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ABSTRACT
Electoral control refers to attacking elections by adding, deleting,

or partitioning voters or candidates [3]. Hemaspaandra et al. [16]

discovered, for seven pairs (T ,T ′) of seemingly distinct standard

electoral control types, that T and T ′
are identical: For each input

𝐼 and each election system E, 𝐼 is a “yes” instance of both T and T ′

under E, or of neither. Surprisingly, this had gone undetected even

as the field was score-carding how many standard control types

election systems were resistant to; various “different” cells on such

score cards were, unknowingly, duplicate effort on the same issue.

This naturally raises the worry that other pairs of control types are

also identical, and so work still is being needlessly duplicated.

We determine, for all standard control types, which pairs are, for

elections whose votes are linear orderings of the candidates, always

identical. We show that no identical control pairs exist beyond the

known seven. For three central election systems, we determine

which control pairs are identical (“collapse”) with respect to those

particular systems, and we explore containment/incomparability

relationships between control pairs. For approval voting, which has

a different “type” for its votes, Hemaspaandra et al.’s [16] seven

collapses still hold. But we find 14 additional collapses that hold

for approval voting but not for some election systems whose votes

are linear orderings. We find one additional collapse for veto and

none for plurality. We prove that each of the three election sys-

tems mentioned have no collapses other than those inherited from

Hemaspaandra et al. [16] or added here. But we show many new

containment relationships that hold between some separating con-

trol pairs, and for each separating pair of standard control types

classify its separation in terms of containment (always, and strict

on some inputs) or incomparability.

Our work, for the general case and these three important election

systems, clarifies the landscape of the 44 standard control types,

for each pair collapsing or separating them, and also providing

finer-grained information on the separations.
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1 INTRODUCTION
Suppose Professor Fou specializes in complexity classification, and

for each problem that comes through the door tries to prove it com-

plete or not for Fou’s pet list of classes: NP, coNP, and cocoNP. So

for years problems from computational social choice or elsewhere

might come in the door. And Fou might separately prove them

complete for NP and cocoNP, and might give evidence suggesting

coNP-completeness is wildly unlikely. Most CS academics would

be horrified at the situation and would say: How can Fou not have

stepped back and tried to see the big picture—and realized that

NP and cocoNP are the same class, and thus that Fou was doing

duplicate work! This seems at first a comic situation, yet a more

subtle cousin of it has been in play in the computational social

choice world for many years.

Let us explain what we mean by that. Control and manipula-

tion are the two families of attack types that were the focus of the

seminal papers of Bartholdi et al. [1, 2, 3]. The various control at-

tacks model different attempts to affect the outcome of elections by

changes to their structure, namely, via adding, deleting, or partition-

ing voters or candidates. The control attack types also vary as to

whether the goal is to make the focus candidate a winner (perhaps

tied; this is known as the nonunique-winner (NUW) or cowinner

setting), or to be a winner who is not tied with anyone else (this is

known as the unique-winner (UW) setting), or to not (again regard-

ing one of those two variants regarding ties) win. Over time, there

has been something of a race or contest in computational social

choice to find election systems for which a very large number of

control types have the property that it is NP-hard to determine on

a given input whether that type of control can succeed (see the

discussion in our Related Work section).

But what if two (compatible, i.e., having the same input type)

control types were in fact the same? That is, what if for every

election system (whose votes are linear orders over the candidates)

and on every input, despite the control types seeming to model

different actions, in fact either for both control types the answer is
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yes (i.e., for each of the two control types, there is a way to achieve

the goal of making the focus candidate win (or lose)), or for both

the answer is no (i.e., for each of the two control types, there is

no way to achieve the goal of making the focused candidate win

(or lose)). We will say that the types “collapse” in this case. Then

the two types for all practical purposes are the same. In such a case,

all research that separately studied the two types—for example to

determine their computational complexity for some election system

(over linear orders)—would be doing the same work twice. As our

abstract mentioned, surprisingly, it has recently been observed

by Hemaspaandra et al. [16] that there are (at least) seven such

collapsing pairs of control types. In fact, that paper shows that four

control types pairwise collapse—yielding six collapsing pairs—and

one other pair also collapses.

The natural question this raises is whether there are other undis-

covered collapses—either ones that hold for all election systems

or, failing that, ones that hold when our focus is limited to one of

the most important election systems. We completely resolve that

question, both as to whether any additional collapses beyond the

seven hold in general—we show that the remaining hundreds of

pairs all separate—and as to the major election systems plurality,

veto, and approval—for two of which we do discover additional

collapses (one additional collapsing pair for veto and 14 additional

collapsing pairs for approval) and for all three of which we then

separate all remaining pairs. The universe of control types we study

is that of the 22 “standard” control types used by Hemaspaandra

et al. [16] and other papers, each studied in both the NUW and the

UW winner model; so 44 control types in total.

Why is this important? Collapses reveal that seemingly different

control types are the same ones in disguise. So general collapses

give a clearer picture of the world of control types, and can help

us avoid duplicate work.
1
Separations on the other hand assure us

that the types differ.

Since (general-case) collapse is defined as universal over elec-

tion systems, its negation (separation) is existential over election

systems, and as this paper itself shows, specific systems may have

additional collapses. Thus it is important for the field, as to its

understanding of control types, to find the collapse/separation be-

havior for important election systems, and we completely resolve

this for three central ones: plurality, veto, and approval. We hope

that future papers by others will study additional systems or, even

better, will (as we do in Section 3.3) define sufficient conditions that

in one fell swoop provide collapses for groups of election systems.

Separations themselves can be refined, for two (compatible) con-

trol types, if on each input (except with no focus candidate specified

in the input) we consider for each of the two control types the set

of all candidates 𝑐 such that if 𝑐 is the focal candidate, the given

control action can succeed. It might be the case that for the first

control type on all inputs that set is a subset of that set for the

second control type; or it could always be a superset; or neither

of these cases could hold. Of course, if the first two cases hold

1
Such duplicate work has already occurred extensively. Each time a paper built

polynomial-time algorithms for both elements of a collapsing pair of control types, or

proved NP-completeness for both elements, the paper did needless work on one ele-

ment of the pair, since the sets involved in such a pair are the same set and so perforce

they are of identical complexity. As just a few of the many papers that would have been

saved a bit or a lot of work by either the seven general collapses of [16] or the additional

concrete-system collapses established in the present paper, we mention [13, 17, 21, 23].

simultaneously, that is the same as the two types collapsing. For

all our control pairs that separate, we refine our separations into
the three cases just described: “always ⊆, and on some instance

⊊”; “always ⊇, and on some instance ⊋”; and neither of the above

(i.e., “incomparable”). We find, for various separating pairs, such

containment relationships, and not all are UW and NUW variants

of each other (though UW and NUW always have an obvious ⊆ or

⊇ relation; which one of those holds depends on whether the type

is “constructive” (⊆ holds) or “destructive” (⊇ holds); we will refer

back to this fact later as (∗∗)).
As to proof techniques, for separations, since the number of pairs

is huge, when we can we build examples that simultaneously yield

many separations. Some of our separation constructions are ob-

tained by computer-aided search. (For information on reproducibil-

ity, verifications, and availability of code, see Additional Note 1,

which as described in the next paragraph is available in our public

repository.) Some of our separation results on the “general-case”

tables are obtained by inheritance from a specific-case table. As to

new collapses, some are achieved by direct arguments that exploit

some feature of the setting, and most are proven via an axiomatic-

sufficient-condition approach. Also, some of the collapse (equality)

entries in our tables for specific election systems are inherited from

the general-case tables.

Big picture, this paper completely resolves the extent to which

control-type pairs collapse or fail to collapse, both in general (i.e.,

universally quantified over election systems) and with regard to

plurality, veto, and approval elections. We include four proofs in the
main body. All regard approval, as approval has the most collapses
among the three important election systems we studied, and the proofs
regarding approval are quite varied. The other proofs can be found
in our technical report version [6]. Table 1 is included in this paper,
and all other tables referenced or mentioned in this paper—even ones
mentioned as “our tables” or “the tables”—can be found, with the same
table numberings as referenced here, in that technical report. Also,
to support reproducibility, and to aid researchers who might wish
to carry our study to other cases, we have made all our computer-
search programs, and their inputs and outputs, publicly available
in an online repository (https://github.com/MikeChav/SCT_Code).
Each “Additional Note” referenced in this paper can be found in that
repository’s pdf file of Additional Notes for this paper.

2 PRELIMINARIES
For consistency, some of the standard definitions that appear in

this section are taken, at times verbatim, from [16]. An election

comprises a finite set 𝐶 of candidates (each identified uniquely

by a name
2
) and a finite collection 𝑉 of votes over 𝐶 . Except in

one section of the paper (where we will study a system using a

different vote type, known as approval vectors), we throughout

this paper take the “type” of a vote as being a linear ordering over

2
By allowing names we potentially allow the names to be nefariously exploited by

election systems. However, that model as to the use of names in fact makes our

collapses and containments stronger than if those results were in a model where

(candidate-)neutrality is assumed/required (the same applies to all collapses from

Hemaspaandra et al. [16], as those results are in this samewith-namesmodel). Although

use of names would make our separations weaker, we address that by having ensured

that every separation we establish in this paper is achieved via a (candidate-)neutral

election system. In contrast, as mentioned in our Related Work section, the one separa-

tion proven in Hemaspaandra et al. [16] uses a system that is not (candidate-)neutral.
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𝐶 (note: linear orderings—complete, transitive, antisymmetric bi-

nary relations—are inherently tie-free). A simple example of a 3-

candidate, 4-voter election thus is 𝐶 = {𝑎, 𝑏, 𝑐} and the votes being

𝑎 > 𝑏 > 𝑐 , 𝑎 > 𝑏 > 𝑐 , 𝑎 > 𝑐 > 𝑏, and 𝑏 > 𝑐 > 𝑎 (see Additional

Note 2 for additional discussion of the model used for votes).

As is standard in computational social choice, an election system
E maps an election (a pair (𝐶,𝑉 )) to a (possibly nonstrict) subset
of 𝐶 (the set of winners). As is often done in computational social

choice papers, we do not forbid the case of having no winners;

see Hemaspaandra et al. [16, Footnote 3] for a discussion of why

allowing that is natural.

Studying electoral control from a computational perspective was

initiated by Bartholdi et al. [3]. Their notion, known as constructive

control, focuses on making a particular candidate a winner by some

“control” action. Hemaspaandra et al. [17] define the natural variants

of those where instead the goal is to prevent a particular candidate
from winning. This is known as destructive control.

The control actions are: partition of voters, partition of can-

didates, run-off partition of candidates, deleting voters, deleting

candidates, adding voters, and adding candidates (both limited and

unlimited). For each partition-based control type, we have two

subvariants to handle the outcome of the subelections: in the TE

(ties eliminate) subvariant, a candidate proceeds to the final round

exactly if that candidate is the unique winner of that subelection,

and in the TP (ties promote) subvariant, every winner of a subelec-

tion (including nonunique winners) proceeds to the final round.

Hemaspaandra et al. [16] suggest it is more natural to study the TE

subvariant when dealing with the unique-winner model and the TP

subvariant when dealing with the nonunique-winner model. Since

our goal is to uncover all possible collapses and separations (within

the standard control types and their variants), we consider both TE

and TP subvariants, regardless of the winner model.

Definition 1 (see Hemaspaandra et al. [16] and Additional

Note 3). Let E be an election system.

(1) In the constructive control by adding candidates problem
for E (denoted by E-CC-AC-NUW), we are given two disjoint
sets of candidates𝐶 and𝐴,𝑉 a collection of votes over𝐶 ∪𝐴, a
candidate 𝑝 ∈ 𝐶 , and a nonnegative integer 𝑘 . We ask if there
is a set 𝐴′ ⊆ 𝐴 such that (i) ∥𝐴′∥ ≤ 𝑘 and (ii) 𝑝 is a winner of
E election (𝐶 ∪𝐴′,𝑉 ).

(2) In the constructive control by unlimited adding candi-
dates problem for E (denoted by E-CC-UAC-NUW), we are
given two disjoint sets of candidates 𝐶 and 𝐴, 𝑉 a collection of
votes over 𝐶 ∪𝐴, and a candidate 𝑝 ∈ 𝐶 . We ask if there is a
set 𝐴′ ⊆ 𝐴 such that 𝑝 is a winner of E election (𝐶 ∪𝐴′,𝑉 ).

(3) In the constructive control by deleting candidates problem
for E (denoted by E-CC-DC-NUW), we are given an election
(𝐶,𝑉 ), a candidate 𝑝 ∈ 𝐶 , and a nonnegative integer 𝑘 . We
ask if there is a set 𝐶′ ⊆ 𝐶 such that (i) ∥𝐶′∥ ≤ 𝑘 , (ii) 𝑝 ∉ 𝐶′,
and (iii) 𝑝 is a winner of E election (𝐶 −𝐶′,𝑉 ).

(4) In the constructive control by adding voters problem for E
(denoted by E-CC-AV-NUW), we are given a set of candidates
𝐶 , two collections of votes,𝑉 and𝑊 , over𝐶 , a candidate 𝑝 ∈ 𝐶 ,
and a nonnegative integer 𝑘 . We ask if there is a collection
𝑊 ′ ⊆ 𝑊 such that (i) ∥𝑊 ′∥ ≤ 𝑘 and (ii) 𝑝 is a winner of E
election (𝐶,𝑉 ∪𝑊 ′).

(5) In the constructive control by deleting voters problem for E
(denoted by E-CC-DV-NUW), we are given an election (𝐶,𝑉 ),
a candidate 𝑝 ∈ 𝐶 , and a nonnegative integer 𝑘 . We ask if
there is a collection 𝑉 ′ ⊆ 𝑉 such that (i) ∥𝑉 ′∥ ≤ 𝑘 and (ii) 𝑝
is a winner of E election (𝐶,𝑉 −𝑉 ′).

(6) In the constructive control by partition of voters problem
for E, in the TP or TE tie-handling rule model (denoted by
E-CC-PV-TP-NUW or E-CC-PV-TE-NUW, respectively), we
are given an election (𝐶,𝑉 ), and a candidate 𝑝 ∈ 𝐶 . We ask
if there is a partition3 of 𝑉 into 𝑉1 and 𝑉2 such that 𝑝 is a
winner of the two-stage election where the winners of subelec-
tion (𝐶,𝑉1) that survive the tie-handling rule compete (with
respect to vote collection 𝑉 ) along with the winners of subelec-
tion (𝐶,𝑉2) that survive the tie-handling rule. Each election
(in both stages) is conducted using election system E.

(7) In the constructive control by run-off partition of can-
didates problem for E, in the TP or TE tie-handling rule
model (denoted by E-CC-RPC-TP-NUW or E-CC-RPC-TE-
NUW, respectively), we are given an election (𝐶,𝑉 ), and a
candidate 𝑝 ∈ 𝐶 . We ask if there is a partition of𝐶 into𝐶1 and
𝐶2 such that 𝑝 is a winner of the two-stage election where the
winners of subelection (𝐶1,𝑉 ) that survive the tie-handling
rule compete (with respect to vote collection 𝑉 ) against the
winners of subelection (𝐶2,𝑉 ) that survive the tie-handling
rule. Each election (in both stages) is conducted using election
system E.

(8) In the constructive control by partition of candidates
problem for E, in the TP or TE tie-handling rule model (de-
noted by E-CC-PC-TP-NUW or E-CC-PC-TE-NUW, respec-
tively), we are given an election (𝐶,𝑉 ), and a candidate 𝑝 ∈ 𝐶 .
We ask if there is a partition of 𝐶 into 𝐶1 and 𝐶2 such that
𝑝 is a winner of the two-stage election where the winners of
subelection (𝐶1,𝑉 ) that survive the tie-handling rule compete
(with respect to vote collection 𝑉 ) against all candidates in
𝐶2. Each election (in both stages) is conducted using election
system E.

There are 11 control “types” listed above (applied regarding

generic election system E). For each, we can change “is a winner”

to “is an untied (i.e., unique) winner”; for those 11 variants, we

change the “-NUW” into “-UW.” Thus we have 22 control types.

Those 22 are all trying to make the focus candidate win. And so

they are all spoken of as “constructive” control types (thus the “CC”

in their naming strings). Finally, for each of those now 22 control

types, we can ask whether one can ensure that the focus candidate

is not a winner or not a unique winner; those are known as the

“destructive” control variants, and in the names of those, the CC is

replaced by a DC, e.g., E-DC-AC-UW.

We thus have 44 total types of control, which we will view as

the “standard” control types. We thus have

(
44

2

)
= 946 pairs of

control types. Fortunately, 624 of those pairs are incompatible—the

two control types have different input fields from each other
4
and

3
A partition of a collection𝑉 is a pair of collections𝑉1 and𝑉2 such that𝑉1 ∪𝑉2 = 𝑉 ,

where ∪ denotes multiset union. A partition of a set 𝐶 is a pair of sets 𝐶1 and 𝐶2

such that𝐶1 ∪𝐶2 = 𝐶 and𝐶1 ∩𝐶2 = ∅, where ∪ and ∩ are standard set union and

intersection.

4
So for example CC-PC-TP-NUW and CC-RPC-TE-UW are compatible, but CC-PC-

TP-NUW and CC-AV-NUW are not, since CC-AV-NUW has a nonnegative integer
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so comparing them would not even make sense—and so we will

exclude them from our study. So we have “only” 322 pairs to focus

on in our study. Table 2 shows the five compatibility equivalence

classes that the 44 types partition into.

We often when speaking of control types will be speaking of

the control model itself, and when doing so, we generally do not

include the “E-” prefix. In some sense, we view, e.g., CC-AC-NUW

as a control type (model)—one among the 44 standard such models—

and we view E-CC-AC-NUW as the set of input strings that are “yes”
instances, for election system E, under that model of control.

Keeping that in mind, we now define precisely what we mean by

two (compatible) control types collapsing or separating, and then

introduce a function approach that will allow us to explore in a

more refined way the nature of the separations. Let E be an election

system (e.g., Plurality) and let T and T ′
be two (compatible) control

types from our 44 standard ones (e.g., CC-AC-NUW and CC-AC-

UW). Then if E-T = E-T ′
we say that the control types T and T ′

collapse (for election system E), and if E-T ≠ E-T ′
we say that

the control types T and T ′
separate (for election system E). We

will also use the terms collapse and separate for a more general

case, namely, the one of quantifying universally over all election

systems whose votes are linear orders. When speaking in that case,

we will say that two (compatible) control types from among our 44

collapse if the two control types collapse for every election system

E whose vote type is linear orders, and otherwise we will say that

the control types separate.

As an example, if we fix the election system E to be plurality,

we note that in the 3-candidate, 4-voter election example given

at the beginning of this section 𝑎 is a unique winner. Yet, we

could make 𝑏 a unique winner by deleting candidate 𝑎, hence we

have (𝐶,𝑉 ,𝑏, 1) ∈ Plurality-CC-DC-UW. Also, since a unique win-

ner is a winner in the nonunique-winner model as well, we have

(𝐶,𝑉 ,𝑏, 1) ∈ Plurality-CC-DC-NUW. (In this paper we will not fo-

cus on encoding details, since they are not important to our study.)

Control types that separate can do so in different ways, some

of which reflect containment relationships. In order to be able to

seek such relationships, we define the three different ways that

two (compatible) separating control types, T and T ′
, for E can

separate. To support this refinement, we introduce a function model.

In particular, we will define functions that, for a given control type,

map from inputs (that differ from those used so far for that control

type only in not having a focus candidate specified) to the set of

all candidates 𝑐 such that if 𝑐 is made the focus candidate for that

input, successful control is possible. In a bit more detail: Each of our

control types has certain inputs, and all include a focus candidate, 𝑐 .

Let us for any of our 44 control types, T , refer to an input to it,

except with the field containing the focus candidate removed, as

the reduced form of that input; and if we wanted to add back the

name of a particular candidate to be the focus candidate, we will

say that is inflating the reduced input by that candidate. For any of

our 44 control types, T , and any election system E, we define the
function 𝑓E-T to be the function that, for a given reduced input 𝐼 ,

outputs the set of all candidates 𝑐 such that 𝐼 inflated by 𝑐 belongs

to the set E-T . For example, given as input (𝐶,𝑉 , 3), the output

field 𝑘 . Throughout this paper, whenever we speak of pairs of control types, we refer

only to compatible pairs (even if that is not explicitly stated, although for emphasis

we often do state it).

of 𝑓E-DC-DV-NUW is the set of all candidates 𝑐 that can by deleting

less than or equal to three votes be prevented from being a winner.

Clearly, two (compatible) control types collapse exactly if their

thus-defined functions are equal. But for two separating (com-

patible) control types, there are three different ways they can be

separated. One way is if, for each reduced input 𝐼 : (a) 𝑓E-T (𝐼 ) ⊆
𝑓E-T′ (𝐼 ) and (b) for some reduced input 𝐼 ′, 𝑓E-T′ (𝐼 ′)−𝑓E-T (𝐼 ′) ≠ ∅.
We will (in a slight abuse of notation) refer to the case where (a)

holds as the “⊆” case, and the case where both (a) and (b) hold as

the “⊊” case. The “⊇” and “⊋” cases are analogously defined. If the

two (compatible) types separate but neither the “⊊” case nor the “⊋”
case holds, we will say the two types are incomparable: each will

sometimes have successful focus candidates that the other does not.

If both directions of noncontainment can be witnessed by the same

reduced input, we will say the two types are strongly incomparable,

i.e., there is a reduced input 𝐼 such that 𝑓E-T (𝐼 ) − 𝑓E-T′ (𝐼 ) ≠ ∅ and

𝑓E-T′ (𝐼 ) − 𝑓E-T (𝐼 ) ≠ ∅. These notions are relative to each specific

election system, E.
For the general case—where our collapses are universally quan-

tified over all election systems whose vote type is linear orders—

we define three increasingly strong types of incomparability. The

weakest incomparability notion is simply that for at least one such

election system E, for some reduced input 𝐼 , 𝑓E-T (𝐼 )− 𝑓E-T′ (𝐼 ) ≠ ∅
holds, and for at least one such election system E′

, for some re-

duced input 𝐼 ′, 𝑓E′
-T′ (𝐼 ′) − 𝑓E′

-T (𝐼 ′) ≠ ∅ holds. (Note: We will

state no weak incomparability results in this paper, since whenever

we obtained a weak incomparability result we in fact were able

to even establish incomparability.) We will call this being weakly

incomparable. We say the pair is incomparable if there is some elec-

tion system, over linear orders, in which the pair is incomparable

in the sense of the previous paragraph. And we will say the pair is

strongly incomparable if there is some election system, over linear

orders, in which the pair is strongly incomparable in the sense of

the previous paragraph. For the general case, we will say “⊆” (resp.,
“⊇”) holds if for every election system E whose vote type is linear

orders, the “⊆” (resp., “⊇”) case for E, as defined above, holds.

We now cover, and give brief reference labels to (though we

at times may use these inheritances tacitly when the use is clear),

some collapse, containment, and separation inheritances that hold.

General-case collapse, ⊆, and ⊇ results imply, for each election

system over linear orders, resp., collapse, ⊆, and ⊇ results (let us

shorthand that fact as I1). If a given general case result of this type

happens to in addition hold for each election system (not merely

those over linear orders), we will refer to that as additionally being

an I1
+
case. Because their particular proofs do not ever draw on

the vote types, the seven general-case collapses of Hemaspaandra

et al. [16], and also our general containment results of Theorem 2,

hold even as I1
+
cases. As to separation inheritances, if for some

election system E over linear orders and some reduced input 𝐼 we

have that 𝑓E-T′ (𝐼 ) − 𝑓E-T (𝐼 ) ≠ ∅ (as, crucially, is always the case if

we have that for E the ⊊ relation holds between T and T ′
) and we

in addition happen to have that in the general case the ⊆ relation

is known to hold between T and T ′
, then we may conclude that

⊊ holds in our general case; the analogous claim holds for the ⊋
case, and we will refer to either of these, when they hold, as an I2

inheritance case. Incomparability in an election system (over linear
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orders) implies general-case incomparability (we will refer to this

as I3), and strong incomparability in an election system (over linear

orders) implies general-case strong incomparability (I3
∗
).

3 RESULTS
In the following three subsections, for the general case and for the

cases of plurality, veto, and approval voting, we completely deter-

mine which pairs of (compatible) standard control types collapse,

and which separate. Beyond that, we refine every separation into

one of the three disjoint cases: ⊊, ⊋, and incomparability.

We discover a number of previously unknown collapses (for

two of the three specific systems) and also for many noncollapsing

control-type pairs establish new containments in one direction.

Regarding the former, for veto we discover a new collapsing pair and
for approval we extend a four-control type collapse by Hemaspaandra
et al. [16] to a six-control type collapse, and we find five additional
collapsing pairs, for a total of 14 new collapsing control-type pairs for
approval. Overall, we establish that, for the 4 · 322 = 1,288 cases we
study (all compatible pairs for each of the four cases), no containments
or collapses exist other than those provided by either Hemaspaandra
et al. [16] or this paper.

3.1 The General Case and Plurality
We show that the only (compatible) pairs that collapse in general (i.e.,
that collapse for every election system) are the seven found by Hema-
spaandra et al. [16], namely, for every election system E, E-DC-RPC-
TE-NUW = E-DC-RPC-TE-UW = E-DC-PC-TE-NUW = E-DC-
PC-TE-UW (six pairs) and E-DC-RPC-TP-NUW = E-DC-PC-TP-
NUW (one pair). Surprisingly, we will be able to do so using just

constructions about plurality elections, combined with uses of in-

heritance.

In a plurality election, for each vote where a particular candi-

date is ranked first, that candidate receives a point, and a winner

is a candidate with the highest number of points among all the

candidates (naturally, there can be multiple winners). The votes

in plurality elections are linear orders. Recall that by the “general

case,” we mean the general case with respect to elections where the

votes are linear orders. Thus to separate two control types in the

general case, it certainly suffices to show that they separate under

plurality, as such separations inherit back to the general case via

the I3 and I2 inheritance frameworks from our preliminaries (see

also Additional Note 4). The reason we know that no separation

for the general case is missed is that our results show that plurality

has not a single ⊆, ⊇, or collapse result not also possessed by the

general case; so our I2 cases are valid, and every general-case ⊊, ⊋,
or incomparability (or even strong incomparability) that holds is

yielded by our inheritances.

Let us now turn our attention to the two new general-case con-

tainments shown in this paper (these containments are in addition

to the obvious ones, noted at location (∗∗) of the introduction,

about two control types that only differ in their winner model) and

also argue that both are strict in the general case (by which, recall,

we mean that there is at least one election system under which the

containment is not an equality). The following two containments

apply to all vote types (not just linear orders; and we argue in Sec-

tion 3.3 that the collapses by Hemaspaandra et al. [16] also apply

to all vote types).

Theorem 2. Let E be an election system. For each T ∈ {DC-RPC-
TP-UW,DC-PC-TP-UW}, E-T ⊆ E-DC-RPC-TE-NUW.

For both containments above, Table 5 contains a pointer to a

separation witness in Table 4 that shows that the containment is not

an equality in the general case (i.e., that for some election system—

in fact, plurality—the containment is strict). More generally, Table 5,

for each compatible pair of control types T and T ′
, gives us an

election witnessing Plurality-T − Plurality-T ′ ≠ ∅ if that holds,

and gives an election witnessing Plurality-T ′ − Plurality-T ≠ ∅ if

that holds (and if both hold Table 5 gives witnesses for each).

Some of the constructions in Table 4 are quite simple. For ex-

ample, with 𝐶 = {𝑎, 𝑏} and 𝑉 = {𝑎 > 𝑏} (denoted by “Plur.3”) we

clearly get incomparability between all 144 pairs of partition types

where one type is constructive and the other is destructive. (This

holds since in that election, under every constructive or destruc-

tive partition-control action, 𝑎 is the unique winner and 𝑏 is not

a winner.) However, showing separations for every pair that can

be separated is no trivial matter. Some of our separation examples

for plurality are quite large, with up to 18 votes and up to seven

candidates. The search for those examples was computer-aided and

extensive.

3.2 Veto
In a veto election, for each vote where a candidate is not ranked last,

that candidate receives a point, and a winner is a candidate with the

highest number of points among all the candidates (naturally, there

can be multiple winners). For example, if𝐶 = {𝑎, 𝑏, 𝑐} and𝑉 = {𝑎 >

𝑏 > 𝑐, 𝑐 > 𝑎 > 𝑏}, then𝑏 and 𝑐 each receive one point, but 𝑎 receives
two and wins.We now establish every equality and containment that
holds for veto elections but was not established by one of the results of
Hemaspaandra et al. [16]. For all other veto cases, we have constructed
counterexamples. Some of those counterexamples were obtained

through computer search.

Theorem 3. Veto-DC-PV-TE-UW = Veto-DC-PV-TE-NUW.

Theorem 4. For each T ∈ {DC-PV-TP-UW, DC-PV-TP-NUW},
Veto-T ⊊ Veto-DC-PV-TE-NUW.

Theorem 5. For each T ∈ {DC-RPC-TE-NUW, DC-RPC-TP-
UW,DC-RPC-TP-NUW,DC-PC-TP-UW},Veto-T ⊊ Veto-DC-PV-
TE-NUW.

3.3 Approval Voting
Approval voting differs from the other election systems discussed

so far in this paper as to its vote type. In an approval election (𝐶,𝑉 ),
each vote is a bit-vector of length ∥𝐶 ∥, with each bit being associ-

ated with a candidate. If a candidate’s bit is 1, then that candidate

is approved by that vote. In approval voting, the winner set is com-

posed of each candidate 𝑐 such that no other candidate is approved

by strictly more votes than 𝑐 is. We will sometimes speak of the

“score” of a candidate in the rest of this section. In the context of

approval, the score of a candidate in an election is the number of

votes that approve that candidate (and as noted above, the set of

winners are those candidates with maximal score).
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Although the collapses shown by Hemaspaandra et al. [16] were

stated for election systems where votes are linear orders, we note

that in their proof they do not use the vote type and thus those

collapses hold regardless of what type of votes the election system

is over. Thus we have the following corollary.

Corollary 6 (see [16]). (1) Approval-DC-RPC-TE-
UW = Approval-DC-RPC-TE-NUW = Approval-DC-PC-TE-
NUW = Approval-DC-PC-TE-UW. (2) Approval-DC-RPC-TP-
NUW = Approval-DC-PC-TP-NUW.

In this section, we prove a number of new collapses and inclusions
that hold for approval voting. Some of these results draw on pre-

viously established immunity
5
arguments that draw on axioms

satisfied by approval voting, thereby allowing us to generalize our

results. Other results are provided by direct arguments. Our direct

arguments often rely on the fact that, since the votes are bit-vectors,

a candidate’s score in an election is independent of the other candi-

dates present in the election. We will start by discussing the results

that draw on the aforementioned immunity arguments.

Let us first consider the Weak Axiom of Revealed Preferences

(WARP), which requires that 𝑝 winning an election (𝐶,𝑉 ) implies

that 𝑝 remains awinner of every election (𝐶′,𝑉 ) for which 𝑝 ∈ 𝐶′ ⊆
𝐶 [25]. The “unique” version of this axiom (Unique-WARP) only

differs in that it requires 𝑝 to be a unique winner, i.e., it requires that

𝑝 uniquely winning in an election (𝐶,𝑉 ) implies that 𝑝 uniquely

wins in each election (𝐶′,𝑉 ) for which 𝑝 ∈ 𝐶′ ⊆ 𝐶 . [17] notes

that any election system that satisfies Unique-WARP is immune to

several types of control, namely to (i) destruc. control by partition of

candidates and run-off partition of candidates (under both TP and

TE tie-handling rules) in the UW model, and (ii) destruc. control

by deleting candidates in the UW model. Using this, our proofs are

able to pinpoint the exact content of the relevant sets and establish

the following results.
6

Theorem 7. Let E be an election system satisfying Unique-WARP.
Then E-DC-PC-TP-UW = E-DC-PC-TE-UW (= {(𝐶,𝑉 , 𝑝) | 𝑝 ∈ 𝐶

and 𝑝 is not a unique winner of E election (𝐶,𝑉 )}).

Proof. Fix any E that satisfies Unique-WARP. Let E-T1 = E-DC-
PC-TP-UW and let E-T2 = E-DC-PC-TE-UW. Consider the two

sets 𝐴E = {(𝐶,𝑉 , 𝑝) | 𝑝 ∈ 𝐶 and 𝑝 is a unique winner of E election

(𝐶,𝑉 )} and 𝐵E = {(𝐶,𝑉 , 𝑝) | 𝑝 ∈ 𝐶 and 𝑝 is not a unique winner

of E election (𝐶,𝑉 )}. These sets form a partition of 𝑌 = {(𝐶,𝑉 , 𝑝) |
𝑝 ∈ 𝐶}, so of course 𝑌 = 𝐴E ∪ 𝐵E . Clearly we also have that

E-T1 ⊆ 𝑌 and that E-T2 ⊆ 𝑌 . We will argue that E-T1 = 𝐵E = E-T2.
Since E, like all systems satisfying Unique-WARP, is immune to

both control types in the theorem statement, we have (recall that

5
In the unique-winner model, we say an election system is immune to a particular type

of control if the given type of control can never change a candidate from not uniquely

winning to uniquely winning (if the control type is constructive) or change a candidate

from uniquely winning to not uniquely winning (if the control type is destructive)

(Hemaspaandra et al. [17], which clarified a slightly flawed immunity definition of

Bartholdi et al. [3]). In the nonunique-winner model, we say an election system is

immune to a particular type of control if the given type of control can never change a

nonwinner to a winner (if the control type is constructive) or change a winner to a

nonwinner (if the control type is destructive).

6
Theorem 7 certainly could also include E-DC-RPC-TE-UW in the equality. However,

including that in the theorem would make little sense, since E-DC-RPC-TE-UW =

E-DC-PC-TE-UW does not rely on Unique-WARP, but in fact holds for all election
systems in light of Hemaspaandra et al. [16] and our comment in the paragraph before

Corollary 6.

both of these types are destructive types) that E-T1 ∩𝐴E = ∅ and

E-T2 ∩ 𝐴E = ∅, and thus it holds that E-T1 ⊆ 𝐵E and E-T2 ⊆
𝐵E . Fix (𝐶,𝑉 , 𝑝) ∈ 𝐵E . Then the partition (∅,𝐶) witnesses both
(𝐶,𝑉 , 𝑝) ∈ E-T1 and (𝐶,𝑉 , 𝑝) ∈ E-T2, since in both cases the final

round will simply be (𝐶,𝑉 ) and we know that since (𝐶,𝑉 , 𝑝) ∈ 𝐵E ,
𝑝 will not be a unique winner of the final round. ❑

Theorem 8. Let E be an election system that satisfies Unique-
WARP. Then the following hold. (1) E-DC-DC-UW ⊆ E-DC-DV-
UW. (2) E-DC-DC-NUW ⊆ E-DC-DV-UW.

Theorem 9. Let E be an election system that satisfies WARP. Then
E-DC-DC-NUW ⊆ E-DC-DV-NUW.

Theorem 10. Let E be an election system that satisfies Unique-
WARP. Then E-CC-PC-TP-UW = E-CC-RPC-TP-UW.

Proof. We use an argument similar to that of Thm. 7. Fix any E
that satisfies Unique-WARP. Let E-T1 = E-CC-PC-TP-UW and

let E-T2 = E-CC-RPC-TP-UW. Consider the two sets 𝐴E =

{(𝐶,𝑉 , 𝑝) | 𝑝 ∈ 𝐶 and 𝑝 is a unique winner of E election (𝐶,𝑉 )} and
𝐵E = {(𝐶,𝑉 , 𝑝) | 𝑝 ∈ 𝐶 and 𝑝 is not a unique winner of E election

(𝐶,𝑉 )}. These sets form a partition of 𝑌 = {(𝐶,𝑉 , 𝑝) | 𝑝 ∈ 𝐶}, so of
course 𝑌 = 𝐴E ∪ 𝐵E . Clearly we also have that E-T1 ⊆ 𝑌 and that

E-T2 ⊆ 𝑌 . We will show that E-T1 = 𝐴E = E-T2. Hemaspaandra

et al. [17] show that any election system that satisfies Unique-WARP

is, under the TP tie-handling rule in the unique-winner model, im-

mune to constructive control by both run-off partition of candidates

and partition of candidates. Thus E-T1∩𝐵E = ∅ and E-T2∩𝐵E = ∅,
and it holds that E-T1 ⊆ 𝐴E and E-T2 ⊆ 𝐴E . Fix (𝐶,𝑉 , 𝑝) ∈ 𝐴E .
Then the partition (∅,𝐶) witnesses that (𝐶,𝑉 , 𝑝) ∈ E-T1 as the final
round will simply be (𝐶,𝑉 ) and we know that since (𝐶,𝑉 , 𝑝) ∈ 𝐴E ,
𝑝 will be the unique winner of the final round. Additionally, the

partition (∅,𝐶) also witnesses that (𝐶,𝑉 , 𝑝) ∈ E-T2 as no one will

proceed from subelection (∅,𝑉 ), and only 𝑝 will proceed from sub-

election (𝐶,𝑉 ) (since (𝐶,𝑉 , 𝑝) ∈ 𝐴E ), and 𝑝 must be the unique

winner of ({𝑝},𝑉 ), the final round (since E satisfies Unique-WARP

and 𝑝 is the unique winner of E election (𝐶,𝑉 )). ❑

We can build on Thm. 10 to get additional containments.

Corollary 11. Let E be an election system that satisfies Unique-
WARP. Then, for each T ∈ {CC-PC-TE-UW, CC-PC-TE-NUW,
CC-RPC-TE-UW, CC-RPC-TE-NUW, CC-PV-TE-UW, CC-PV-TE-
NUW, CC-PV-TP-UW, CC-PV-TP-NUW}, it holds that E-CC-PC-
TP-UW ⊆ E-T (equivalently, E-CC-RPC-TP-UW ⊆ E-T ).

Since approval voting satisfies Unique-WARP [17], and (clearly)

WARP, the above theorems and corollaries apply to approval voting.

For each case where only the containment (and not the collapse) is

shown, the containment can be made strict under approval voting.

See Table 9 for the separation witnesses.

Corollary 12. (1) Approval-DC-PC-TP-UW =

Approval-DC-PC-TE-UW = Approval-DC-RPC-TE-
UW = Approval-DC-RPC-TE-NUW = Approval-DC-PC-
TE-NUW.

(2) Approval-DC-RPC-TP-NUW = Approval-DC-PC-TP-
NUW.

(3) Approval-DC-DC-UW ⊊ Approval-DC-DV-UW.
(4) Approval-DC-DC-NUW ⊊ Approval-DC-DV-NUW.
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(5) Approval-DC-DC-NUW ⊊ Approval-DC-DV-UW.
(6) Approval-CC-PC-TP-UW = Approval-CC-RPC-TP-UW.
(7) For each T ∈ {CC-PC-TE-UW, CC-PC-TE-NUW, CC-

RPC-TE-UW, CC-RPC-TE-NUW, CC-PV-TE-UW, CC-PV-
TE-NUW, CC-PV-TP-UW, CC-PV-TP-NUW}, it holds that
Approval-CC-PC-TP-UW ⊊ Approval-T .

We extend the 5-type collapse in Corollary 12 to a 6-type collapse,

and prove more collapses using immunity.

Theorem 13. Approval-DC-RPC-TP-UW = Approval-DC-PC-
TP-UW.

Theorem 14. Approval is immune with respect to CC-RPC-TP-
NUW and CC-PC-TP-NUW.

Theorem 15. Approval-CC-PC-TP-NUW = Approval-CC-RPC-
TP-NUW.

Corollary 16. For each T ∈ {CC-PC-TE-NUW, CC-RPC-
TE-NUW, CC-PV-TP-NUW}, it holds that Approval-CC-PC-TP-
NUW ⊊ Approval-T .

Our remaining results use direct arguments.

Theorem 17. Approval-DC-PV-TE-UW = Approval-DC-PV-
TE-NUW.

Theorem 18. Approval-CC-PC-TE-NUW = Approval-CC-RPC-
TE-NUW.

Proof. The approach we take is a bit more tedious than would be

needed to just prove Theorem 18, as we have structured the proof

to also establish Corollary 19.

⊆: Let (𝐶,𝑉 , 𝑝) ∈ Approval-CC-PC-TE-NUW and let (𝐶1,𝐶2)
be a candidate partition that witnesses this membership. Consider

the case where 𝑝 uniquely wins the final round. If 𝑝 ∈ 𝐶1, then

𝑝 uniquely wins (𝐶1,𝑉 ) and in the final round defeats all candi-

dates in 𝐶2. If 𝑝 ∈ 𝐶2, then in the final round 𝑝 defeats the candi-

date (if any) that survives the TE tie-handling rule regarding the

subelection (𝐶1,𝑉 ) as well as all the candidates in 𝐶2 − {𝑝}. Re-
gardless of which case holds, the partition (𝐶1,𝐶2) will witness
(𝐶,𝑉 , 𝑝) ∈ Approval-CC-RPC-TE-NUW since 𝑝 will uniquely win

its subelection and then will defeat any candidate that moves for-

ward from the other subelection. If 𝑝 does not uniquely win the

final round, then there is at least one other candidate that ties with

𝑝 in the final round. If 𝑝 ∈ 𝐶1, then 𝑝 must uniquely win in (𝐶1,𝑉 )
and as (since (𝐶1,𝐶2) witnesses (𝐶,𝑉 , 𝑝) ∈ Approval-CC-PC-TE-

NUW) no candidate in𝐶2 can have a score greater than 𝑝’s, the par-

tition (𝐶1,𝐶2) suffices towitness (𝐶,𝑉 , 𝑝) ∈ Approval-CC-RPC-TE-

NUW. If 𝑝 ∈ 𝐶2, then under partition (𝐶1,𝐶2) 𝑝 could first-round tie
with a candidate and be eliminated (under run-off partition of candi-

dates due to the TE rule). However, let𝑇 denote the (possibly empty)

set of candidates (other than 𝑝) that tie with 𝑝 in (𝐶2,𝑉 ). Then the

partition (𝐶1 ∪𝑇,𝐶2 −𝑇 ) witnesses (𝐶,𝑉 , 𝑝) ∈ Approval-CC-RPC-

TE-NUW, since 𝑝 will uniquely win (𝐶2 −𝑇,𝑉 ) and will either tie

or defeat the winner (if any) of (𝐶1 ∪𝑇,𝑉 ).
⊇: Let (𝐶,𝑉 , 𝑝) ∈ Approval-CC-RPC-TE-NUW and let (𝐶1,𝐶2)

be a candidate partition that witnesses this membership. Without

loss of generality, assume that 𝑝 ∈ 𝐶1. Thus it holds that 𝑝 uniquely

wins (𝐶1,𝑉 ). If 𝑝 uniquely wins the final round, then 𝑝 also defeats

the candidate (if any) that moves forward from (𝐶2,𝑉 ). Thus the

partition (𝐶2,𝐶1) will also witness (𝐶,𝑉 , 𝑝) ∈ Approval-CC-PC-

TE-NUW (since 𝑝 has strictly more approvals than any candidate

other than itself). If 𝑝 does not uniquely win the final round, then

there is another candidate 𝑑 , who is the unique winner of (𝐶2,𝑉 )
and ties with 𝑝 in the final round. Again the partition (𝐶2,𝐶1)
suffices to witness (𝐶,𝑉 , 𝑝) ∈ Approval-CC-PC-TE-NUW since 𝑑

proceeds to the final round and both 𝑝 and 𝑑 win there due to their

numbers of approvals. ❑

Corollary (to the Proof) 19. Approval-CC-PC-TE-UW =

Approval-CC-RPC-TE-UW.

Proof. This is an immediate corollary to the above proof of

Theorem 18, as the proof was intentionally structured to ensure

that if the witness of one type made 𝑝 a unique winner of the final

round, then the constructed-above (sometimes different) partition

for the other type also made 𝑝 a unique winner of the final round

under that other type of control. ❑

Theorem 20. Approval-DC-PV-TP-UW ⊊ Approval-DC-PV-
TE-NUW.

Theorem 21 and Corollary 22 are surprising, since they are about

partitioning different components of elections.

Theorem 21. Approval-DC-RPC-TE-NUW ⊊ Approval-DC-
PV-TP-UW.

Corollary 22. Approval-DC-RPC-TE-NUW ⊊ Approval-DC-
PV-TE-NUW.

4 RELATEDWORK
Bartholdi et al. [3] introduced and studied the goal of making a

particular candidate be an untied winner of the election (construc-

tive control in the unique-winner model). Hemaspaandra et al.

[17] introduced “destructive control” versions of each construc-

tive control type: The goal is to prevent (via the given control

action) a focus candidate from becoming a unique winner. Hema-

spaandra et al. [16, Footnote 5] argue that the nonunique-winner

model is a better model to study than the unique-winner model.

That paper—with its 7 control-pair collapses and its one separation

(E-DC-RPC-TP-UW ≠ E-DC-PC-TP-UW, though their E is not

(candidate-)neutral)—is the paper most related to ours.

Hemaspaandra et al. [17] clarified the ways of handling ties

in the first-round elections of the (two-round) “partition” control

types of Bartholdi, Tovey, and Trick, naming the two approaches

“ties promote” and “ties eliminate”; they did this because although

tie-handling had previously been suggested as being unimportant,

their paper establishes that, for example, for plurality the choice

between those two rules spells the difference between being NP-

complete and belonging to P. The “adding candidates” control at-

tack of Bartholdi, et al., was anomalously defined, and Hemaspaan-

dra et al. [18] kept the original notion but renamed it “unlimited

adding of candidates,” and introduced, under the thus-available

name “adding candidates,” the version that is analogous to the

other Bartholdi, et al., add/delete types, and the subsequent papers

have followed that notational shift.

Altogether, the Bartholdi, Tovey, and Trick control attack set,

under the above clarifications and enrichments, yields a set of
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Table 1: Summary of separations and collapses. Blue indicates results due to or inherited from Hemaspaandra et al. [16]. Red
indicates results due to the present paper.

Set Classification Subclassification of Separations

Election System Separations Collapses Open “⊊”/“⊋” Incomparable Open

General Case 1 + 314 = 315
†

7 0 38 277 0

Plurality 315 7 0 38 277 0

Veto 314 7 + 1 = 8 0 58 256 0

Approval Voting 301 7 + 14 = 21 0 88 213 0

†
Or 0 + 315 for the pure social choice approach to candidate names (see Footnote 2).

eleven constructive control attacks and eleven destructive control

attacks. As mentioned earlier, this in some sense forms a “standard”

benchmark set of attacks (though some papers use subsets of that

collection, and other papers have taken control in additional di-

rections, e.g., resolute control [15, 26]). For example, the excellent

survey chapter on control and bribery by Faliszewski and Rothe

[14] uses precisely those 22 control attacks, as does the recent paper

on search versus decision of Hemaspaandra et al. [16]. Since the

field has not yet resolved whether nonunique-winner or unique-

winner is the right standard—indeed, the two just-cited sources

make different choices—and as discovering cases when a control

type in one of those models turns out to be identical to a control

type in the other is itself interesting, this paper has covered both

models, and thus 2 · (11 + 11) = 44 control types.

The additional, different control types known as resolute con-

trol [15, 26] are quite interesting. Resolute control asks whether

there is some action (from a certain range of actions) that keeps

every one of a certain collection of candidates from being a win-

ner. This might seem to be the same as our function model for the

case of (nonunique-winner) destructive control, but it is not. In our

function model for nonunique-winner destructive control, we are

speaking of the collection of candidates who can individually be

prevented from winning by some control action. But even if two

or more candidates belong to our function’s output, they could be

put into that output by different control actions, and there might

be no single action that blocks both simultaneously. In brief, reso-

lute control is focused on blocking whole groups, and our function

model in contrast is a refinement of set separations and focuses on

individual candidates to let us identify new containment patterns

between control types.

Collapsing or separating control types is not directly about com-

plexity. However, doing so is highly relevant to complexity, as the

types were defined as natural benchmarks whose complexity could

be studied. In fact, there has been something of a race to find natu-

ral systems in which very many control attacks are NP-hard (see

Additional Note 5). Among the many systems that have done well in

that race are, along with some of the key papers that analyzed their

complexity, Schulze elections [22, 24], ranked-pair elections [24],

SP-AV elections [9], normalized range voting [21], fallback elec-

tions [10, 12] (see also [8]), and Bucklin elections [10] (see also

[8]). Faliszewski and Rothe [14, Table 7.3] provide a nice table, for

the 22 unique-winner control cases, of what is known for 12 vot-

ing systems. As to the three important systems spotlighted in our

paper, plurality’s control was explored by Bartholdi et al. [3] and

Hemaspaandra et al. [17], veto has been studied by Lin [19] and

Maushagen and Rothe [20] (see also Table 1 of [11]), and approval

has been studied by Hemaspaandra et al. [17] (see also [4]).

5 CONCLUSIONS AND OPEN PROBLEMS
Table 1 summarizes our results. We established that in the general
(universally quantified) case there are no collapsing pairs (by which
we always mean among the standard 44 control types) other than
the 7 collapsing pairs identified by Hemaspaandra et al. [16], and
that plurality has no collapsing pairs beyond those 7. For veto and
approval voting we discovered additional collapsing pairs beyond those
inherited 7, but we also established that veto and approval voting,
after our work, have no remaining undiscovered collapsing pairs.

Our work helps clarify the landscape of which control pairs do

or do not collapse, both in the general (universally quantified) case,

and for plurality, veto, and approval voting.

We also refined all our separations, and in doing so uncovered

containment relationships—including many that do not follow from

the relationship between the nonunique-winner model and the

unique-winner model.

A number of interesting open directions are suggested by our

work. One is, for important concrete election systems other than

plurality, veto, and approval voting, to completely classify the col-

lapses and separations that hold for those specific systems. An-

other direction—building on the results using Unique-WARP—is to

find sufficient conditions (or, better still, necessary-and-sufficient

conditions) for many control-pair collapses in terms of axiomatic

properties of election systems. Though our goal for separations was

to subclassify each separation into exactly one of the three cases

“⊊”, “⊋”, or incomparability, in our tables we have also noted those

cases where our constructions establish strong incomparability;

one could for the cases where we list incomparability try to estab-

lish strong incomparability. An additional open direction is to see

whether already-studied control types beyond the 44 investigated

here collapse with each other or with some of the 44, either in

general or for important concrete election systems.

Finally, control types are defined as sets. When a pair of control

types collapses, those sets are equal and thus certainly are of the

same complexity. However, it would be interesting to see whether

for collapsing control types, their complexities as search problems

are or are not polynomially related. That issue, inspired by the work

of Hemaspaandra et al. [16] and an earlier version of the present

paper, has recently been studied by Carleton et al. [5, 7].
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