al. [8][Artificial Intelligence] to weighted

tournament solutions. For these, the MoV of a winner (resp. loser)

is the total weight that needs to be changed in the tournament to

make them a loser (resp. winner). We study three weighted tour-

nament solutions: Borda’s rule, the weighted Uncovered Set, and

Split Cycle. For all three rules, we determine whether the MoV for

winners and non-winners is tractable and give upper and lower

bounds on the possible values of the MoV. Further, we axiomatically

study and generalize properties from the unweighted tournament

setting to weighted tournaments.
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1 INTRODUCTION
Social choice theory is primarily concerned with choosing a so-

cially desirable outcome from a given set of alternatives based on

preference information. Such alternatives can be human beings,

like politicians or athletes, or more abstract choices, like projects

or desired goods. The preference information can be acquired from

the opinion of voters or through other methods of assessment, e. g.,

sports matches. In many practical scenarios, the information comes

in the form of pairwise comparisons between the alternatives, result-

ing in so called tournaments. Problems pertaining to tournaments,

and more generally to collective decision-making, often involve

the use of algorithms and graph-theoretic approaches, and have

therefore attracted significant attention from computational social

choice researchers over the past few decades [22].

Tournaments are omnipresent in sports competitions, where

players or teams compete against each other in head-to-head

matches in order to determine one single winner. They are also

applied in voting scenarios, where each voter contributes a prefer-

ence list over all alternatives from which the pairwise preferences

are read off. In order to determine the set of ‘best’ choices among

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
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the alternatives, most preferably one winner, several tournament
solutions have been proposed [4, 19].

Consider a tennis tournament in which everyone plays against

everyone else in exactly one match. The result of each match is

binary; either 𝑥 wins against 𝑦 or 𝑥 loses against 𝑦. This can be

illustrated in a graph: Every player is represented by a vertex, and

we draw an edge from each match-winner towards the correspond-

ing match-loser. The resulting directed graph is called a tournament
graph. Using this information, the pre-chosen tournament solution

determines the winner, let’s call it 𝑎. Now, assume there is an edge

in the graph that, when reversed, leads to a different tournament in

which 𝑎 is not a winner anymore. In that case, the win of 𝑎 would be

much less perspicuous compared to winning a tournament where

we would need to reverse twenty edges before 𝑎 drops out of the

winning set.

That is what we call the margin of victory (MoV) – the minimum

number of edges needed to be reversed, such that a winner drops

out of the winning set, or a loser gets into the winning set. This

notion was introduced and analyzed by Brill et al. [8] for such so-

called unweighted tournaments, that is, tournaments in which one

alternative either wins or loses against another alternative. How-

ever, in many applications such as voting, and many tournaments

in sports, alternatives are not compared only once, but multiple

times, leading to weighted tournaments.
In our work, we extend the notion of MoV to 𝑛-weighted tour-

naments, where everyone is compared to everyone else exactly 𝑛

times. The resulting tournament graph contains two edges between

any two alternatives 𝑎 and 𝑏. One edge of weight 𝑘 from 𝑎 to 𝑏 if

𝑎 won 𝑘 out of the 𝑛 comparisons against 𝑏, and another edge of

weight 𝑛 − 𝑘 from 𝑏 to 𝑎. Now, the MoV of a winning alternative in

regards to the tournament solution is equal to the minimal sum of

weight necessary to be changed on the edges for this alternative to

fall out of the winning set, and for a non-winning alternative the

negative of the minimimal sum of weight needed to get into the

winning set.

Using this notion we can study how close a winning alternative

is to dropping out of the winning set and, more generally, asses the

robustness of a given outcome. If the MoV values of the winning

alternatives and runner ups are close to one, the risk of a wrongly

chosen winner due to errors in the aggregation process or small

manipulations is elevated. Thus, low absolute MoV values might

indicate the need for a recount or reevaluation of the given tourna-

ment. Furthermore, theMoV allows us to better distinguish between

all alternatives while adhering to the principle ideas of the chosen

tournament solution. It can therefore be used as a refinement of any

tournament solution, generating a full ranking of the alternatives.

This solves the problem of some prevalent tournament solutions

which tend to choose a large winning set, which so far is reduced

to one winner by some tie-breaker.
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1.1 Our Results
We investigate the MoV of three weighted tournament solutions:

First, we study Borda’s rule (BO), one of the most ubiquitous

weighted tournament solutions. Variants of it are used in the Euro-

vision Song Contest, in various sports awards, such as the award

for most valuable player in Major League Baseball, and essentially

in every scoring-based tournament. Second, we study the weighted

Uncovered Set (wUC) due to its interesting properties in the un-

weighted setting, for instance that determining the MoV for non-

winners in the unweighted setting is one of the rare problems

solvable in quasi-polynomial time [8]. Finally, we study the re-

cently introduced Split Cycle (SC), which was shown to admit quite

promising axiomatic properties, such as Condorcet consistency and

spoiler immunity [17].

In Section 3 we determine the complexity of computing the MoV

for each tournament solution, first for winners (destructive MoV)

and then non-winners (constructive MoV). Destructive MoV can

be solved in polynomial time for all three tournament solutions.

Constructive MoV is only polynomial time solvable for BO and

NP-complete for SC and wUC. Whenever we prove a problem

to be polynomial time solvable, the provided algorithm not only

computes the MoV value for the given alternative, but also a set of

edges with corresponding weight witnessing that value.

In Section 4 we provide insight into some structural properties

of the MoV. First, in Section 4.1 we prove that all three tournament

solutions and their MoV functions satisfy monotonicity. This is a
desired property as it ensures a basic principle of social choice

theory, where an alternative should not become unfavoured if rein-

forced. The second notion of monotonicity, transfer-monotonicity,
holds only for BO and wUC, while SC fails it. In Section 4.2 we

prove the consistency of all three tournament solutions with the

weighted extension of the covering relation. In Section 4.3 we show

that none of the considered tournament solutions are in any way

degree-consistent.
Finally, in Section 5, we derive bounds for the MoV of each

tournament solution, i. e., how much weight needs definitely to be

changed to get an alternative out of, resp. into, the winning set.

For a summary of these results, we refer to Table 1. Note that

due to space constraints, many of our proofs had to be moved to

the appendix.

1.2 Related Work
Our work generally fits into the field of computational social choice

[5], in which both weighted [14] and unweighted tournaments [4]

have found myriads of applications. For a general overview on

recent work on tournaments we refer the reader to [22]. The closest

related work to ours is the aforementioned work by Brill et al. [8]

(and their two preceeding conference papers Brill et al. [6, 7]) on

the MoV for unweighted tournaments. We use their framework

and structural axioms as grounds for generalization to weighted

tournaments. Further, our notion of MoV is very similar to the mi-
crobribery setting of Faliszewski et al. [12]. In their setting, voters

(with rankings) can be bribed to change individual pairwise com-

parisons between alternatives, even if this results in intransitive

preferences of the voter. This is very close to our reversal set notion,

as the weight that needs to be reversed corresponds to the pairwise

comparisons that need to be manipulated. Faliszewski et al. studied

the complexity of that microbribery problem for a parameterized

version of Copeland’s rule. Further, Erdélyi and Yang [11] consid-

ered microbribery under the model of group identification. In that

setting, one does not have distinct voter and alternative groups, but

rather one set of individuals which approve or disapprove of each

other (including themselves).

The problem of determining the MoV a important when studying

of robustness of election outcomes. A winner with a low MoV value

is in some sense less robust and more prone to changes than a

winner with a high MoV value. For recent papers on robustness

in elections, we refer the reader to the works of Boehmer et al.

[2, 3], Shiryaev et al. [21], Xia [23], or Baumeister and Hogrebe [1],

who computationally and experimentally studied the robustness of

election winners.

Finally, our problem is closely related to the classical study of

bribery and manipulation in social choice, since the MoV can be

considered as a measure of howmany games in a sports tournament

need to be rigged, in order for a competitor to become the winner

of the tournament. For an overview on this topic in social choice,

we refer the reader to the chapter by Faliszewski and Rothe [13].

2 PRELIMINARIES
A tournament is a pair 𝑇 = (𝑉 , 𝐸) where 𝑉 is a nonempty finite set

of |𝑉 | =𝑚 alternatives and 𝐸 ⊆ 𝑉 ×𝑉 is an irreflexive asymmetric

complete relation on V, i. e., either (𝑥,𝑦) ∈ 𝐸 or (𝑦, 𝑥) ∈ 𝐸 for

all distinct 𝑥,𝑦 ∈ 𝑉 . Let 𝑛 be a positive integer. An 𝑛-weighted
tournament is a pair 𝑇 = (𝑉 ,𝑤) consisting of a finite set 𝑉 of

alternatives and a weight function 𝑤 : 𝑉 × 𝑉 → {0, . . . , 𝑛} such
that for each pair of distinct alternatives (𝑥,𝑦) ∈ 𝑉 ×𝑉 we have

𝑤 (𝑥,𝑦)+𝑤 (𝑦, 𝑥) = 𝑛. Observe, that a 1-weighted tournament (𝑉 ,𝑤)
can be associated with an unweighted tournament (𝑉 , 𝐸) by setting
𝐸 = {(𝑥,𝑦) ∈ 𝑉 ×𝑉 : 𝑤 (𝑥,𝑦) = 1}.

Given two distinct alternatives 𝑥,𝑦 ∈ 𝑉 , we define the (majority)
margin of 𝑥 over 𝑦 as the difference between the number of wins

by 𝑥 over 𝑦 and the number of wins by 𝑦 over 𝑥 , that is𝑚(𝑥,𝑦) =
𝑤 (𝑥,𝑦) −𝑤 (𝑦, 𝑥). Note that𝑚(𝑥,𝑦) = −𝑚(𝑦, 𝑥) holds and that the

margins are either all even or all odd. Given those margins we

denote by M = (𝑉 , 𝐸), 𝐸 = {(𝑥,𝑦) ∈ 𝑉 × 𝑉 : 𝑥 ≠ 𝑦,𝑚(𝑥,𝑦) > 0},
the margin graph corresponding to the tournament.

The edges of the margin graph define an asymmetric weighted
dominance relation between the alternatives. If (𝑥,𝑦) ∈ 𝐸, we say

that 𝑥 dominates 𝑦. An alternative who dominates every other

alternative is called a Condorcet winner, and a Condorcet loser, if it
is dominated by every other alternative.

In an unweighted tournament 𝑇 = (𝑉 , 𝐸) an alternative 𝑥 is

said to cover another alternative 𝑦 if (𝑥,𝑦) ∈ 𝐸 and (𝑥, 𝑧) ∈ 𝐸,

for all 𝑧 with (𝑦, 𝑧) ∈ 𝐸. This notion can be extended to weighted

tournaments, where an alternative 𝑥 is said to weighted cover an-
other alternative 𝑦 if 𝑚(𝑥,𝑦) > 0 and 𝑚(𝑥, 𝑧) ≥ 𝑚(𝑦, 𝑧), for all
𝑧 ∈ 𝑉 (𝑇 ) \ {𝑥,𝑦}, i. e., every alternative dominated by 𝑦 is also

dominated by 𝑥 by at least the same margin.

The unweighted outdegree of 𝑥 is denoted by 𝛿+ (𝑥) = |{𝑦 ∈
𝑉 : (𝑥,𝑦) ∈ 𝐸}|, and the unweighted indegree of 𝑥 by 𝛿- (𝑥) = |{𝑦 ∈
𝑉 : (𝑦, 𝑥) ∈ 𝐸}|. Equivalently, the weighted outdegree of 𝑥 is denoted
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Borda (BO) Split Cycle (SC) weighted Uncovered Set (wUC)

Computing MoV
Destructive P (Thm. 3.1) P (Thm. 3.4) P (Thm. 3.7)

Constructive P (Thm. 3.3) NP-complete (Thm. 3.5) NP-complete (Thm. 3.8)

Bounds

Destructive (upper bound)

⌊
𝑛· (𝑚−2)

2

⌋
+ 1 (Thm. 5.1) −

⌈
𝑛
2

⌉
· (𝑚 − 1) (Thm. 5.2)

⌊
𝑛
2

⌋
+ 1 +

⌊
𝑛· (𝑚−2)

2

⌋
(Thm. 5.3)

Constructive (lower bound) −𝑛 · (𝑚 − 2) (Thm. 5.1) 𝑛 +
⌈
(𝑚−2)

2

⌉
(Thm. 5.2) − log

2
(𝑚) · (

⌊
𝑛
2

⌋
+ 1) (Thm. 5.3)

Structural properties

monotonicity

tournament solution 𝑆 ✓ (Prop. 4.2) ✓ (Prop. 4.2) ✓ (Prop. 4.2)

MoV𝑆 ✓ (Thm. 4.4) ✓ (Thm. 4.4) ✓ (Thm. 4.4)

transfer-monotonicity ✓ (Prop. 4.6) ✗ (Prop. 4.7) ✓ (Prop. 4.6)

cover-consistency ✓ (Thm. 4.10) ✓ (Thm. 4.11) ✓ (Thm. 4.10)

degree-consistency ✗ (Prop. 4.14) ✗ (Prop. 4.14) ✗ (Prop. 4.14)

Table 1: Result overview with references to the corresponding theorems and propositions given in parentheses.

by 𝛿+
w
(𝑥) = ∑

𝑧∈𝑉 \{𝑥 } 𝑤 (𝑥, 𝑧), and the weighted indegree of 𝑥 by

𝛿-
w
(𝑥) = ∑

𝑧∈𝑉 \{𝑥 } 𝑤 (𝑧, 𝑥).

2.1 Weighted Tournament Solutions
A (weighted) tournament solution is a function 𝑆 mapping a tour-

nament 𝑇 = (𝑉 , 𝐸), or weighted tournament 𝑇 = (𝑉 ,𝑤), to a

non-empty subset of its alternatives, referred to as the winning set
𝑆 (𝑇 ) ⊆ 𝑉 . In this paper we consider the following three weighted

tournament solutions:

• The winning set according to Borda’s rule (BO) are all alter-
natives with maximum Borda score (weighted outdegree)

sBO (𝑥, (𝑉 ,𝑤)) =
∑︁

𝑧∈𝑉 \{𝑥 }
𝑤 (𝑥, 𝑧) = 𝛿+

w
(𝑥) .

• The winning set according to Split Cycle (SC) [16] are all

alternatives which are undominated after the following dele-

tion process: for every directed cycle in the margin graph

delete the edges with the smallest margin in the cycle, i. e.,

the least deserved dominations.

• Theweighted Uncovered Set (wUC) [9, 10] contains all alterna-
tives that are not weighted covered by any other alternative.

We mainly use the following alternative characterization of wUC
via a path definition similar to 𝑘-kings for unweighted tournaments,

which are all alternatives that can reach every other alternative by

a path of length at most 𝑘 . In the unweighted setting, the uncovered

alternatives correspond to 2-kings and, consequently, are exactly
those that can reach every other alternative by a path of length at

most two [19, Proposition 5.1.3]. In the weighted setting, we get a

decreasing path. If 𝑥 beats an alternative 𝑣𝑘 via a weighted path, 𝑦

Definition 2.1. Let 𝑇 = (𝑉 ,𝑤) be an 𝑛-weighted tournament and
𝑥,𝑦 ∈ 𝑉 . A decreasing path 𝑝 = (𝑥,𝑦) from 𝑥 to 𝑦 of length 1 exists
if and only if𝑚(𝑥,𝑦) ≥ 0. A decreasing path from 𝑥 to 𝑦 of length
𝑘 ∈ {2, . . . , 𝑛−1} is a sequence of alternatives 𝑝 = (𝑣1, . . . , 𝑣𝑘+1), such
that 𝑣1 = 𝑥 , 𝑣𝑘+1 = 𝑦, and min{𝑤 (𝑣𝑖−1, 𝑣𝑖 ) : 1 ≤ 𝑖 ≤ 𝑘} > 𝑤 (𝑦, 𝑣𝑘 ).

Figure 1: Examples of decreasing paths from 𝑥 to 𝑦.

Refer to Figure 1 for examples of decreasing paths of length one to

three. Analogous to the unweighted setting, wUC corresponds pre-

cisely to those alternatives which can reach every other alternative

with a decreasing path of length 2.

Lemma 2.2. An alternative 𝑥 is in wUC(𝑇 ) if and only if it can
reach every other alternative by a decreasing path of length at most 2.

Further studying this generalization of wUC for larger 𝑘 might

be an interesting avenue for future work. See the appendix for a

proper definition of this generalization.

It is easy to see that BO is always contained in wUC. Further,
wUC and SC both define the winner over some weighted path/cycle

definition. This opens the question whether wUC ⊆ SC or SC ⊆
wUC. In the following example we show that neither is the case

and demonstrate how the three tournament solutions behave.

Example 1. First, consider the 10-weighted tournament 𝑇1 on the

left in Figure 2. The Borda scores are sBO (𝑎) = 10, sBO (𝑏) = 5 and

sBO (𝑎) = 15 and hence, BO(𝑇1) = {𝑐}. Furthermore, the margin

graph is acyclic and thus SC(𝑇1) = {𝑐}. For wUC, we see that no al-
ternative covers the other, and thus wUC(𝑇1) = {𝑎, 𝑏, 𝑐}. Therefore,
wUC is not contained in SC.

On the other hand, in tournament 𝑇2 on the right in Figure 2,

every edge is contained in at least one cycle in the margin graph in

which all edges have weight 10 and hence, all edges are deleted. As

no edge remains, no alternative is dominated and thus, SC(𝑇2) =
{𝑎, 𝑏, 𝑐, 𝑑}. For wUC, we notice that alternative 𝑎 is covered by
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alternative 𝑏, while all other alternatives are not covered. Hence,

wUC(𝑇2) = {𝑏, 𝑐, 𝑑}, and SC is not contained inwUC. For complete-

ness, we note that every element in wUC(𝑇2) has a Borda score of
20, while 𝑎 has a Borda score of 10.

Figure 2: Counterexamples for wUC ⊈ SC on the left and
SC ⊈ wUC on the right.

2.2 Margin of Victory
The margin of victory (MoV) for tournament solutions on

unweighted tournaments was formally introduced by Brill et al.

[8]. Let 𝑇 = (𝑉 , 𝐸) be an unweighted tournament and 𝑆 a tourna-

ment solution. Given a winner 𝑎 ∈ 𝑆 (𝑇 ) regarding 𝑆 , the MoV(𝑎)
is the minimum number of edges which have to be reversed such

that after reversal alternative 𝑎 is not in the winning set anymore.

The corresponding set of edges is called the destructive reversal set
(DRS). Equivalently, for a non-winner 𝑑 ∈ 𝑉 \ 𝑆 (𝑇 ) the𝑀𝑜𝑉 (𝑑) is
the minimum number of edges which have to be reversed such that

after reversal 𝑑 is in the winning set, and the corresponding set of

edges is called the constructive reversal set (CRS).
In order to generalize this notion for weighted tournaments, we

have to extend the notion of reversing edges to reversing a spe-

cific amount of weight between any pair of alternatives. We fix the

following notation. A reversal function is a mapping 𝑅 : 𝑉 ×𝑉 →
{−𝑛, . . . , 𝑛} with 𝑅(𝑥,𝑦) = −𝑅(𝑦, 𝑥), such that 𝑤 (𝑥,𝑦) + 𝑅(𝑥,𝑦) ∈
[0, 𝑛]. Whenever only one direction 𝑅(𝑥,𝑦) is specified, we de-

fine the corresponding 𝑅(𝑦, 𝑥) to be set accordingly. Given an 𝑛-

weighted tournament𝑇 = (𝑉 ,𝑤) and a reversal function 𝑅 on𝑉 ×𝑉 ,

we denote by 𝑇𝑅
the 𝑛-weighted tournament that results from 𝑇

by reversing the weight given in 𝑅:

𝑇𝑅 = (𝑉 ,𝑤 (𝑥,𝑦) + 𝑅(𝑥,𝑦)) .
Any reversal function 𝑅 corresponds to a weighted destructive re-
versal set (wDRS) for 𝑎 ∈ 𝑆 (𝑇 ) if 𝑎 ∉ 𝑆 (𝑇𝑅). Analogously, 𝑅 corre-

sponds to a weighted constructive reversal set (wCRS) for 𝑑 ∉ 𝑆 (𝑇 )
if 𝑑 ∈ 𝑆 (𝑇𝑅). These reversal sets are generally not unique and

finding any wDRS or wCRS is usually quite easy. For example,

given a Condorcet-consistent tournament solution, i. e., whenever

there is a Condorcet winner it is chosen as the only winner of the

tournament, a straightforward wCRS for any 𝑑 ∉ 𝑆 (𝑇 ) is given by

𝑅(𝑑,𝑦) = 𝑛 −𝑤 (𝑑,𝑦), for all 𝑦 ∈ 𝑉 . This works, as 𝑑 is a Condorcet

winner in𝑇𝑅
. Using these reversal sets we can now define the MoV.

Definition 2.3. For an 𝑛-weighted tournament 𝑇 = (𝑉 ,𝑤) and a
tournament solution 𝑆 , the margin of victory (MoV) of a winning
alternative 𝑎 ∈ 𝑆 (𝑇 ) is given by

MoV𝑆 (𝑎,𝑇 ) = min


∑︁

𝑦,𝑧∈𝑉
𝑅 (𝑦,𝑧 )>0

𝑅(𝑦, 𝑧) : 𝑅 is a wDRS for 𝑎 in 𝑇

 ,

and for a non-winning alternative 𝑑 ∉ 𝑆 (𝑇 ) it is given by

MoV𝑆 (𝑑,𝑇 ) = −min


∑︁

𝑦,𝑧∈𝑉
𝑅 (𝑦,𝑧 )>0

𝑅(𝑦, 𝑧) : 𝑅 is a wCRS for 𝑑 in 𝑇

 ,
whereas

∑
𝑦,𝑧∈𝑉 , 𝑅 (𝑦,𝑧 )>0

𝑅(𝑦, 𝑧) is called the size of 𝑅.

We omit the subscript 𝑆 , whenever the tournament solution is

clear from the context.

Example 2. Consider the 10-weighted tournament 𝑇 in Figure 3.

The set of Borda winners is BO(𝑇 ) = {𝑎} with a Borda score of

sBO (𝑎) = 21. For SC we consider all cycles of the margin graph𝑀 .

In cycle (𝑏, 𝑐, 𝑑) the edges (𝑐, 𝑑) and (𝑑, 𝑏) have the smallest margin,

in cycle (𝑎, 𝑐, 𝑑) the edge with smallest margin is (𝑑, 𝑎) and lastly,

cycle (𝑎, 𝑏, 𝑐, 𝑑) has as smallest margin edge (𝑑, 𝑎). Thus, we delete
the edges (𝑐, 𝑑), (𝑑,𝑏) and (𝑑, 𝑎) from the margin graph, and obtain

𝑎 and 𝑑 as the only undominated alternatives, i. e., SC(𝑇 ) = {𝑎, 𝑑}.
For wUC we check for covering relations in𝑇 . The only alternative

covering another alternative is 𝑎 which covers 𝑏. Hence,wUC(𝑇 ) =
{𝑎, 𝑐, 𝑑}.

The MoV values and possible weighted reversal sets are given in

the table of Figure 3. For instance,𝑀𝑜𝑉SC (𝑎) = 2, since reversing a

weight of 2 from 𝑎 to 𝑑 would increase the margin of 𝑑 over 𝑎 to 6,

after which this edge is no longer a minimum weight edge in any

cycle. Thus, this edge is not deleted and 𝑎 is no longer a Split Cycle

winner. Similarly, 𝑀𝑜𝑉SC (𝑏) = −3, since after strengthening the

edge from 𝑏 to 𝑎 by a weight of 3, the margin of 𝑎 over 𝑏 is 2, which

would cause this edge to be deleted and 𝑏 to be undominated. It

is also easy to see, that after any two changes, the edge from 𝑎 to

𝑏 cannot be a minimum weight edge in any cycle and hence the

bound of −3 cannot be improved to −2.

a b c d

𝑀𝑜𝑉BO (𝑥,𝑇1) 3 -5 -5 -3

min. weighted 𝑅(𝑑, 𝑎) = 3 𝑅(𝑏, 𝑎) = 5 𝑅(𝑐, 𝑎) = 5, 𝑅(𝑑, 𝑎) = 3

reversal set

𝑀𝑜𝑉SC (𝑥,𝑇1) 2 -3 -3 1

min. weighted 𝑅(𝑑, 𝑎) = 2 𝑅(𝑏, 𝑎) = 3, 𝑅(𝑐, 𝑏) = 1, 𝑅(𝑐, 𝑑) = 1

reversal set 𝑅(𝑐, 𝑎) = 1,

𝑅(𝑑, 𝑎) = 1

𝑀𝑜𝑉UC (𝑥,𝑇1) 7 -1 3 2

min. weighted 𝑅(𝑑, 𝑏) = 2, 𝑅(𝑏, 𝑐) = 1 𝑅(𝑎, 𝑑) = 3, 𝑅(𝑎, 𝑑) = 2

reversal set 𝑅(𝑑, 𝑐) = 5

Figure 3: MoV values of all alternatives 𝑥 ∈ {𝑎, 𝑏, 𝑐, 𝑑} of the
10-weighted tournament 𝑇 for each tournament solution BO,
SC and wUC together with possible minimum reversal sets.
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3 COMPUTING THE MARGIN OF VICTORY
We now begin the study of the computational complexity for com-

puting the MoV for the three tournament solutions. For each tour-

nament solution, we either give a polynomial-time algorithm for

computing the MoV or show that the problem is NP-complete.

Whenever we provide a polynomial-time algorithm, the algorithm

does not only compute the MoV, but also a corresponding minimum

wDRS when considering winners, respectively a corresponding

minimum wCRS when considering non-winners.

3.1 Borda
The MoV for BO in weighted tournaments behaves similar to the

MoV for Copeland’s rule in unweighted tournaments. Note that in-

deed Copeland’s rule and BO coincide on 1-weighted tournaments.

Due to the inherent similarities we are able to generalize the algo-

rithms of Brill et al. [8] for determining the MoV of Copeland’s rule

to also work for BO. First, for determining the MoV of a winning

alternative we design a simple greedy algorithm.

Theorem 3.1. Computing the MoV of a BO winner of an 𝑛-weighted
tournament 𝑇 = (𝑉 ,𝑤) can be done in polynomial time.

Proof. We compute the MoV for 𝑎 ∈ BO(𝑇 ).
Case 1 (|BO(𝑇 ) | > 1): As there are other BO winners besides 𝑎,

lowering sBO (𝑎,𝑇 ) by 1 is enough for 𝑎 to drop out of the winning

set. Take any alternative 𝑥 ∈ 𝑉 \ {𝑎} for which𝑤 (𝑥, 𝑎) < 𝑛, i. e., we

can reverse up to𝑤 (𝑎, 𝑥) ≥ 1weight from𝑎 to 𝑥 . Such an alternative

always exists, as otherwise sBO (𝑎,𝑇 ) = 0 while sBO (𝑦,𝑇 ) ≥ 𝑛 for

all 𝑦 ∈ 𝑉 \ {𝑎}, which contradicts 𝑎 having the highest Borda score.

Set 𝑅(𝑎, 𝑥) = −1 and 0 everywhere else. The winning set of 𝑇𝑅
is

BO(𝑇𝑅) =
{ BO(𝑇 ) \ {𝑎}, if sBO (𝑥,𝑇 ) < sBO (𝑎,𝑇 ) − 1,

(BO(𝑇 ) \ {𝑎}) ∪ {𝑥}, if sBO (𝑥,𝑇 ) ≥ sBO (𝑎,𝑇 ) − 1.

Therefore, 𝑎 ∉ BO(𝑇𝑅) and 𝑅 is a minimum wDRS for 𝑎 in𝑇 which

is computable in O(|𝑉 |) time.

Case 2 (|BO(𝑇 ) | = 1): As there are no other BO winners besides 𝑎,

at least one of the non-winner alternatives needs to be in the new

winning set instead of 𝑎. Consider a fixed minimum wDRS 𝑅 for 𝑎

in 𝑇 and let 𝑏 be the alternative with sBO (𝑏,𝑇𝑅) > sBO (𝑎,𝑇𝑅). We

claim, 𝑅 reverses weight along edges adjacent to 𝑎 or 𝑏 only. To-

wards contradiction, assume 𝑅(𝑥,𝑦) > 0 for some 𝑥,𝑦 ∈ 𝑉 \ {𝑎, 𝑏}.
Reversing that weight did not change the Borda scores of 𝑎 or 𝑏,

therefore they stay the same when revoking that reversal, result-

ing in a wDRS of smaller size. This contradicts 𝑅 being minimal.

This directly implies a simple polynomial-time greedy algorithm to

compute the MoV of 𝑎 and a corresponding minimum wCRS.

Algorithm We iterate over all 𝑏 ∈ 𝑉 \ {𝑎} and compute a min-

imum wDRS 𝑅 such that sBO (𝑏,𝑇𝑅) > sBO (𝑎,𝑇𝑅). We do so by

greedily reversing weight away from 𝑎 or towards 𝑏, starting with

reversing along the edge 𝑎𝑏 directly. Set

𝑅(𝑏, 𝑎) = min

{
𝑤 (𝑎, 𝑏),

⌊
sBO (𝑎,𝑇 ) − sBO (𝑏,𝑇 )

2

⌋
+ 1

}
,

where the latter is the distance between their two Borda scores, i. e.,

the necessary amount of weight to be reversed from 𝑎 to 𝑏. If after

that reversal sBO (𝑎,𝑇𝑅) ≥ sBO (𝑏,𝑇𝑅) still holds, we greedily set

𝑅(𝑥, 𝑎) = min

{
𝑤 (𝑎, 𝑥), sBO (𝑎,𝑇𝑅) − sBO (𝑏,𝑇𝑅) + 1

}
,

𝑅(𝑏, 𝑥) = min

{
𝑤 (𝑥, 𝑏), sBO (𝑎,𝑇𝑅) − sBO (𝑏,𝑇𝑅) + 1

}
,

for 𝑥 ∈ 𝑉 \ {𝑎, 𝑏}, until sBO (𝑎,𝑇𝑅) < sBO (𝑏,𝑇𝑅). Among all possi-

ble choices of 𝑏, we select one inducing a wDRS of minimum size.

Correctness The correctness of the algorithm directly follows

from the following observation: For a fixed 𝑏 the algorithm termi-

nates when sBO (𝑎,𝑇𝑅) − sBO (𝑏,𝑇𝑅) < 0. Reversing one weight

from 𝑎 to 𝑏 reduces the difference between their Borda scores by

two, and reversing one weight from 𝑎 to any 𝑥 ∈ 𝑉 \ {𝑎, 𝑏}, resp.
from any 𝑥 ∈ 𝑉 \ {𝑎, 𝑏} to 𝑏, reduces the difference by one. A

minimum wDRS thus has to consider reversal between 𝑎 and 𝑏

first, and then reverse weight from 𝑎, resp. to 𝑏, arbitrarily, until

sBO (𝑎,𝑇𝑅) < sBO (𝑏,𝑇𝑅). This is the procedure of the algorithm.

Polynomial runtime The algorithm clearly runs in time O(|𝑉 |).
□

Turning to BO non-winners, we show that the problem of comput-

ing the MoV can be reduced to the Minimum Cost 𝑏-Flow problem,

see for instance [18]. Our algorithm iterates over all possible Borda

scores 𝑙 , such that 𝑑 is a BO winner with Borda score 𝑙 after rever-

sal. To achieve this, we construct a suitable flow network 𝐺𝑙 , such

that any 𝑏-flow of 𝐺𝑙 corresponds to a weighted reversal set for

𝑑 in 𝑇 of the same weight, and compute a minimum cost 𝑏-flow.

The range of possible Borda scores is reduced, using the following

simple observation concerning a lower bound on a winning Borda

score.

Observation 3.2. Let 𝑇 = (𝑉 ,𝑤) be an 𝑛-weighted tournament
with𝑚 alternatives. For any 𝑎 ∈ BO(𝑇 ), we have

sBO (𝑎) ≥
⌈
𝑛 · 𝑚 · (𝑚−1)

2

𝑚

⌉
=

⌈𝑛
2

· (𝑚 − 1)
⌉
.

Theorem 3.3. Computing the MoV of a BO non-winner of an 𝑛-
weighted tournament 𝑇 = (𝑉 ,𝑤) can be done in polynomial time.

3.2 Split Cycle
Split Cycle is a tournament solution directly dealing with the prob-

lem of majority cycles in a tournament. It was introduced by Holli-

day and Pacuit [15, 17] to combat common problems of tournament

solutions like “spoiler effect” and “no show paradox”.

The similarities of the Split Cycle problem to the problem of

finding weighted paths in the margin graph allow us to reduce the

MoV computation of an SC winner to the Minimum Cut problem

in graphs, see [18].

Theorem 3.4. Computing the MoV of an SCwinner of an𝑛-weighted
tournament 𝑇 = (𝑉 ,𝑤) can be done in polynomial time.

For the constructive case we can show NP-completeness by

reducing from Dominating Set, again utilizing the alternative

path definition of SC.

Theorem 3.5. Deciding whether there is a wCRS of size 𝑘 for an SC
non-winner of an 𝑛-weighted tournament is NP-complete.
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3.3 Weighted Uncovered Set
In the unweighted setting, computing the MoV of a UC winner, a

3-king, or an (𝑛− 1)-king can be done in polynomial time as shown

by Brill et al. [8, Chapter 3.1.2.], via an 𝑙-length bounded 𝑎-cut in

the tournament for winner 𝑎. Unfortunately, simply extending this

approach to decreasing paths in the weighted setting does not seem

possible. This is mainly due to the fact that instead of just two

choices for every edge, i. e., reversing or keeping it, we have 𝑛 + 1,

i. e., changing the weight on the edge 𝑥𝑦 to anything from 0 to 𝑛.

Luckily, finding a polynomial time algorithm for wUC is quite

straightforward. It builds on the following property inherent exclu-

sively to decreasing paths of length at most two.

Proposition 3.6. Given two alternatives, all decreasing paths of
length at most two between them are pairwise distinct aside from
their endpoints.

Given a wUC winner 𝑎, the algorithm iterates over all alternatives

𝑑 ∈ 𝑉 \ {𝑎} and computes the minimum wDRS such that 𝑑 covers

𝑎 after reversal. This is equivalent to eliminating every decreasing

𝑎-𝑑-path of length at most two. Since those paths pairwise don’t

intersect, we can process all such paths iteratively, and greedily

compute for each the minimum necessary reversals.

Theorem 3.7. Computing the MoV of a wUC winner of an 𝑛-
weighted tournament 𝑇 = (𝑉 ,𝑤) can be done in polynomial time.

Proof. We compute the MoV for 𝑎 ∈ wUC(𝑇 ).
Algorithm We iterate over all 𝑑 ∈ 𝑉 \ {𝑎} and compute the

wDRS 𝑅 for letting 𝑑 cover 𝑎 in 𝑇𝑅
. We do so by iterating over all

𝑥 ∈ 𝑉 \ {𝑎} and checking for decreasing 𝑎-𝑑-paths via 𝑥 .

Case 1 (𝑥 = 𝑑): Check for decreasing 𝑎-𝑑-path of length one, i. e.,

𝑚(𝑎, 𝑑) ≥ 0. If so, we need to reverse weight such that𝑚𝑅 (𝑎, 𝑑) < 0.

To get a minimum size wDRS only𝑚𝑅 (𝑎, 𝑑) ∈ {−1,−2} is necessary,
depending on the parity of 𝑛. Set

𝑅(𝑑, 𝑎) =
⌊𝑛
2

⌋
+ 1 −𝑤 (𝑑, 𝑎).

Case 2 (𝑥 ≠ 𝑑): Check for decreasing 𝑎-𝑑-path of length two via 𝑥 ,

i. e., 𝑤 (𝑎, 𝑥) > 𝑤 (𝑑, 𝑥). If so, we need to reverse weight such that

𝑤𝑅 (𝑎, 𝑥) ≤ 𝑤𝑅 (𝑑, 𝑥). To get a minimum size wDRS, we only need

𝑤𝑅 (𝑑, 𝑥) = 𝑤𝑅 (𝑎, 𝑥). Set
𝑅(𝑑, 𝑥) = 𝑤 (𝑎, 𝑥) −𝑤 (𝑑, 𝑥).

Among all possible choices of 𝑑 , we select the one inducing a wDRS

𝑅 of minimum size.

Correctness The correctness of the algorithm directly follows

from Prop. 3.6: An alternative 𝑎 is a wUC winner if and only if it

can reach every other alternative by a decreasing path of length at

most two. Equivalently, if it is not covered by any other alternative.

If we reverse weight such that there is at least one alternative which

𝑎 cannot reach by a decreasing path of length at most two, then

𝑎 ∉ wUC(𝑇𝑅). By Prop. 3.6, all decreasing paths of length at most

two between two fixed alternatives are pairwise distinct. Therefore,

we can reverse weight along all such paths without influencing the

other paths.

Polynomial runtime The algorithm clearly runs in O(|𝑉 |2).
□

For UC non-winners, [8, Theorem 3.7] showed that the problem

of computing the MoV in the unweighted case is equivalent to

the Minimum Dominating Set problem on tournaments. Since

tournaments always admit a dominating set of size O(log(𝑛)), this
reduction implies a 𝑛O(log(𝑛) )

time algorithm and makes the prob-

lem unlikely to be NP-complete. For weighted tournaments, though,

we can show that wUC is actually NP-complete by reducing from

Set Cover.

Theorem 3.8. Deciding whether there is a wCRS of size 𝑘 of a wUC
non-winner of an 𝑛-weighted tournament is NP-complete.

4 STRUCTURAL RESULTS
Now that we have analyzed the computational complexity of the

MoV for the three tournament solutions, we turn to generalize

some structural properties of the MoV from the unweighted to the

weighted setting.

4.1 Monotonicity
We start by considering the classical structural property of mono-

tonicity. A tournament solution is monotonic if a winner of the

tournament stays a winner after being reinforced, i.e., after increas-

ing the margin of a winning alternative over any other alternative,

the winning alternative does not drop out of the winning set. We

generalize this notion for unweighted tournaments.

Definition 4.1. A tournament solution 𝑆 for an 𝑛-weighted tourna-
ment 𝑇 = (𝑉 ,𝑤) is said to be monotonic, if for any 𝑎, 𝑏 ∈ 𝑉 with
𝑤 (𝑎, 𝑏) < 𝑛,

𝑎 ∈ 𝑆 (𝑇 ) implies 𝑎 ∈ 𝑆 (𝑇𝑅),
where the reversal function 𝑅 is defined as 𝑅(𝑎, 𝑏) = 1 and 0 otherwise.

It is straightforward to show that all three tournament solutions

for which we analyzed the MoV are monotonic.

Proposition 4.2. BO, SC and wUC satisfy monotonicity.

Besides monotonicity of the underlying tournament solution,

we can also analyze the monotonicity of the MoV. For this, we say

that the MoV of a tournament solution is monotonic if the MoV of

an alternative does not decrease after this alternative is reinforced.

In the following two definitions we use 𝑄 for reversal functions

instead of 𝑅 to ensure readability of the proofs.

Definition 4.3. Given a tournament solution 𝑆 , we say 𝑀𝑜𝑉𝑆 is
monotonic if, for any 𝑛-weighted tournament 𝑇 = (𝑉 ,𝑤) and any
alternatives 𝑎, 𝑏 ∈ 𝑉 with𝑤 (𝑎, 𝑏) < 𝑛,

MoV𝑆 (𝑎,𝑇𝑄 ) ≥ MoV𝑆 (𝑎,𝑇 ),

where the reversal function𝑄 is defined as𝑄 (𝑎, 𝑏) = 1 and 0 otherwise.

We can show that the MoV𝑆 of any monotonic weighted tourna-

ment solution 𝑆 behaves monotonically. The idea is to construct a

reversal set 𝑅′ for 𝑎 in𝑇𝑄
from a minimum reversal set 𝑅 for 𝑎 in𝑇 ,

or vice versa, depending on whether 𝑎 ∈ 𝑆 (𝑇 ) or not. In particular,

this result implies monotonicity of the MoV for BO, SC and wUC.

Theorem 4.4. Let 𝑆 be a weighted tournament solution. If 𝑆 is
monotonic, its margin of victory function MoV𝑆 is monotonic as well.
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As final monotonicity notion, we consider transfer-monotonicity

[8]. An unweighted tournament solution is transfer-monotonic if

and only if a winning alternative 𝑎 remains in the winning set,

when an alternative 𝑐 is "transferred" from the dominion of another

alternative 𝑏 to the dominion of 𝑎. To generalize this to weighted

tournaments, we do not consider the transfer of an alternative 𝑐
from one dominion to another, but the transfer of weight over an
alternative 𝑐 from one alternative to another.

Definition 4.5. A tournament solution 𝑆 for an 𝑛-weighted tour-
nament 𝑇 = (𝑉 ,𝑤) is said to be transfer-monotonic, if for any
𝑎, 𝑏, 𝑐 ∈ 𝑉 with𝑤 (𝑏, 𝑐) > 0 and𝑤 (𝑎, 𝑐) < 𝑛,

𝑎 ∈ 𝑆 (𝑇 ) implies 𝑎 ∈ 𝑆 (𝑇𝑄 ),

where the reversal function𝑄 is defined as𝑄 (𝑏, 𝑐) = −1,𝑄 (𝑎, 𝑐) = +1
and 0 otherwise.

While all tournament solutions studied by Brill et al. [8] are

transfer-monotonic, this is not the case for here. While BO and

wUC are both transfer-monotonic, SC is not.

Proposition 4.6. BO and wUC satisfy transfer-monotonicity.

Proof. Let 𝑇 = (𝑉 ,𝑤) be an 𝑛-weighted tournament, with

𝑆 ∈ {BO,wUC} and 𝑎, 𝑏, 𝑐 ∈ 𝑉 such that 𝑎 ∈ 𝑆 (𝑇 ),𝑤 (𝑏, 𝑐) > 0 and

𝑤 (𝑎, 𝑐) < 𝑛. Further, let 𝑄 be defined by 𝑄 (𝑏, 𝑐) = −1, 𝑄 (𝑎, 𝑐) = +1
and 0 otherwise.

Borda Since 𝑎 ∈ BO(𝑇 ), 𝑎 has the highest Borda score. The

definition of 𝑄 implies sBO (𝑎,𝑇𝑄 ) = sBO (𝑎,𝑇 ) + 1, sBO (𝑏,𝑇𝑄 ) =
sBO (𝑏,𝑇 ) − 1 and sBO (𝑧,𝑇𝑄 ) = sBO (𝑧,𝑇 ) for all 𝑧 ∈ 𝑉 \ {𝑎, 𝑏}.
Thus, 𝑎 still has the highest Borda score, and 𝑎 ∈ BO(𝑇𝑄 ).
weighted Uncovered Set Since 𝑎 ∈ wUC(𝑇 ), 𝑎 is not covered

by any alternative, i. e., for every alternative 𝑥 , there is a decreas-

ing 𝑎-𝑥-path of length at most two. The definition of 𝑄 implies

𝑤𝑄 (𝑎, 𝑐) = 𝑤 (𝑎, 𝑐) +1 and𝑤𝑄 (𝑏, 𝑐) = 𝑤 (𝑏, 𝑐) −1. The only decreas-

ing path from 𝑎 to some alternative in 𝑇 that could be different in

𝑇𝑅
, is the decreasing path to 𝑐 or via 𝑐 . But since the weight on the

outgoing edge (𝑎, 𝑐) of 𝑎 increases, any decreasing path in 𝑇 is still

a decreasing path in 𝑇𝑄
. Thus, 𝑎 has a decreasing path of length at

most two to every alternative in 𝑇𝑄
, and 𝑎 ∈ wUC(𝑇𝑄 ). □

While the full proof of Prop. 4.7 can be found in the appendix,

refer to Figure 4 for the counterexample discussed in it.

Proposition 4.7. SC does not satisfy transfer-monotonicity.

Figure 4: The counterexample used in the proof of Prop. 4.7.
Edges ignored by SC are marked in orange; the weight-
transfer from 𝑏 to 𝑎 over 𝑐 is indicated in red. We have
𝑎 ∈ SC(𝑇 ), but 𝑎 ∉ SC(𝑇𝑄 ).

4.2 Cover-Consistency
Next, we turn to cover-consistency. Intuitively, if 𝑥 covers 𝑦, then 𝑥

should be preferable to 𝑦, i. e., MoV(𝑥) ≥ MoV(𝑦). A𝑀𝑜𝑉𝑆 of any

tournament solution 𝑆 satisfying this condition, is cover-consistent.

Definition 4.8. Given a weighted tournament solution 𝑆 , we say
that 𝑀𝑜𝑉𝑆 is cover-consistent, if for any 𝑛-weighted tournament
𝑇 = (𝑉 ,𝑤) and any alternatives 𝑥,𝑦 ∈ 𝑉 ,

𝑥 covers 𝑦 implies 𝑀𝑜𝑉𝑆 (𝑥,𝑇 ) ≥ 𝑀𝑜𝑉𝑆 (𝑦,𝑇 ) .

For unweighted tournaments, Brill et al. [8] proved that cover-

consistency is implied by monotonicity and transfer-monotonicity.

For BO and wUC we follow this approach. For SC, which is not

transfer-monotonic (see Prop. 4.7), we use a different technique.

For the former we provide a proof sketch here, while the full proofs

of both results can be found in the appendix.

Theorem 4.9. If a weighted tournament solution 𝑆 is monotonic and
transfer-monotonic, then MoV𝑆 satisfies cover-consistency.

Proof Sketch Let 𝑆 be a monotonic and transfer-monotonic

weighted tournament solution and consider an 𝑛-weighted tour-

nament 𝑇 = (𝑉 ,𝑤) with alternatives 𝑥,𝑦 ∈ 𝑉 such that 𝑥 covers 𝑦.

We consider four cases consisting of all combinations of 𝑥 and 𝑦

being (not) in the winning set 𝑆 (𝑇 ). Case 1 (𝑥 ∈ 𝑆 (𝑇 ), 𝑦 ∉ 𝑆 (𝑇 )),
follows per definition of MoV𝑆 , and Case 2 (𝑥 ∉ 𝑆 (𝑇 ), 𝑦 ∈ 𝑆 (𝑇 )) is
not possible because 𝑥 covers 𝑦.

We continue with a sketch of Case 3 (𝑥 ∉ 𝑆 (𝑇 ), 𝑦 ∉ 𝑆 (𝑇 )). We

showMoV𝑆 (𝑥,𝑇 ) ≥ MoV𝑆 (𝑦,𝑇 ), which is equivalent to |MoV𝑆 (𝑥,𝑇 ) | ≤
|MoV𝑆 (𝑦,𝑇 ) | since both values are negative, using the following

two steps:

(1) Given aminimumwCRS𝑅𝑦 for𝑦 in𝑇 we construct a reversal

function 𝑅𝑥 with |𝑅𝑥 | ≤ |𝑅𝑦 |.
(2) We prove 𝑥 ∈ 𝑆 (𝑇𝑅𝑥 ), i. e., 𝑅𝑥 is a wCRS for 𝑥 in 𝑇 . This

implies |MoV𝑆 (𝑥,𝑇 ) | ≤ |MoV𝑆 (𝑦,𝑇 ) |.

Figure 5: Illustration of Case 3 in the Thm. 4.10 proof sketch.

Since 𝑅𝑦 is a wCRS for 𝑦 in 𝑇 , we know 𝑦 ∈ 𝑆 (𝑇𝑅𝑦 ). From 𝑇𝑅𝑦
, we

create another tournament (𝑇𝑅𝑦 )mon
using only monotonic and

transfer-monotonic reversals, therefore ensuring 𝑦 ∈ 𝑆 ((𝑇𝑅𝑦 )mon).
Finally, we construct the reversal function 𝑅𝑥 such that there is an

isomorphism 𝜋 between (𝑇𝑅𝑦 )mon
and 𝑇𝑅𝑥

with

𝜋 (𝑥) = 𝑦, 𝜋 (𝑦) = 𝑥, and 𝜋 (𝑧) = 𝑧 for all 𝑧 ∈ 𝑉 \ {𝑥,𝑦}.
This means, 𝑥 in (𝑇𝑅𝑦 )mon

corresponds to 𝑦 in𝑇𝑅𝑥
, and vice versa,

while all other alternatives 𝑧 correspond to themselves. The claim
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𝑥 ∈ 𝑆 (𝑇𝑅𝑥 ) follows from 𝑦 ∈ 𝑆 ((𝑇𝑅𝑦 )mon) and the isomorphism of

the two tournaments, which we construct in the proof.

Case 4 (𝑥 ∈ 𝑆 (𝑇 ), 𝑦 ∈ 𝑆 (𝑇 )) works analogously.
Prop. 4.2, Thm. 4.4, and Prop. 4.6 together with Thm. 4.10 imply

the following:

Theorem 4.10. MoVBO and MoVwUC satisfy cover-consistency.

Unfortunately, SC does not satisfy transfer-monotonicity, and

as proven in Brill et al. [8, Appendix 1] neither monotonicity nor

transfer-monotonicity can be dropped from the condition of the

corresponding result [8, Lemma 4] for unweighted tournaments.

This implies the same for weighted tournaments.

Nevertheless, SC does satisfy cover-consistency. The proof de-

pends on the fact that all cycles containing 𝑥 are in strong correla-

tion with cycles containing alternatives covered by 𝑥 .

Theorem 4.11. MoVSC satisfies cover-consistency.

4.3 Degree-Consistency
The last structural property we consider, is degree-consistency. Brill

et al. [8, Definition 5.7.] used the notion of degree-consistency to

analyze closeness of the ranking naturally induced by the MoV, to

the ranking induced by the Copeland scores. For weighted tourna-

ments, we define weighted degree-consistency indicating closeness

of the ranking naturally induced by the MoV, to the ranking in-

duced by Borda scores, the weighted extension of Copeland scores.

Definition 4.12. For a tournament solution 𝑆 , let 𝑇 = (𝑉 ,𝑤) be an
𝑛-weighted tournament with alternatives 𝑥,𝑦 ∈ 𝑉 . We say𝑀𝑜𝑉𝑆 is
w-degree-consistent / equal-w-degree-consistent / strong-w-degree-
consistent, if

𝛿+
w
(𝑥) (> /= /≥) 𝛿+

w
(𝑦) implies MoV𝑆 (𝑥,𝑇 ) (> /= /≥) MoV𝑆 (𝑦,𝑇 ).

Lemma 4.13. Let 𝑆 be a weighted tournament solution. If MoV𝑆

satisfies w-degree-consistency, MoV𝑆 is cover-consistent.

Degree-consistency is a property we do not desire for any MoV𝑆 ,

as it would seem to consider winning many times in total to be the

indicator of a winning alternative. Fortunately, none of our three

tournament solutions satisfy any weighted degree-consistency,

which we show by providing one counterexample each. Those

counterexample can be found in the appendix.

Proposition 4.14. MoVBO, MoVSC and MoVwUC satisfy neither
w-degree-consistency nor equal-w-degree-consistency. This implies
that they also do not satisfy strong-w-degree-consistency.

5 BOUNDS ON THE MARGIN OF VICTORY
At last, we give bounds on the MoV, i. e., upper bounds for winners

and lower bounds for non-winners. These bounds can give further

context to actually obtained MoV values and allow us to compare

the innate robustness of our tournament solutions. To avoid case

distinctions, we assume𝑚 > 2. Otherwise, ⌈𝑛
2
⌉ reversals are suffi-

cient and necessary for all three studied tournament solutions. In

the following, let 𝑇 = (𝑉 ,𝑤).
For BO, we show that both the upper and lower bound are in

the order of 𝑛 ·𝑚. Both values can therefore get arbitrarily large

with increasing number of voters/duels or candidates/alternatives.

Theorem 5.1. For any𝑛-weighted tournament𝑇 with𝑚 alternatives,
BO winner 𝑎 ∈ BO(𝑇 ) and non-winner 𝑑 ∈ 𝑉 \ BO(𝑇 ), we have

−(𝑛 · (𝑚 − 2)) ≤ MoV(𝑑,𝑇 ) ≤ MoV(𝑎,𝑇 ) ≤
⌊
𝑛 · (𝑚 − 2)

2

⌋
+ 1.

Moreover, both bounds are tight.

The upper and lower bounds for the MoV of an SC winner are

also polynomial in 𝑛 and𝑚, although they do not grow as fast as

the upper bound for BO does.

Theorem 5.2. For any𝑛-weighted tournament𝑇 with𝑚 alternatives,
SC winner 𝑎 ∈ SC(𝑇 ) and non-winner 𝑑 ∈ 𝑉 \ SC(𝑇 ), we have

−
⌈𝑛
2

⌉
· (𝑚 − 1) ≤ MoV(𝑑,𝑇 ) ≤ MoV(𝑎,𝑇 ) ≤ 𝑛 +

⌈
(𝑚 − 2)

2

⌉
.

Moreover, both bounds are tight.

Lastly, we analyse the MoV of wUC. The upper bound is similar

to the upper bound of the MoV for Borda’s rule. It differs from the

BO upper bound by an additional ⌈𝑛
2
⌉. For wUC the upper bound

is also correct for the case𝑚 = 2.

Theorem 5.3. For any𝑛-weighted tournament𝑇 with𝑚 alternatives,
wUCwinner 𝑎 ∈ wUC(𝑇 ) and non-winner 𝑑 ∈ 𝑉 \wUC(𝑇 ), we have

− log
2
(𝑚) ·

⌈
𝑛+1
2

⌉
≤ MoV(𝑏,𝑇 ) ≤ MoV(𝑎,𝑇 ) ≤

⌈
𝑛+1
2

⌉
+
⌊
𝑛· (𝑚−2)

2

⌋
.

Moreover, the upper bound is tight.

6 DISCUSSION
The notion of margin of victory (MoV), introduced by Brill, Schmidt-

Kraepelin, and Suksompong [8] for unweighted tournaments, pro-

vides a generic framework for refining tournament solutions. In

this paper, we extended the notion to weighted tournaments. We

considered Borda’s rule, Split Cycle, and the weighted Uncovered

Set, and analyzed the computational complexity of computing the

MoV and provided structural insight.

There are several natural weighted tournament solutions whose

MoV we did not study, for instance, the Beat Path (or Schulze

method)[20] or the Maximin rule [24].

Any connection between the behavior of a tournament solution

𝑆 , or a class of tournament solutions, and the structural properties

of MoV𝑆 could help with understanding both. In our conducted,

yet omitted, experiments we stuck to the state of the art using

uniform random distributions or transitive preferences. Instead,

one might use a ground truth of strength of the players presented

as a tournament or using systems like Elo ranking or True Skill.

Given this input, analyzing the behavior of 𝑆 and MoV𝑆 or looking

for bounds in expectation seems compelling.

One very practical generalization would be to work with partial

tournaments, relaxing the requirement of 𝑛 comparisons between

all pairs of alternatives. In many natural scenarios like election,

resp. tournament, prognosis or data acquisition settings, in which

a group of voters is asked for pairwise comparing only a certain

subset of alternatives, we have to work with partial information.

An MoV notion for such partial tournaments could be of assistance.

One open question by Brill et al. [8] asks for the number of

distinct minimum reversal sets and its meaning. This of course

might also be interesting for weighted tournaments.
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