
Yankee Swap: A Fast and Simple Fair Allocation Mechanism for
Matroid Rank Valuations

Vignesh Viswanathan

University of Massachusetts, Amherst

Amherst, USA

vviswanathan@umass.edu

Yair Zick

University of Massachusetts, Amherst

Amherst, USA

yzick@umass.edu

ABSTRACT
We study fair allocation of indivisible goods when agent valuations

are matroid rank functions (MRFs). Our main contribution is a sim-

ple algorithm based on the colloquial Yankee Swap procedure that

computes provably fair and efficient Lorenz dominating allocations.

While there exist polynomial time algorithms to compute fair and

efficient allocations for MRF valuations, we improve on them in

two ways: (a) Our approach is easy to understand and does not use

complex matroid optimization algorithms as subroutines. (b) Our

approach is scalable; it is provably faster than all known algorithms

to compute Lorenz dominating allocations. These two properties

are key to the adoption of algorithms in any real fair allocation

setting; our contribution brings us one step closer to this goal.

KEYWORDS
Fair Allocation, Indivisible Goods, Matroid Rank Valuations

ACM Reference Format:
Vignesh Viswanathan and Yair Zick. 2023. Yankee Swap: A Fast and Simple

Fair Allocation Mechanism for Matroid Rank Valuations. In Proc. of the 22nd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023, IFAAMAS,

9 pages.

“It Sounds Mean”

— Angela Martin, “The Office” S2E10

1 INTRODUCTION
Fair allocation of indivisible goods is an extremely popular prob-

lem in the EconCS community. We would like to assign a set of

indivisible goods to a set of agents who express preferences over
the sets of goods (or bundles) they receive. For example, consider

the problem of assigning course slots to students [11, 12]. Each

student 𝑖 has a preference over the set of classes they are assigned.

Student preferences have implicit constraints on their structure:

for example, a student may not take two classes if their schedules

overlap (they will simply drop one if assigned conflicting classes).

Similarly, students gain no value from receiving two seats in the

same class. In addition, universities often impose bounds on the

number of classes that a student may take in a given semester, or

on the number of classes a student takes from a given major. We

wish to identify an assignment of course seats to students that is

both efficient — no student wants any additional available slots —

and fair — no student would prefer another student’s assignment

to their own. Course allocation can thus be naturally cast as an

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

instance of a fair allocation problem. To this end, one might wish

to implement some fair allocation mechanism from the literature.

However, the algorithms proposed in the fair division literature

are becoming increasingly complex, which often precludes their

consideration in university-wide applications. Consider for exam-

ple the CourseMatch algorithm [12], used to assign MBA students

to classes at the Wharton School of Business. Budish et al. state

that “To find allocations, CourseMatch performs a massive parallel

heuristic search that solves billions of mixed-integer programs to

output an approximate competitive equilibrium in a fake-money

economy for courses”. This framework has been applied to the

course allocation system at the UPenn Wharton School of Busi-

ness, which admits approximately 1700 students to roughly 350

courses. To understand the system, students are referred to nine

instructional videos and a 12-page manual. While this system may

be appropriate for a specialized MBA program, it may not be as

effective for university-wide application, especially in settings with

non-expert end-users. Spliddit [17] is another application of fair

allocation mechanisms to real-world instances; however, it too does

not scale well, as its underlying mechanism solves a mixed integer-

linear program to find a Nash-welfare maximizing allocation [13].

Indeed, without any restriction on student preferences, comput-

ing a fair and efficient allocation is computationally intractable.

However, under some reasonable assumptions on student prefer-

ences, we can compute fair and efficient allocations in polynomial

time. If we assume that students simply want to take as many

classes as they are allowed to, subject to scheduling constraints and

course limits, then student preferences induce binary submodular
valuations [8, 9]. Submodular valuations exhibit decreasing returns

to scale: the larger the bundle agents already have, the less mar-

ginal gain they get from additional goods. Under binary submodular

valuations, each agent values each additional good at either 1 or 0.

Since these valuations correspond to the rank function of some

matroid, they are commonly referred to as matroid rank functions
(MRFs) [24]. MRFs are highly structured, a structure that has been

exploited in the optimization literature [19, 24] and more recently,

in fair allocation [2, 6, 7, 9]. Most notably, Babaioff et al. [2] show

that when agents have MRF valuations, there is a truthful poly-

time algorithm to compute a leximin, envy free up to any good

allocation that maximizes both the utilitarian social welfare and

Nash social welfare. However, analysis of their algorithm places its

runtime at roughly 𝑂 (𝑛6𝑚9/2) time (where 𝑛 and𝑚 are the num-

ber of agents and goods respectively) which significantly hinders

scalability. Moreover, their algorithm uses complex matroid opti-

mization algorithms as subroutines; this prevents non-expert users

from understanding the algorithm. Both issues are detrimental to

the deployment of such an algorithm for course allocation. Thus,

our main goal is to

Session 1C: Fair Allocations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

179

develop a simple and fast algorithm to compute fair and
efficient allocations under binary submodular valuations.

1.1 Our Contribution
Our main contribution is the introduction of a novel algorithm

(known colloquially as Yankee Swap1) for computing fair and effi-

cient allocations for agents with MRF valuations.

More specifically, Yankee Swap computes prioritized Lorenz dom-

inating allocations. When agents have binary submodular valau-

tions, prioritized Lorenz dominating allocations are known to be

leximin, envy free upto any good (EFX) and maximize both the util-

itarian social welfare and Nash social welfare. In addition, random-

izing over agent priorities can result in ex-ante fairness guarantees
such as ex-ante envy-freeness and ex-ante proportionality. Finally,

prioritized Lorenz dominating allocations can be computed in a

strategyproof manner.

Yankee Swap is similar in spirit to the well known round robin

algorithm. In the round robin algorithm, agents initially start with

an empty bundle and proceed in rounds, picking a good in each

round one by one from the pool of unallocated goods. Agents take

sequential actions under Yankee Swap as well. Unlike the round

robin algorithm, agents have the power to steal goods from other

agents if they do not like any unassigned good. The agents who

have goods stolen from themmake up for their loss by either taking

an unassigned good or by stealing a good from someone else. This

procedure induces transfer paths — an agent steals a good from

someone, who potentially steals a good from someone else and

this goes on until someone takes an unassigned good. The main

difference between our method and the colloquial Yankee Swap is

that we only allow an agent to steal a good when a transfer path

exists. This means that the utility of every agent on the transfer

path remains the same (except for the agent that initiates it, whose

utility increases by 1).

While the algorithm itself is remarkably simple, the analysis is

decidedly non-trivial. First, we show via a combinatorial argument

that transfer paths must exist (Lemma 3.1). Next, we show that

Yankee Swap outputs balanced allocations, in the sense that once

an agent cannot initiate transfer paths, the agents that hold goods

they want have bundles of approximately the same size (Lemma

3.4); using these facts and careful analysis, we prove Theorem 3.5.

We then turn to analyzing the most complex part of Yankee Swap:

computing transfer paths. To do so, we construct a good exchange
graph, and find shortest paths from the goods owned by the least

utility agent and an unassigned good (Algorithm 2); we show that

such paths on the good exchange graph correspond to valid path

transfers (Theorem 3.9). We conclude our analysis by comparing

the worst-case runtime of Yankee Swap to the current state of the

art. Yankee Swap runs in 𝑂 ((𝑛 +𝑚) (𝑛 + 𝜏)𝑚2) time; 𝜏 is the time

it takes to compute the valuation 𝑣𝑖 (𝑆) for any bundle 𝑆 ⊆ 𝐺 and

agent 𝑖 ∈ 𝑁 . This is a significant speedup compared to Babaioff

et al.’s runtime of𝑂 (𝑛6𝑚7/2 (𝑚+𝜏) log𝑛𝑚) (Section 3.5). We further

note that, when𝑚 = Θ(𝑛), our algorithm computes a MAX-USW

allocation faster than the matroid intersection based method used

by Benabbou et al. [9] and Babaioff et al. [2].

1
Yankee swap is also known as “Nasty Christmas” or “White Elephant”. See https:

//youtu.be/19ulSNSRKyU for a discussion.

We are currently in the process of implementing Yankee Swap for

assigning classes at the University ofMassachusetts, Amherst, work-

ing with the university registrar’s office, as well as the computer

science department at the University of Massachusetts, Amherst.

1.2 Related Work
Binary valuation functions (otherwise called dichotomous prefer-
ences) have been studied in various contexts in the economics and

computer science literature. More specifically, binary valuations

have been studied in mechanism design [10, 23], auctions [3, 22],

and exchange problems [1, 27].

Binary valuations have also been extensively studied in fair

allocation. Halpern et al. [18] and Suksompong and Teh [29] study

fair allocation in the restricted setting of binary additive valuations.

Barman and Verma [6] study the computation of the maximin share

under binary submodular valuations. Barman et al. [4], Darmann

and Schauer [16] and Barman and Verma [5] study the computation

of a max Nash welfare allocation under various binary valuation

classes. Our work is not the first to explore transfer paths: Barman

et al. [4], Suksompong and Teh [29] and Barman and Verma [6]

also utilize transfer path techniques in their algorithm design.

Lastly, Benabbou et al. [9] and Babaioff et al. [2] study the compu-

tation of fair and efficient allocations under matroid rank valuations.

Benabbou et al. [9] present the first positive algorithmic result for

the valuation class by showing that a utilitarian social welfare max-

imizing and envy free up to one good allocation can be computed

in polynomial time. This result was later significantly improved on

by Babaioff et al. [2] whose work we discuss in detail in Section 2.1.

2 PRELIMINARIES
We use [𝑡] to denote the set {1, 2, . . . , 𝑡}. For the sake of readability,
for a set 𝐴 and a good 𝑔, we replace 𝐴 \ {𝑔} (resp. 𝐴 ∪ {𝑔}) with
𝐴 − 𝑔 (resp. 𝐴 + 𝑔).

We have a set of 𝑛 agents 𝑁 = [𝑛] and a set of 𝑚 goods 𝐺 =

{𝑔1, 𝑔2, . . . , 𝑔𝑚}. Each agent 𝑖 has a valuation function 𝑣𝑖 : 2𝐺 ↦→ R+
— valuation function 𝑣𝑖 (𝑆) corresponds to the value agent 𝑖 has for

the bundle of goods 𝑆 . We let Δ𝑖 (𝑆, 𝑔) ≜ 𝑣𝑖 (𝑆 + 𝑔) − 𝑣𝑖 (𝑆) be the
marginal utility of agent 𝑖 from receiving the good 𝑔, given that

they already own the bundle 𝑆 . Unless otherwise stated, we assume

that 𝑣𝑖 is a matroid rank function (MRF). Due to their equivalence,

we use binary submodular valuation and matroid rank function

interchangeably. More formally, a function 𝑣𝑖 is a matroid rank

function if (a) 𝑣𝑖 (∅) = 0, (b) for every 𝑆 ⊆ 𝐺 and every 𝑔 ∈ 𝐺 ,

Δ𝑖 (𝑆, 𝑔) ∈ {0, 1}, and (c) 𝑣𝑖 is submodular: for every 𝑆 ⊆ 𝑇 ⊆ 𝐺

and every 𝑔 ∈ 𝐺 \𝑇 , Δ𝑖 (𝑆, 𝑔) ≥ Δ𝑖 (𝑇,𝑔). Since there may not be a

polynomial space representation of these valuation functions, we

assume oracle access to each 𝑣𝑖 : given a bundle of goods 𝑆 ⊆ 𝐺 , we

can compute 𝑣𝑖 (𝑆) in at most time 𝜏 .

An allocation is a partition of the set of goods𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑛)
where each agent 𝑖 receives the bundle 𝑋𝑖 , and 𝑋0 consists of the

unallocated goods. An allocation is non-redundant (or clean) if for
every agent 𝑖 ∈ 𝑁 , and every good 𝑔 ∈ 𝑋𝑖 , 𝑣𝑖 (𝑋𝑖) > 𝑣𝑖 (𝑋𝑖 − 𝑔).
Benabbou et al. [9] show that for MRF valutions, this is equiva-

lent to having 𝑣𝑖 (𝑋𝑖) = |𝑋𝑖 | for every 𝑖 ∈ 𝑁 . We sometimes refer

to 𝑣𝑖 (𝑋𝑖) as the utility (or value) of 𝑖 under the allocation 𝑋 . For

ease of analysis, we treat 0 as an agent whose valuation function

Session 1C: Fair Allocations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

180

https://youtu.be/19ulSNSRKyU
https://youtu.be/19ulSNSRKyU

is 𝑣0 (𝑆) = |𝑆 |; this valuation function is trivially an MRF. Due to

the choice of 𝑣0, any clean allocation for the set of agents 𝑁 is also

trivially clean for the set of agents 𝑁 + 0. However, none of the
fairness notions we discuss consider the (dummy) agent 0. Several

fairness desiderata have been proposed and studied in the literature;

three of them stand out:

Envy-Freeness: An allocation is envy free if no agent prefers an-

other agent’s bundle to their own. This is impossible to guarantee

when all goods are allocated — e.g. when there are two agents

and only one item. Due to this impossibility, several relaxations

have been studied in the literature. The most popular relaxation

of envy freeness is envy freeness up to one good (EF1) [11, 21].

An allocation 𝑋 is EF1 if no agent envies another agent after

dropping some good for the latter agent’s bundle, i.e. if for ev-

ery 𝑖, 𝑗 ∈ 𝑁 , if 𝑣𝑖 (𝑋𝑖) < 𝑣𝑖 (𝑋 𝑗) there exists some 𝑔 ∈ 𝑋 𝑗 such that

𝑣𝑖 (𝑋𝑖) ≥ 𝑣𝑖 (𝑋 𝑗 − 𝑔). An EF1 allocation can be computed in polyno-

mial time for most realistic valuation classes [21]. More recently, a

stronger relaxation called envy free up to any good (EFX) [13] has
gained popularity: an allocation is EFX if no agent envies another

agent after dropping any good from the latter agent’s bundle, i.e.

if 𝑣𝑖 (𝑋𝑖) < 𝑣𝑖 (𝑋 𝑗) then for every 𝑔 ∈ 𝑋 𝑗 𝑣𝑖 (𝑋𝑖) ≥ 𝑣𝑖 (𝑋 𝑗 − 𝑔). In
contrast to EF1 allocations, the existence of EFX allocations is still

an open question for several valuation classes [25].

Maximin Share: An agent’s maximin share (MMS) is defined as

the value they would obtain had they divided the goods into 𝑛

bundles themselves and picked the worst of these bundles. More

formally,

MMS𝑖 = max

𝑋=(𝑋1,𝑋2,...,𝑋𝑛)
min

𝑗 ∈[𝑛]
𝑣𝑖 (𝑋 𝑗)

Procaccia and Wang [26] show that agents cannot always be guar-

anteed their maximin share; however, past works [20] guarantee

that every agent receives a fraction of their maximin share. For

some 𝑐 ∈ (0, 1], an allocation 𝑋 is 𝑐-MMS if for every agent 𝑖 ∈ 𝑁 ,

𝑣𝑖 (𝑋𝑖) ≥ 𝑐 ·MMS𝑖 .

Leximin: an allocation is leximin if it maximizes the value pro-

vided to the agent with least value and conditioned on this, maxi-

mizes the value provided to the agent with the second least value

and so on.While leximin allocations are computationally intractable

when agent valuations are unrestricted [9, Theorem 4.2], they can

be computed in polynomial time under MRF valuations [2].

When envy is the main consideration, an allocation where no agent

gets any good is envy free. While this is fair, it is very inefficient.

Therefore, coupled with fairness metrics, algorithms usually guar-

antee some efficiency criterion as well. We consider two popular

notions of efficiency:

Utilitarian Social Welfare: The utilitarian social welfare of an
allocation is defined as the sum of the value obtained by each agent

i.e. USW(𝑋) = ∑
𝑖∈𝑁 𝑣𝑖 (𝑋𝑖).

Nash Social Welfare: The Nash social welfare of an allocation

is defined as the product of the value obtained by each agent i.e.

NSW(𝑋) = ∏
𝑖∈𝑁 𝑣𝑖 (𝑋𝑖).

Allocations which maximize utilitarian social welfare and Nash

social welfare are referred to as MAX-USW and MNW respectively.

Since allocations have NSW(𝑋) = 0 when some agent receives no

items, we adopt the same convention as Caragiannis et al. [13], and

first minimize the number of agents with zero utility; subject to

that, we maximize the product of positive utilities.

Before we proceed, we preset a simple useful result aboutmatroid

rank valuations — if an agent values the bundle 𝑌 more than the

bundle 𝑋 , there must be a good 𝑔 ∈ 𝑌 such that Δ𝑖 (𝑋,𝑔) = 1.

Variants of this result have also been shown by Babaioff et al. [2]

and Benabbou et al. [9] and therefore, we omit the proof.

Observation 2.1 (Benabbou et al. [9]). Suppose that agents have

binary submodular valuations. If 𝑋 and 𝑌 are two allocations and

𝑣𝑖 (𝑋𝑖) < 𝑣𝑖 (𝑌𝑖) for some 𝑖 ∈ 𝑁 + 0, there exists a good 𝑔 ∈ 𝑌𝑖 \ 𝑋𝑖
such that Δ𝑖 (𝑋𝑖 , 𝑔) = 1.

2.1 Prioritized Lorenz Dominating Allocations
We define the sorted utility vector of an allocation 𝑋 as ®𝑢𝑋 =

(𝑢𝑋
1
, 𝑢𝑋

2
, . . . 𝑢𝑋𝑛) which corresponds to the vector of agent valu-

ations (𝑣1 (𝑋1), 𝑣2 (𝑋2), . . . 𝑣𝑛 (𝑋𝑛)) sorted in ascending order (ties

broken arbitrarily). An allocation𝑋 Lorenz dominates the allocation
𝑌 (denoted 𝑋 ⪰lorenz 𝑌) if for all 𝑘 ∈ [𝑛],

∑𝑘
𝑗=1 𝑢

𝑋
𝑗
≥ ∑𝑘

𝑗=1 𝑢
𝑌
𝑗
. An

allocation 𝑋 is Lorenz dominating if for every allocation 𝑌 , we have

𝑋 ⪰lorenz 𝑌 .
Babaioff et al. [2] show that when agents have MRF valuations,

a non-redundant Lorenz dominating allocation always exists and

satisfies several desirable fairness and efficiency guarantees. We

formalize this result below.

Theorem 2.2 (Babaioff et al. [2]). When agents have MRF
valuations, a non-redundant Lorenz dominating allocation always
exists and is MNW, MAX-USW, EFX, leximin and 1

2
-MMS.

The one minor drawback of the ordering defined above is that it

does not distinguish between two allocations with the same sorted

utility vector, even when agents receive a different utility in the

two allocations.

Example 2.3. Consider a problem instance with two agents {1, 2}
and three goods {𝑔1, 𝑔2, 𝑔3}. The valuation function for each agent

𝑣𝑖 (𝑆) = |𝑆 | for 𝑖 ∈ {1, 2}. Any allocation that gives two goods to one

agent and one good to the other is Lorenz dominating, but under

one agent 1 may receive two goods, and under another they may

receive one.

It is desirable to distinguish between the two allocations de-

scribed above; if we can create a solution concept where agent 1

always gets two goods whereas under another agent 2 gets two

goods, randomizing between the two allocations will give us a (ran-

dom) allocation which is arguably more fair since both agents have

the same expected utility.

To this end, Babaioff et al. [2] introduce a priority order over the

set of agents. The priority ordering is modelled as a permutation

over the set of agents 𝜋 : 𝑁 ↦→ [𝑛] where agents with a lower value

of 𝜋 have a higher priority. This ordering is enforced by perturbing

the valuations in the original instance. More formally, to enforce

a priority ordering, Babaioff et al. [2] create a new fair allocation

instance, where agent 𝑖 has the valuation function 𝑣 ′
𝑖
:

𝑣 ′𝑖 (𝑆) = 𝑣𝑖 (𝑆) +
𝜋 (𝑖)
𝑛2

Session 1C: Fair Allocations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

181

We refer to this problem instance (resp. valuation function 𝑣 ′) as
the augmented problem instance (resp. augmented valuation func-

tion) with the priority order 𝜋 . When 𝜋 is clear from context, we

simply refer to this problem instance as the augmented problem

instance. We sometimes refer to the value
𝜋 (𝑖)
𝑛2

as the perturbation.

Babaioff et al. [2] show that any Lorenz dominating allocation for

the augmented instance is also a Lorenz dominating allocation for

the original fair allocation instance [2, Theorem 4] and therefore

retain all the desirable fairness properties in Theorem 2.2. They

refer to this allocation as a Lorenz dominating allocation w.r.t. the

priority order 𝜋 .

This priority order can be used to guarantee additional fairness

properties — by randomly choosing this priority order, we can

generate allocations that are ex-ante envy-free and ex-ante propor-

tional. A random allocation 𝑋 is ex-ante envy-free if, in expectation,

no agent envies another agent i.e. E𝑋 [𝑣𝑖 (𝑋𝑖)] ≥ E𝑋 [𝑣𝑖 (𝑋 𝑗)] for
all 𝑖, 𝑗 ∈ 𝑁 . Similarly, a random allocation 𝑋 is ex-ante propor-
tional if each agent, in expectation, receives a utility greater than

the 𝑛-th fraction of their value for the entire bundle of goods i.e.

E𝑋 [𝑣𝑖 (𝑋𝑖)] ≥ 𝑣𝑖 (𝐺)
𝑛 .

Babaioff et al. [2] define the randomized prioritized egalitarian

(RPE) mechanism which performs the following steps:

(1) Choose a priority order 𝜋 uniformly at random.

(2) Elicit the preferences of each agent. If the agent’s valuation

function is not an MRF, set their value for all bundles to be

equal to 0.

(3) Compute a Lorenz dominating allocation with respect to the

ordering 𝜋 for the above elicited preferences.

Babaioff et al. [2] show that the RPE mechanism computes an ex-

ante envy-free and ex-ante proportional allocation. In addition, the

RPE mechanism is strategyproof: no agent can get a better outcome

by misreporting their valuation function. This strategyproofness

result is independent of the algorithm used to compute Lorenz

dominating allocations; therefore, it applies to Yankee Swap.

3 YANKEE SWAP
We now present a simple, fast algorithm for computing prioritized

Lorenz dominating allocations. The algorithm we propose is known

colloquially as a Yankee swap. Our objective is to ensure that at

every round, the least utility agent receives a useful good, i.e. a
good for which they have a positive marginal utility. We proceed

in rounds, and at every round agents have a choice of either taking

an unallocated useful good or stealing a useful good from another

agent, who then either takes an unassigned useful good or steals

one from another agent, and so on. Thus, the first agent increases

their utility by 1, and the other agents’ utilities remain the same:

if a good was stolen from them, they must have recovered their

utility by either stealing a good from another agent or by taking an

unassigned good.

More formally, we define transfer paths recursively as follows: a

transfer path in an allocation 𝑋 is a sequence of agents in 𝑁 ∪ {0},
(𝑝1, 𝑝2, . . . , 𝑝𝑟), such that for some good 𝑔 ∈ 𝑋𝑝2 : (a) Δ𝑝1 (𝑋𝑝1 , 𝑔) =
1. (b) If𝑋 ′ is the allocation that results from moving 𝑔 from 𝑝2 to 𝑝1
in 𝑋 ; then there exists a transfer path (𝑝2, . . . , 𝑝𝑟) in 𝑋 ′ that does
not involve the transfer of the good 𝑔. In other words, there is a set

of goods that can be transferred along the path such that agent 𝑝1’s

utility increases by 1, agents 𝑝2, . . . , 𝑝𝑟−1’s utilities are unchanged,
and agent 𝑝𝑟 ’s utility decreases by 1. While paths can be cyclic i.e.

an agent can be present multiple times in a transfer path sequence,

every good may be transferred at most once.

Since goods are transferred at most once, paths can be char-

acterized by a sequence of goods (𝑔𝑖1 , 𝑔𝑖2 , . . . , 𝑔𝑖𝑘) and an agent 𝑖

where 𝑔𝑖𝑘 gets transferred to the agent that has 𝑔𝑖𝑘−1 , 𝑔𝑖𝑘−1 gets

transferred to the agent that has 𝑔𝑖𝑘−2 and so on until finally, 𝑔𝑖1
gets transferred to agent 𝑖 . Depending on the context, we use both

notations of transfer paths in our algorithms and analysis.

3.1 The Algorithm
The Yankee Swap algorithm takes as input a fair allocation instance

(𝑁,𝐺, {𝑣𝑖 }𝑖∈𝑁) and a priority ordering 𝜋 : 𝑁 ↦→ [𝑛] over the set
of agents. The algorithm first places all goods in 𝑋0 — all goods

are initially unassigned — and has all players playing (denoted

by having them in the set 𝑃). We pick an agent 𝑖 ∈ 𝑃 (who’s not

agent 0) with the least utility so far and check if there is a transfer

path starting from them and ending at 0; ties are broken in favor

of agents with higher priority. If a path exists, we transfer goods

backwards along the path giving the agent an additional unit of

value. Otherwise, we remove them from 𝑃 , at which point their

utility can no longer increase. Once all agents are removed from 𝑃 ,

Algorithm 1 terminates.

Algorithm 1 Yankee Swap

Require: The set of agents 𝑁 = [𝑛], the set of goods 𝐺 , oracle
access to valuation functions {𝑣𝑖 }𝑖∈𝑁 and a priority order over

the agents 𝜋 : 𝑁 ↦→ [𝑛]
Ensure: A prioritized Lorenz dominating allocation 𝑋

1: 𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑛) ← (𝐺, ∅, . . . , ∅)
2: 𝑃 ← 𝑁

3: while 𝑃 ≠ ∅ do
4: Let 𝑃 ′ = argmin{|𝑋𝑖 | : 𝑖 ∈ [𝑛]}
5: Let 𝑖 be the highest priority agent in 𝑃 ′ according to 𝜋
6: Check if there exists a transfer path in 𝑋 starting at 𝑖 which

ends at 0

7: if a path (𝑔𝑖1 , 𝑔𝑖2 , . . . , 𝑔𝑖𝑘) exists then
8: Transfer goods along the path and update 𝑋

9: else
10: 𝑃 ← 𝑃 − 𝑖
11: end if
12: end while
13: return 𝑋

3.2 Analysis
Algorithm 1 computes prioritized Lorenz dominating allocations.

Before we go into the technical details of the proof, we remark

that our algorithm is very similar to the round robin algorithm in

two ways. First, agents in 𝑃 have roughly the same bundle size at

any iteration of the algorithm. More formally, all agents in 𝑃 have

bundles that differ in size by at most 1, with higher priority agents

receiving the slightly larger bundles. Second, much like how the

round robin algorithm is EF1 at every iteration, the Yankee Swap

Session 1C: Fair Allocations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

182

algorithm is Lorenz dominating at every iteration (ignoring the

utility of agent 0 who controls the unassigned items).

Before we dive into any result about the algorithm, it is important

to show sufficient conditions for a transfer path to exist. A similar

version of the following lemma appears in Babaioff et al. [2, Lemma

17] and Benabbou et al. [9, Lemma 3.12].

Lemma 3.1. Let 𝑋 and 𝑌 be two non-redundant allocations for the
set of agents 𝑁 + 0. Let 𝑆− be the set of all agents 𝑖 ∈ 𝑁 + 0 where
|𝑋𝑖 | < |𝑌𝑖 |, 𝑆= be the set of all agents 𝑖 ∈ 𝑁 + 0 where |𝑋𝑖 | = |𝑌𝑖 | and
𝑆+ be the set of all agents 𝑖 ∈ 𝑁 + 0 where |𝑋𝑖 | > |𝑌𝑖 |. For any agent
𝑖 ∈ 𝑆−, there exists a transfer path from 𝑖 to some agent 𝑘 ∈ 𝑆+ in 𝑋 .

Proof. Our proof is constructive. We construct the transfer path

using the following recursive loopwhichwe denote by Loop(𝑋,𝑌, 𝑖):
Since 𝑋 and 𝑌 are non-redundant, using Observation 2.1, there

is some good 𝑔 ∈ 𝑌𝑖 \ 𝑋𝑖 such that Δ𝑖 (𝑋𝑖 , 𝑔) = 1. This good must

belong to some other agent, say 𝑗 ∈ 𝑁 + 0. If 𝑗 ∈ 𝑆+, we are done.
Otherwise, move the good from 𝑗 to 𝑖 to create a new allocation 𝑋 ′.
We now compare𝑋 ′ and 𝑌 and define 𝑆 ′−, 𝑆 ′= and 𝑆 ′+ analogously
to 𝑆−, 𝑆= and 𝑆+. Since 𝑗 ∈ 𝑆−∪𝑆= and 𝑗 lost a good in𝑋 ′, we must

have that 𝑗 ∈ 𝑆 ′−. Further, 𝑖 ∈ 𝑆 ′= ∪ 𝑆 ′− which means 𝑆 ′+ = 𝑆+.
We then repeat this process with the allocations 𝑋 ′ and 𝑌 and the

agent 𝑗 i.e. we run Loop(𝑋 ′, 𝑌 , 𝑗).
Note that the above loop must terminate since

∑
𝑗 ∈𝑁+0 |𝑋 ′𝑗 ∩𝑌𝑗 |

increases by 1 at every iteration, and is upper bounded by |𝐺 |. Since
𝑆+ does not change, at some iteration, we take a good from an agent

in 𝑆+ and the above loop terminates.

Let (𝑝1, 𝑝2, . . . , 𝑝𝑟 , 𝑘) be the sequence of agents we take a good
from in the above loop — we take a good from 𝑝1 and give it to 𝑖 ,

take a good from 𝑝2 and give it to 𝑝1, and so on. In order to show

that (𝑖, 𝑝1, . . . , 𝑝𝑟 , 𝑘) forms a transfer path, the last thing we need

to show is that 𝑔 never gets transferred out of 𝑖 which would imply

that goods get transferred at most once. This is easy to see: the

only goods that can potentially get transferred in 𝑋 ′ are the goods
in 𝑌𝑗 \ 𝑋 ′𝑗 for any 𝑗 ∈ 𝑁 + 0. Since 𝑔 ∈ 𝑌𝑖 ∩ 𝑋 ′𝑖 , it will never get
transferred out. Similarly, no good that is transferred to some agent

ever gets transferred out. □

When 𝑋 is the allocation computed by Yankee Swap and 𝑌 is the

prioritized Lorenz dominating allocation, the above lemma shows

that we can, in a way, move closer to 𝑌 from 𝑋 using path transfers.

While repeated applications of this lemma to any non-redundant

allocation 𝑋 will ultimately terminate at the prioritized Lorenz

dominating allocation, this is not a very efficient process.

Our next three lemmata establish some important properties of

the algorithm. The first Lemma shows that the allocation main-

tained by Yankee Swap is always non-redundant; thereby, allowing

us to use Lemma 3.1.

Lemma 3.2. At the beginning of every iteration, the allocation 𝑋

of the Yankee Swap algorithm is non-redundant for the set of agents
𝑁 + 0.

Proof. By the definition of transfer paths, agents only ever take

unassigned goods/steal goods that they have a positive marginal

gain for, i.e. useful goods. Thus, after executing a transfer path, the

allocation remains non-redundant. Since at the beginning of the

first iteration the allocation is non-redundant (by our choice of 𝑣0),

it follows that non-redundancy is maintained throughout. □

The second Lemma shows that picking the least utility agent

with highest priority is equivalent to picking the agent with least

value according to the augmented valuation 𝑣 ′. This will help us

when analyzing the properties of the allocation output by Yankee

Swap with respect to the augmented valuations 𝑣 ′.

Lemma 3.3. At the beginning of any iteration of Algorithm 1, let 𝑖
be the highest priority agent with least utility such that 𝑖 ∈ 𝑃 i.e. let 𝑖
be the agent chosen by the algorithm to be the starting point of the
transfer path. Let𝑊 be the allocation at the beginning of the iteration.
Then 𝑖 is the least valued agent in𝑊 with respect to the augmented
valuation function among all the agents in 𝑃 .

Proof. For any agent 𝑢 ∈ 𝑃 , if |𝑊𝑢 | > |𝑊𝑖 |, we have 𝑣 ′𝑢 (𝑊𝑢) >
𝑣 ′
𝑖
(𝑊𝑖) since the augmented valuations add a value smaller than 1

for both agents compared to the original valuation function and𝑊

is non-redundant (Lemma 3.2). If |𝑊𝑢 | = |𝑊𝑖 |, then we must have

𝑣 ′𝑢 (𝑊𝑢) > 𝑣 ′
𝑖
(𝑊𝑖) since we chose 𝑖 as the agent with highest priority

with a bundle of size |𝑊𝑖 |. Since our first constraint on 𝑖 was that it
needed to minimize |𝑊𝑖 |, we can never have |𝑊𝑢 | < |𝑊𝑖 |. □

Finally, we formalize the round-robin balancedness notion de-

scribed at the beginning of this subsection.

Lemma 3.4. Let 𝑖 be the agent chosen to initiate a transfer path in
some iteration of Algorithm 1. Let𝑊 be the allocation at the beginning
of the iteration. If |𝑊𝑖 | = 𝑘 , then the following holds:

(1) Agents with higher priority than 𝑖 have a bundle of size at
most 𝑘 + 1.

(2) Agents with a lower priority than 𝑖 have a bundle of size at
most 𝑘 .

Proof. This result stems from the sequential nature of the allo-

cation. Let 𝑡 be the iteration of the algorithm being examined.

Let 𝑗 be an agent with higher priority than 𝑖 with a bundle of size

at least 𝑘 + 2. Consider the start of the iteration 𝑡 ′ where𝑊𝑗 moved

from a bundle of size 𝑘+1 to a bundle of size 𝑘+2. Since bundle sizes
increase by at most 1 at every iteration, there is a unique iteration

where this event occurred. It must also be that 𝑡 ′ < 𝑡 . To be selected

on the iteration 𝑡 ′, 𝑗 must have been the agent with least utility

(𝑘+1) and highest priority among the agents in 𝑃 . However, we also

have that at iteration 𝑡 ′, 𝑖’s bundle had a size of at most 𝑘 and it was

in 𝑃 as well. This is because at iteration 𝑡 > 𝑡 ′, 𝑖’s bundle had a size
of 𝑘 and 𝑖 was in 𝑃 ; bundle sizes increase monotonically and agents

removed from 𝑃 never get added back. This is a contradiction since

it implies 𝑗 was not the agent with least utility among the agents in

𝑃 at iteration 𝑡 ′; therefore, 𝑗 cannot have a bundle of size ≥ 𝑘 + 2.
The case where 𝑗 has a lower priority than 𝑖 is handled similarly.

□

We are now ready to prove our main result. This is done via a

simple contradiction — if Yankee Swap fails and there exists some

agent 𝑖 with a higher value in the Lorenz dominating allocation,

then there must have been a path from 𝑖 to 0 that Yankee Swap

somehow missed. However, showing that this path exists requires

showing that Yankee Swap gets sequentially closer to the final

solution. That is, at every round, the utility of every agent 𝑖 is no

Session 1C: Fair Allocations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

183

more than their utility under the prioritized Lorenz dominating

allocation. This proof requires a careful combinatorial argument,

and is shown in Lemma 3.6.

Theorem 3.5. When agents have MRF valuations, Yankee Swap
computes a non-redundant Lorenz dominating allocation with respect
to the priority order 𝜋 .

Proof. It is easy to see that the algorithm always terminates: at

every iteration, an agent is removed from 𝑃 or |𝑋0 | reduces by 1.

Since no item is ever deallocated, and no agents ever return to 𝑃

once removed, the number of iterations is at most the size of 𝑃 plus

𝑋0 on initialization, i.e. 𝑛 +𝑚.

We now show that the allocation output by Algorithm 1 is Lorenz

dominating with respect to the priority order 𝜋 .

Assume for contradiction that the allocation output by Algo-

rithm 1 is not Lorenz dominating with respect to the ordering 𝜋 .

Let 𝑋 be the allocation output by Algorithm 1 and 𝑌 be a Lorenz

dominating allocation with respect to the ordering 𝜋 (recall that

𝑌 is shown to always exist by Babaioff et al. [2]). Note that 𝑌 is

also a Lorenz dominating allocation with respect to the augmented

problem instance with priority order 𝜋 .

If for all 𝑖 ∈ 𝑁 𝑣𝑖 (𝑋𝑖) ≥ 𝑣𝑖 (𝑌𝑖) then since 𝑌 is MAX-USW, this

means that 𝑣𝑖 (𝑋𝑖) = 𝑣𝑖 (𝑌𝑖) for all 𝑖 and 𝑋 is Lorenz dominating as

well with respect to the ordering 𝜋 , contrary to our assumption.

Thus, there must be at least one 𝑖 ∈ 𝑁 such that 𝑣𝑖 (𝑋𝑖) < 𝑣𝑖 (𝑌𝑖).
Let 𝑖 ∈ argmin{𝑣𝑖 (𝑋𝑖) | 𝑣𝑖 (𝑋𝑖) < 𝑣𝑖 (𝑌𝑖)}. If there are multiple

such agents, we pick the one with highest priority. Note that, by an

argument similar to Lemma 3.3, this is equivalent to saying 𝑖 is the

least valued agent in the augmented problem instance such that

𝑣 ′
𝑖
(𝑋𝑖) < 𝑣 ′

𝑖
(𝑌𝑖).

Consider the iteration of the algorithm where 𝑖 was removed

from 𝑃 . Let𝑊 be the non-redundant allocation at the beginning of

the iteration (Lemma 3.2). We have the following Lemma.

Lemma 3.6. For all ℎ ∈ 𝑁 , we have |𝑌ℎ | ≥ |𝑊ℎ |.

Proof. Assume for contradiction that this is not true. We show

that 𝑌 does not Lorenz dominate𝑊 in the augmented problem

instance, which contradicts the fact that 𝑌 is Lorenz dominating.

Let 𝑗 be the agent with lowest utility under 𝑌 such that |𝑌𝑗 | < |𝑊𝑗 |;
we break ties by choosing the agent with highest priority. Again,

since𝑊 is non-redundant, this is equivalent to saying that 𝑗 is the

agent with least utility in 𝑌 with respect to the augmented problem

instance such that 𝑣 ′
𝑗
(𝑌𝑗) < 𝑣 ′

𝑗
(𝑊𝑗).

Before we delve into the technical details, let us discuss the

main idea of the proof. We examine the sorted utility vectors of𝑊

and 𝑌 . We show that for any agent ℎ such that 𝑣 ′
ℎ
(𝑌ℎ) < 𝑣 ′

𝑗
(𝑌𝑗),

then 𝑣 ′
ℎ
(𝑌ℎ) = 𝑣 ′

ℎ
(𝑊ℎ). The ‘converse’ also holds: for any agent ℎ,

if 𝑣 ′
ℎ
(𝑊ℎ) < 𝑣 ′

𝑗
(𝑌𝑗) then 𝑣 ′

ℎ
(𝑊ℎ) = 𝑣 ′

ℎ
(𝑌ℎ). We can compare the

first index where the sorted utility vectors of𝑊 and 𝑌 differ; we

then show that this element is greater in the sorted utility vector

of 𝑊 than in 𝑌 , i.e. showing that 𝑌 does not Lorenz dominate

𝑊 , and yielding a contradiction. This is summarized in Figure 1.

Lastly, in this proof, we will be analyzing the augmented problem

instance; unless specifically stated, any claims about preferences

can be assumed to be with respect to the augmented valuations.

𝑗𝑢

Figure 1: The idea behind the proof of Lemma 3.6: we plot the
sorted utility vectors of𝑊 (blue) and𝑌 (red). Each large block
can be thought of as a utility of 1 derived from a good and
each of the smaller light colored blocks can be thought of as
the augmented utilities. We first show that all the values to
the left of 𝑗 are equal in both𝑊 and 𝑌 and correspond to the
same agent. We next show that the bar corresponding to 𝑢 is
taller than that of 𝑗 .

We first show that 𝑣 ′
𝑗
(𝑌𝑗) < 𝑣 ′

𝑖
(𝑊𝑖). If 𝑗 has a higher priority

than 𝑖 , |𝑊𝑗 | ≤ |𝑊𝑖 | + 1 (Lemma 3.4). By our choice of 𝑗 , |𝑌𝑗 | ≤
|𝑊𝑗 | − 1 ≤ |𝑊𝑖 |, which implies that 𝑣 ′

𝑗
(𝑌𝑗) < 𝑣 ′

𝑖
(𝑊𝑖). If 𝑗 has a

lower priority than 𝑖 , |𝑊𝑗 | ≤ |𝑊𝑖 | (Lemma 3.4). By our choice of 𝑗 ,

|𝑌𝑗 | ≤ |𝑊𝑗 | − 1 ≤ |𝑊𝑖 | − 1 < |𝑊𝑖 |. Since |𝑊𝑖 | is greater than |𝑌𝑗 | by
at least 1, we have 𝑣 ′

𝑗
(𝑌𝑗) < 𝑣 ′

𝑖
(𝑊𝑖) irrespective of their priorities.

We observe that for any ℎ ∈ 𝑁 whose utility is less than 𝑣 ′
𝑗
(𝑌𝑗)

under 𝑌 , we have 𝑣 ′
ℎ
(𝑌ℎ) = 𝑣 ′

ℎ
(𝑊ℎ). This is because we pick an

agent 𝑗 with minimum utility under 𝑌 for which 𝑣 ′
𝑗
(𝑌𝑗) < 𝑣 ′

𝑗
(𝑊𝑗).

Therefore, for any agent ℎ for whom 𝑣 ′
ℎ
(𝑌ℎ) < 𝑣 ′

𝑗
(𝑌𝑗) we must have

that 𝑣 ′
ℎ
(𝑌ℎ) ≥ 𝑣 ′

ℎ
(𝑊ℎ). If the inequality is strict, we have 𝑣 ′

ℎ
(𝑊ℎ) <

𝑣 ′
ℎ
(𝑌ℎ) < 𝑣 ′

𝑗
(𝑌𝑗) < 𝑣 ′

𝑖
(𝑊𝑖). This implies that ℎ was removed from

𝑃 before 𝑖 was removed from 𝑃 i.e. at the iteration where 𝑖 was

removed from 𝑃 , ℎ was already removed from 𝑃 ; otherwise, accord-

ing to Lemma 3.3, Algorithm 1 would have chosen ℎ instead of 𝑖

creating a contradiction. If ℎ was not in 𝑃 at the iteration in con-

sideration, ℎ has a utility of |𝑊ℎ | when Algorithm 1 terminates, i.e.

|𝑊ℎ | = |𝑋ℎ |. This implies that 𝑣 ′
ℎ
(𝑋ℎ) = 𝑣 ′

ℎ
(𝑊ℎ) < 𝑣 ′

𝑖
(𝑊𝑖) ≤ 𝑣 ′

𝑖
(𝑋𝑖)

and 𝑣 ′
ℎ
(𝑋ℎ) < 𝑣 ′

ℎ
(𝑌ℎ). However, we assumed that agent 𝑖 is the low-

est utility agent among those who have lower utility under 𝑋 than

under 𝑌 , a contradiction. We can similarly show that for any agent

ℎ with utility less than 𝑣 ′
𝑗
(𝑌𝑗) in𝑊 , we have 𝑣 ′

ℎ
(𝑌ℎ) = 𝑣 ′

ℎ
(𝑊ℎ).

Note that in the valuations 𝑣 ′, no two agents have the same

value in any allocation due to the perturbation. Let 𝑗 be the ℓ-th

least valued agent in 𝑌 . From our discussion above, the first ℓ − 1
least valued agents in both𝑊 and 𝑌 have the same utility in both

allocations. Let the ℓ-th least valued agent in𝑊 be 𝑢. From the

definition of Lorenz dominance, if 𝑣 ′
𝑗
(𝑌𝑗) < 𝑣 ′𝑢 (𝑊𝑢), 𝑌 does not

Lorenz dominate𝑊 .

If 𝑣 ′
𝑗
(𝑌𝑗) = 𝑣 ′𝑢 (𝑊𝑢), this implies that 𝑗 = 𝑢 since the fractional

part of 𝑣 ′
ℎ
(𝑌ℎ) is unique for every agent ℎ ∈ 𝑁 . However, if 𝑗 = 𝑢,

then by assumption we have 𝑣 ′
𝑗
(𝑌𝑗) < 𝑣 ′

𝑗
(𝑊𝑗) = 𝑣 ′𝑢 (𝑊𝑢) = 𝑣 ′

𝑗
(𝑌𝑗),

a contradiction. Therefore 𝑣 ′
𝑗
(𝑌𝑗) ≠ 𝑣 ′𝑢 (𝑊𝑢). If 𝑣 ′𝑢 (𝑊𝑢) < 𝑣 ′

𝑗
(𝑌𝑗),

then from our discussion, we must have 𝑣 ′𝑢 (𝑊𝑢) = 𝑣 ′𝑢 (𝑌𝑢) < 𝑣 ′
𝑗
(𝑌𝑗).

This implies that there are ℓ agents (the first ℓ least valued agents

in𝑊) which have a lower utility than 𝑗 in 𝑌 , contradicting our

Session 1C: Fair Allocations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

184

assumption on ℓ . Therefore, wemust have 𝑣 ′𝑢 (𝑊𝑢) > 𝑣 ′
𝑗
(𝑌𝑗) proving

that 𝑌 does not Lorenz dominate𝑊 ; the sum of the first ℓ elements

in the sorted utility vector of𝑊 is greater than the sum of the

first ℓ elements in the sorted utility vector of 𝑌 . Since 𝑌 is Lorenz

dominating in the augmented problem instance, this results in a

contradiction and completes the proof. □

We construct a new allocation 𝑍 starting at 𝑌 and moving goods

from agents in 𝑁 − 𝑖 arbitrarily to 0 till |𝑍 𝑗 | = |𝑊𝑗 | for all 𝑗 ∈ 𝑁 − 𝑖 .
In other words, let 𝑍 𝑗 be a size |𝑊𝑗 | subset of 𝑌𝑗 for all 𝑗 ∈ 𝑁 − 𝑖
and 𝑍𝑖 = 𝑌𝑖 . Due to Lemma 3.6, there will be no 𝑗 ∈ 𝑁 − 𝑖 where
|𝑍 𝑗 | < |𝑊𝑗 |. Given the dummy agent 0’s valuation function, this

allocation is still non-redundant for the agents 𝑁 + 0. Note that
|𝑊𝑖 | < |𝑍𝑖 | and |𝑊0 | > |𝑍0 |.

Invoking Lemma 3.1 on the allocations𝑊 and 𝑍 , there must be a

transfer path from 𝑖 to 0 in𝑊 . This stems from the fact that 0 is the

only agent in 𝑆+. Since 𝑖 has a valid transfer path, it could not have

been removed from 𝑃 at the current iteration, a contradiction. □

In addition to proving that Yankee Swap outputs a Lorenz domi-

nating allocation, Theorem 3.5 shows that the resulting allocation

is non-redundant. This is highly desirable in the course allocation

setting; indeed, while some works require that algorithms leave no

item unallocated, it is preferable to have incomplete allocations in

course allocation: if the resulting allocation is not non-redundant,

then we have assigned students to classes that they either don’t

want to take, can’t fit in their schedule, or they already have been

signed up for. In any case, students will have to drop some of their

assigned classes, creating additional administrative overheads for

both management and the students themselves.

3.3 Computing Path Transfers
Themost computationally intensive aspect of Algorithm 1 is finding

path transfers. We now provide a simple algorithm to compute path

transfers. A general version of this method can be used to decide if

a set is independent in a matroid union [28]. A similar approach is

also used by Barman and Verma [6] whose notation we follow.

We define the exchange graph of an allocation 𝑋 as a directed

graph G(𝑋) = (𝐺, 𝐸) on the set of goods 𝐺 . If a good 𝑔 is in 𝑋 𝑗 for

some agent 𝑗 ∈ 𝑁 +0, then an edge exists from 𝑔 to some other good

𝑔′ ∉ 𝑋 𝑗 if 𝑣 𝑗 (𝑋 𝑗 −𝑔 +𝑔′) = 𝑣 𝑗 (𝑋 𝑗). In other words, there is an edge

from 𝑔 to 𝑔′ if the agent who owns 𝑔 can replace it with 𝑔′ with no

loss to their utility. In particular, if 𝑔 ∈ 𝑋0 then there is a directed

edge from 𝑔 to any other good not in 𝑋0. This is because agent 0,

who represents the unassigned items, has an additive utility over

all items. We observe that if the good 𝑔 is stolen from agent 𝑗 , then

that good can be replaced with 𝑔′ iff the edge (𝑔,𝑔′) exists.
In order to check if a transfer path exists from some agent 𝑖 to 0,

we construct the exchange graph G(𝑋). We then compute the set

of goods which have a marginal gain of 1 for the agent 𝑖 under the

allocation 𝑋 i.e. 𝐹𝑖 (𝑋) = {𝑔 ∈ 𝐺 | Δ𝑖 (𝑋𝑖 , 𝑔) = 1}. In the exchange

graph, we find the shortest path (if there exists one) from 𝐹𝑖 (𝑋)
to goods in 𝑋0; this can done by adding a source node 𝑠 in the

exchange graph with edges to all the goods in 𝐹𝑖 (𝑋) and then using

breadth-first search (BFS) to find the shortest path from 𝑠 to 𝑋0.

From the path in the exchange graph, we can also determine exactly

which goods to transfer along the path to update the allocation —

if we have a path (𝑠, 𝑔1, 𝑔2, . . . , 𝑔𝑘), we transfer the good 𝑔𝑘 to the

agent who has 𝑔𝑘−1, transfer 𝑔𝑘−1 to the agent who has 𝑔𝑘−2 and
so on. Finally, we give 𝑔1 to 𝑖; see Algorithm 2.

Algorithm 2 Computing Transfer Paths

Require: An allocation 𝑋 and two agents 𝑖 and 𝑗

Construct the exchange graph G(𝑋)
Add a source node 𝑠 to G(𝑋) with an edge to all the goods in

𝐹𝑖 (𝑋)
Find the shortest path from 𝑠 to 𝑋 𝑗 using breadth-first search in

G(𝑋)
if A path exists then

Return the path (𝑠, 𝑔𝑖1 , 𝑔𝑖2 , . . . , 𝑔𝑖𝑘)
else

Return false
end if

That the shortest path in the exchange graph from 𝐹𝑖 (𝑋) to𝑋0 is

a transfer path is well known in the matroid literature (albeit using

different terminology). This result was first adapted by Barman and

Verma [6, Lemma 1] to fair allocation. The missing proofs in this

section can be found in the full version of the paper.

Lemma 3.7. Given a non-redundant allocation 𝑋 , the shortest path
from 𝐹𝑖 (𝑋) to 𝑋 𝑗 in the exchange graph G(𝑋) is a transfer path from
𝑖 to 𝑗 (𝑖 ≠ 𝑗 and 𝑖, 𝑗 ∈ 𝑁 + 0) in 𝑋 . i.e. transferring goods along the
shortest path results in an allocation where 𝑖’s value for its bundle
goes up by 1, 𝑗 ’s value for its bundle goes down by 1 and all the other
agents see no change in the value of their bundles.

Barman and Verma [6, Lemma 5] also show that a result similar

to Lemma 3.1 is true for paths in the exchange graph as well.

Theorem 3.8. Let 𝑋 and 𝑌 be two non-redundant allocations for
the set of agents 𝑁 + 0. Let 𝑆− be the set of all agents 𝑖 ∈ 𝑁 + 0 where
|𝑋𝑖 | < |𝑌𝑖 |, 𝑆= be the set of all agents 𝑖 ∈ 𝑁 + 0 where |𝑋𝑖 | = |𝑌𝑖 | and
𝑆+ be the set of all agents 𝑖 ∈ 𝑁 + 0 where |𝑋𝑖 | > |𝑌𝑖 |. For any agent
𝑖 ∈ 𝑆−, there exists a path in the exchange graph from 𝐹𝑖 (𝑋) to 𝑋𝑘
for some 𝑘 ∈ 𝑆+.

Armed with these two results, we are ready to show correctness

i.e. a path exists from agent 𝐹𝑖 (𝑋) to 𝑋 𝑗 in the exchange graph iff a

transfer path exists from 𝑖 to 𝑗 in the allocation 𝑋 .

Theorem 3.9. Given a non-redundant allocation 𝑋 , a transfer
path exists from agent 𝑖 to agent 𝑗 in 𝑋 if and only if Algorithm 2
outputs a path. Furthermore, the path output by Algorithm 2 is a
transfer path.

Proof. The second statement is implied by Lemma 3.7 so we

only prove the first statement.

(⇒) Assume Algorithm 2 outputs a path. This implies there

exists a path from 𝐹𝑖 (𝑋) to 𝑋 𝑗 . From Lemma 3.7, this implies that

there is a transfer path from 𝑖 to 𝑗

(⇐) Assume there is a transfer path from 𝑖 to 𝑗 in 𝑋 . Let 𝑌 be

the non-redundant allocation that arises from transferring goods

along the transfer path. Apply Theorem 3.8 to allocations 𝑋 and 𝑌

and the agent 𝑖 . Agent 𝑖 is clearly in 𝑆− and the only agent in 𝑆+ is 𝑗
from the definition of the transfer path. Therefore, there must exist

Session 1C: Fair Allocations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

185

a path from 𝐹𝑖 (𝑋) to 𝑋 𝑗 in G(𝑋). This implies that Algorithm 2

outputs a path. □

3.4 Time Complexity Analysis
We now analyze the time complexity of Algorithm 1. We represent

the allocation 𝑋 as a binary matrix where 𝑋 (𝑖, 𝑔) = 1 if and only

if 𝑔 ∈ 𝑋𝑖 . Thus, checking if a good belongs to an agent, adding a

good to a bundle, and removing a good from a bundle can be done

in 𝑂 (1) time.

Our time complexity analysis is based on two simple observa-

tions. First, the loop in Algorithm 1 runs at most 𝑛 +𝑚 times. This

is because at each round, we either reduce the size of 𝑋0 by 1 or

remove some agent from the game — the former happens at most

𝑚 times and the latter happens at most 𝑛 times; once an agent is

removed, they do not return.

Second, Algorithm 2 runs in 𝑂 (𝑚2 (𝑛 + 𝜏)) time (where again, 𝜏

is the maximum time to compute 𝑣𝑖 (𝑆)). This can be seen by closely

examining each step of Algorithm 2. We can construct the exchange

graph by examining each possible pair of goods (𝑔,𝑔′), finding the

agent 𝑖 whose bundle contains 𝑔, and checking if 𝑣𝑖 (𝑋𝑖 − 𝑔 + 𝑔′) =
𝑣𝑖 (𝑋𝑖). This can trivially be done in 𝑂 (𝑚2 (𝑛 + 𝜏)) time. This is the

most expensive step of the algorithm.

Adding a source node and the required edges takes 𝑂 (𝑚𝜏) time;

we only need to check if Δ𝑖 (𝑋𝑖 , 𝑔) = 1 for each good 𝑔. Running

BFS and finding the shortest path takes 𝑂 (𝑚2) time since there are

𝑂 (𝑚) nodes in the graph. Executing path transfers takes 𝑂 (𝑛𝑚)
time — we iterate through the path and transfer each good to the

owner of the previous good; finding the owner takes 𝑂 (𝑛) time.

Combining the two observations, we have the following result.

Theorem 3.10. Algorithm 1 runs in 𝑂 (𝑚2 (𝑛 + 𝜏) (𝑚 + 𝑛)) time.

A practical application of Yankee Swap in course allocation

can likely leverage structural properties of the problem. For ex-

ample, while real-world instances contain thousands of students

and courses, each individual student is typically assigned no more

than 5–6 classes. This sparsity most likely allows for more compact

representations and further reductions in running time. We leave

this analysis to future work

3.5 Comparison to Babaioff et al. [2]
The algorithm to compute Lorenz dominating allocations by Babaioff

et al. [2] works as follows: starting with a MAX-USW allocation,

repeatedly check if there exists a path transfer that improves the ob-

jective function

∑
𝑖∈𝑁

(
𝑣𝑖 (𝑋𝑖) + 𝜋 (𝑖)

𝑛2

)
2

. This is similar to the tech-

nique used by Benabbou et al. [9], who maximize

∑
𝑖∈𝑁 𝑣𝑖 (𝑋𝑖)2

via single-item transfers, rather than path transfers. Babaioff et al.

check for and compute path transfers via matroid intersection al-

gorithms. Specifically, they use algorithms for the matroid intersec-

tion problem to compute a MAX-USW allocation for the modified

problem instance where each agent 𝑖’s valuation function is upper

bounded by some predefined value 𝑘𝑖 i.e. 𝑣
new
𝑖
(𝑆) = max{𝑣𝑖 (𝑆), 𝑘𝑖 }.

Note that computing the value of a bundle with respect to this

modified valuation function still takes 𝑂 (𝜏) time; therefore, from

a time complexity perspective, computing a MAX-USW allocation

for the valuation profile 𝑣 is equivalent to computing a MAX-USW

allocation for the valuation profile 𝑣new.

We first analyze the time complexity of computing a MAX-USW

allocation and then use it to analyze the time complexity of the

algorithm by Babaioff et al. [2]. Our analysis uses the matroid

intersection algorithm by Chakrabarty et al. [14], the state-of-the-

art algorithm for the matroid intersection problem with access to a

rank oracle. The proof can be found in the full version of the paper.

Lemma 3.11. When agents have MRF valuations, computing a
MAX-USW allocation takes 𝑂 (𝑛2𝑚3/2 (𝑚 + 𝜏) log𝑛𝑚) time using
the matroid intersection problem.

Note immediately that when𝑚 = Θ(𝑛), our algorithm computes

a MAX-USW allocation faster than the matroid intersection based

approach. We now present the runtime of Babaioff et al.’s algorithm.

Theorem 3.12. The algorithm by Babaioff et al. [2] computes
Lorenz dominating allocations in O(𝑛6𝑚7/2 (𝑚 + 𝜏) log𝑛𝑚) time.

Proof. Babaioff et al. [2] show that their algorithm computes a

MAX-USW solution at most 𝑂 (𝑛4𝑚2) times. Combining this with

Lemma 3.11, we get the required time complexity. □

Indeed, our algorithm is significantly faster than that of Babaioff

et al. [2]. This speedup mainly stems from two sources. First, even

though Babaioff et al. [2] use transfer paths, our method of com-

puting them is faster. Second, by carefully choosing which transfer

paths to check for, we check for much fewer paths. Combining these

two factors, Yankee Swap offers a significantly better worst-case

runtime. In particular, when𝑚 = Θ(𝑛), the worst-case runtime of

our algorithm is faster by a factor of 𝑂 (𝑛13/2 log𝑛).

4 CONCLUSIONS AND FUTUREWORK
In this work, we show that when agents have binary submodular

valuations, Yankee Swap offers a simple and fast method to output

fair and efficient allocations. The entire algorithmic framework can

be implemented using no more than a few lines of code (Algorithms

1 and 2), and offers a far better worst-case runtime guarantee than

the current state of the art. The simplicity of Yankee Swap is its

key strength: it is easy to understand (even by non-experts) and

implement, and can easily be adapted to different settings. This is

all achieved while offering the same strong fairness and efficiency

guarantees as the current state of the art.

This work highlights the surprising power of combinatorial ar-

guments in computing transfer paths. Unlike prior work in this

space, we do not invoke complex matroid optimization algorithms,

from which the proofs are directly derived, but rather utilize a

simple approach, ‘relegating’ the complexity to our careful com-

binatorial analysis. We believe that Yankee Swap can be applied

to compute justice criteria beyond leximin. More specifically, we

conjecture that when agents have entitlements (or priority weights)

[15], a modified version of Yankee Swap can be used to compute

a weighted leximin allocation. We also believe that Yankee Swap

can be applied in fair chore allocation problems, and with some

adaptations, in settings where agents do not have binary valuations.

ACKNOWLEDGMENTS
The authors would like to thank anonymous reviewers at WINE

2022 and AAMAS 2023 for useful feedback.

Session 1C: Fair Allocations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

186

REFERENCES
[1] Haris Aziz. 2019. Strategyproof Multi-Item Exchange under Single-Minded

Dichotomous Preferences. Autonomous Agents and Multi-Agent Systems 34, 1
(2019), 11.

[2] Moshe Babaioff, Tomer Ezra, and Uriel Feige. 2021. Fair and Truthful Mechanisms

for Dichotomous Valuations. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence (AAAI). 5119–5126.

[3] Moshe Babaioff, Ron Lavi, and Elan Pavlov. 2009. Single-Value Combinatorial

Auctions and Algorithmic Implementation in Undominated Strategies. J. ACM
56, 1, Article 4 (2009), 32 pages.

[4] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Greedy

Algorithms for Maximizing Nash Social Welfare. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).
7–13.

[5] Siddharth Barman and Paritosh Verma. 2021. Approximating Nash Social Welfare

Under Binary XOS and Binary Subadditive Valuations. In Proceedings of the 17th
Conference on Web and Internet Economics (WINE). 373–390.

[6] Siddharth Barman and Paritosh Verma. 2021. Existence and Computation of

Maximin Fair Allocations Under Matroid-Rank Valuations. In Proceedings of the
20th International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS). 169–177.

[7] Siddharth Barman and Paritosh Verma. 2022. Truthful and Fair Mechanisms for

Matroid-Rank Valuations. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI). 4801–4808.

[8] Nawal Benabbou, Mithun Chakraborty, Edith Elkind, and Yair Zick. 2019. Fairness

Towards Groups of Agents in the Allocation of Indivisible Items. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence (IJCAI). 95–101.

[9] Nawal Benabbou, Mithun Chakraborty, Ayumi Igarashi, and Yair Zick. 2021. Find-

ing Fair and Efficient Allocations for Matroid Rank Valuations. ACM Transactions
on Economics and Computation 9, 4, Article 21 (2021), 41 pages.

[10] Anna Bogomolnaia, Hervé Moulin, and Richard Stong. 2005. Collective choice

under dichotomous preferences. Journal of Economic Theory 122, 2 (2005), 165–

184.

[11] Eric Budish. 2011. The Combinatorial Assignment Problem: Approximate Com-

petitive Equilibrium from Equal Incomes. Journal of Political Economy 119, 6

(2011), 1061 – 1103.

[12] Eric Budish, Gérard P. Cachon, Judd B. Kessler, and Abraham Othman. 2016.

Course Match: A Large-Scale Implementation of Approximate Competitive Equi-

librium from Equal Incomes for Combinatorial Allocation. Operations Research
65, 2 (2016), 314–336.

[13] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg

Shah, and Junxing Wang. 2016. The Unreasonable Fairness of Maximum Nash

Welfare. In Proceedings of the 17th ACM Conference on Economics and Computation
(EC). 305–322.

[14] Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-

waiWong. 2019. Faster Matroid Intersection. In Proceedings of the 60th Symposium
on Foundations of Computer Science (FOCS). 1146–1168.

[15] Mithun Chakraborty, Ayumi Igarashi, Warut Suksompong, and Yair Zick. 2021.

Weighted Envy-Freeness in Indivisible Item Allocation. ACM Transactions on
Economics and Computation 9, Article 18 (2021), 39 pages.

[16] Andreas Darmann and Joachim Schauer. 2015. Maximizing Nash product social

welfare in allocating indivisible goods. European Journal Operations Research 247

(2015), 548–559.

[17] JonathanGoldman andAriel D. Procaccia. 2015. Spliddit: Unleashing Fair Division

Algorithms. SIGecom Exchanges 13 (2015), 41––46.
[18] Daniel Halpern, Ariel D. Procaccia, Alexandros Psomas, and Nisarg Shah. 2020.

Fair Division with Binary Valuations: One Rule to Rule Them All. In Proceedings
of the 16th Conference on Web and Internet Economics (WINE). 370–383.

[19] Andreas Krause and Daniel Golovin. 2014. Submodular Function Maximization.

In Tractability: Practical Approaches to Hard Problems, Lucas Bordeaux, Youssef
Hamadi, and Pushmeet Kohli (Eds.). Cambridge University Press, 71–104.

[20] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. 2018. Fair Enough:

Guaranteeing Approximate Maximin Shares. J. ACM 65, 2 (2018).

[21] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. 2004. On Approximately Fair

Allocations of Indivisible Goods. In Proceedings of the 5th ACM Conference on
Economics and Computation (EC). 125–131.

[22] Debasis Mishra and Souvik Roy. 2013. Implementation in multidimensional

dichotomous domains. Theoretical Economics 8, 2 (2013).
[23] Josué Ortega. 2020. Multi-unit assignment under dichotomous preferences.

Mathematical Social Sciences 103 (2020), 15–24.
[24] James Oxley. 2011. Matroid Theory (2nd ed.). Number 21. Oxford University

Press.

[25] Benjamin Plaut and Tim Roughgarden. 2017. Almost Envy-Freeness with General

Valuations. ArXiv abs/1707.04769 (2017).

[26] Ariel D. Procaccia and Junxing Wang. 2014. Fair Enough: Guaranteeing Approxi-

mate Maximin Shares. In Proceedings of the 15th ACM Conference on Economics
and Computation (EC). 675–692.

[27] Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. 2005. Pairwise kidney

exchange. Journal of Economic Theory 125, 2 (2005), 151–188.

[28] A. Schrijver. 2003. Combinatorial Optimization - Polyhedra and Efficiency.
Springer.

[29] Warut Suksompong and Nicholas Teh. 2022. Onmaximumweighted Nash welfare

for binary valuations. Mathematical Social Sciences 117 (2022), 101–108.

Session 1C: Fair Allocations

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

187

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Prioritized Lorenz Dominating Allocations

	3 Yankee Swap
	3.1 The Algorithm
	3.2 Analysis
	3.3 Computing Path Transfers
	3.4 Time Complexity Analysis
	3.5 Comparison to Babaioff et al.

	4 Conclusions and Future Work
	Acknowledgments
	References

