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ABSTRACT
Designing auctions to incentivize buyers to invite new buyers via

their social connections is a new trend in mechanism design [18].

The challenge is that buyers are competitors and we need to de-

sign proper incentives for them to invite each other. For selling

a single item, many interesting mechanisms have been proposed.

However, all the mechanisms require the seller or a third party to be

trustworthy to execute the mechanisms. In addition, the owner of

the mechanism will know all the connections of the network after

the execution, which poses a potential privacy issue. Hence, dis-

tributed mechanisms to avoid the privacy issue are more appealing

in practice. Therefore, in this paper, we propose the first distributed

mechanism in social networks without revealing buyers’ private

connections to anyone, and it achieves complete decentralization

that does not rely on any trustworthy third party. Moreover, the

centralized reduction of our mechanism also offers a novel way to

compute players’ contributions compared to the existing solutions.
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1 INTRODUCTION
Mechanism design over social networks has recently attractedmuch

attention from the researchers in AI [8, 18]. The design takes partici-

pants’ connections into consideration and utilizes their connections

to attract more participants, which works as a way to promote the

mechanism to more participants via the participants’ invitations.

The challenge is that the participants may compete with each other

in the game. For example, in auction, they compete for the limited

resources, and in matching, they compete for the same preferred

match. The existing mechanisms for the traditional settings can-

not avoid the competition to incentivize participants to invite new

participants. Therefore, new mechanisms are demanded in the new

setting to attract more participants. We have seen a great progress

in the directions of auctions, matching and coalitional games re-

cently [6, 7, 16].

In this paper, we continue the study on auctions for selling a

single item in the network setting. The existing mechanisms are

centralized mechanisms which require the seller or a trusted center

to execute the mechanism. However, after the execution, the center

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
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will know all participants’ private connections, which will pose a

potential privacy issue. Moreover, the seller can be anyone on the

network which is not necessarily trustworthy and the mechanism

design on networks aims to attract new participants without any

third party. Therefore, to be more appealing in practice, our goal is

to design a distributed auction on a network which can be executed

without a trusted center, and does not reveal participants’ private

connections to anyone. Additionally, the network is distributed

and is not owned by any single entity, which is also a natural

environment for distributed mechanisms.

Different from centralized mechanisms, distributed mechanisms

distribute the execution of themechanisms to all participants. There-

fore, the participants need to do more other than just reporting their

private information/type as required in a centralized mechanism.

This will give participants a larger action space and it becomes

more challenging to prevent their manipulations.

In the distributed mechanism design literature, researchers have

tried to implement centralized mechanisms such as VCG in a dis-

tributed manner [11]. However, the existing implementation still

requires a trusted entity to do minimal computation or oversee the

execution. Similarly, for the existing centralized mechanisms of

selling a single item in social networks, it is also very hard to im-

plement them in a completely distributed manner since they need

the information about the graph structure like cut-points [8, 9].

Against this background, we propose the first distributed mech-

anism for selling a single item in networks without relying on any

trusted entity to oversee the computation. Moreover, our mecha-

nism also provides a novel way to design incentives for the partici-

pants to invite others. Intuitively, our design rewards more buyers

with a more decent reason than the existing methods, which gives

them stronger incentives to participate in the mechanism. The re-

ward of each buyer is computed according to her ability to connect

the seller to the winner and also her ability to bring more valuable

buyers. In summary, our contributions advance the state of the art

in the following ways:

• We propose the very first distributed mechanism for selling

a single item in social networks, which does not require the

assistant from a trusted center.

• Our distributed mechanism also proposes a novel way to

design the incentive for buyers to invite others, which gives

more buyers positive rewards. This will incentivize buyers

to participate.

2 RELATEDWORK
Auctions in soical networks. The first auction mechanism in

social networks that can incentivize buyers to invite their neighbors

is called Information DiffusionMechanism (IDM) [9]. The main idea

of IDM is to give compensation to cut-points of the highest bidder.

Based on IDM, Zhao et al. [19] extend it to homogeneous multi-item
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auctions, where each buyer only requires one item. Later, Li et al.

[8] characterize the necessary and sufficient conditions of incentive

compatibility for all single-item auctions in social networks. Other

related work along this research line can be found in a survey [6].

Invitation incentives in other settings. The idea that recruiting
more participants by invitation has also been applied to many other

game-theory settings. For example, Kawasaki et al. [7] and Cho

et al. [1] propose methods to incentivize invitation in matching

market, and Zhang and Zhao [16] initiate the model for invitation

incentives in cooperative games. An overview about the problem

in all these settings is given by Zhao [17, 18].

Distributedmechanism design. There also exists a rich literature
about distributed mechanism design. Monderer and Tennenholtz

[10] initialize the study on a simple single-item distributed auction

problem where agents must forward messages from other agents

to a center. Then, Feigenbaum et al. [2, 3] firstly introduce the con-

cept of the distributed algorithmic mechanism design. Following

them, Parkes and Shneidman [11] and Petcu et al. [12] have studied

the distributed implementation of the VCG mechanism by propos-

ing some principles to guide the distribution of computation. For

other settings, Shneidman and Parkes [13] study the distributed

implementation for interdomain routing. In our paper, to model a

distributed mechanism in the new setting, we mainly follow the

inspiration from the formal specification for distributed mechanism

design introduced in [14]. Some other related works have been

summarized in [4, 5].

However, all the above distributed mechanisms rely on a third

party to verify some of the buyers’ operations, while our distributed

mechanism achieves complete decentralization that does not rely

on any trustworthy third party.

3 THE MODEL
Consider the scenario where a seller 𝑆 sells one item in a social

network, but she can only communicate with some of the buyers

in the network. We model the network as an undirected graph

𝐺 = (𝑉 , 𝐸), where𝑉 = 𝑁 ∪{𝑆} represents the set of all nodes in the

network and the edge set 𝐸 contains all the connections among the

nodes. The node set 𝑁 = {1, 2, ..., 𝑛} contains all potential buyers,
and each buyer 𝑖 ∈ 𝑁 has a private valuation 𝑣𝑖 ≥ 0 of receiving

the item and a set of neighbors 𝑟𝑖 ⊆ 𝑉 \{𝑖}, where 𝑗 ∈ 𝑟𝑖 if there is

an edge between 𝑖 and 𝑗 in 𝐸. Particularly, denote 𝑟𝑆 as the seller’s

neighbor set. We assume that a node can only directly communicate

with her neighbors, which is also a feature of a modern social

network. Formally, let \𝑖 = (𝑣𝑖 , 𝑟𝑖 ) be the private type of buyer

𝑖 ∈ 𝑁 and Θ𝑖 = R≥0 × P(𝑉 ) be the type space of 𝑖 , where P(𝑉 ) is
the power set of 𝑉 . Let the joint vector \ = (\1, \2, ..., \𝑛) denote
the type profile of all buyers and Θ = Θ1 × Θ2 × · · ·Θ𝑛 be the type

profile space. Denote \−𝑖 as the type profile of all buyers except 𝑖
and \ can also be written as (\𝑖 , \−𝑖 ).

In this model, we assume that initially only the seller’s neighbors

𝑟𝑆 are aware of the sale as she cannot inform the others by herself.

The goal is to incentivize the informed buyers to use their connec-

tions to invite more buyers to join the sale. A buyer’s invitation

is modeled by reporting her neighbors here. Invited buyers can

further invite other buyers, and eventually only the buyers who

are invited can join the sale. Hence, we have to determine who are

valid buyers according to their reported neighbors.

Definition 3.1. Given the buyers’ reported type profile \ ′, for
each buyer 𝑖 ∈ 𝑁 with reported type \ ′

𝑖
= (𝑣 ′

𝑖
, 𝑟 ′
𝑖
), build an edge

between 𝑖 and 𝑗 if 𝑗 ∈ 𝑟 ′
𝑖
. We say a buyer 𝑖 is valid if there exist a

path connecting 𝑖 with the seller. Denote the subgraph containing

all valid buyers as 𝐺 (\ ′).

In principle, buyers who are not invited are not aware of the

sale and will not report anything. However, to make the definitions

clean, we assume all buyers report in the model, but only valid

buyers are considered in the sale. Given the above setting, our goal

is to design distributed mechanisms. To make the definitions easy

to follow, we first define the centralized mechanisms.

Definition 3.2. A centralized (direct-revelation) mechanism in

social networks is a 2-tuple 𝑀 = (𝜋, 𝑝), where 𝜋 = {𝜋𝑖 }𝑖∈𝑁 is

the allocation function and 𝑝 = {𝑝𝑖 }𝑖∈𝑁 is the payment function

of all buyers. Particularly, 𝜋𝑖 : Θ → [0, 1] and 𝑝𝑖 : Θ → R are

the allocation and payment functions for 𝑖 respectively, and they

further satisfy that for all reported type profile \ ′ ∈ Θ, (1) for all
invalid buyers 𝑖 ∈ 𝑁 \𝐺 (\ ′), 𝜋𝑖 (\ ′) = 0 and 𝑝𝑖 (\ ′) = 0, and (2) for

all valid buyers 𝑖 ∈ 𝐺 (\ ′), 𝜋𝑖 (\ ′) and 𝑝𝑖 (\ ′) are independent of the
reports of the invalid buyers.

Given the buyers’ reported type profile \ ′, 𝜋𝑖 (\ ′) represents the
probability for allocating the item to buyer 𝑖 . Given a mechanism𝑀 ,

a reported type profile \ ′, the utility of a buyer 𝑖 of type \𝑖 is defined
as𝑢𝑖 (\𝑖 , \ ′, (𝜋, 𝑝)) = 𝜋𝑖 (\ ′) ·𝑣𝑖−𝑝𝑖 (\ ′) . In the centralized scenarios,
we say a mechanism𝑀 is incentive compatible if truthfully revealing
the type is a buyer’s dominant strategy no matter what the others

report.

Definition 3.3. A centralized mechanism𝑀 = (𝜋, 𝑝) is incentive
compatible (IC) if for all 𝑖 ∈ 𝑁 , all \ ′

𝑖
∈ Θ𝑖 and all \ ′−𝑖 ∈ Θ−𝑖 ,

𝑢𝑖 (\𝑖 , (\𝑖 , \ ′−𝑖 ), (𝜋, 𝑝)) ≥ 𝑢𝑖 (\𝑖 , (\ ′𝑖 , \
′
−𝑖 ), (𝜋, 𝑝)) .

Another desirable property is individual rationality, which guar-

antees that a buyer will not suffer a loss in the mechanism as long

as she truthfully reports her type.

Definition 3.4. A centralized mechanism𝑀 = (𝜋, 𝑝) is individu-
ally rational (IR) if for all buyers 𝑖 ∈ 𝑁 , all \𝑖 ⊆ Θ𝑖 , and \

′
−𝑖 ∈ Θ−𝑖 ,

𝑢𝑖 (\𝑖 , (\𝑖 , \ ′−𝑖 ), (𝜋, 𝑝)) ≥ 0.

In centralized scenarios, the only action a buyer needs to do

is reporting her type to the center, which is the only space for

manipulation. Different from centralized mechanisms which are

executed by a trusted center, distributed mechanisms distribute the

execution to all participants. This will enlarge the action space of

the buyers and cause more possibilities to manipulate. Therefore,

in a distributed mechanism, we also need to guarantee that the

buyers execute the mechanism correctly. Hence, it is necessary

to introduce the concept about strategy to capture how a buyer

behaves in all states of the mechanism. Let 𝑠𝑖 denote the strategy

of buyer 𝑖 which is parameterized by 𝑖’s type \𝑖 and let Σ𝑖 be 𝑖’s
strategy space, which includes all strategies 𝑖 can perform. Let

𝑠 (\ ) = (𝑠1 (\1), 𝑠2 (\2), ..., 𝑠𝑛 (\𝑛)) be a strategy profile of all buyers

under type profile \ and let 𝑠−𝑖 (\ ) = (𝑠 𝑗 (\ 𝑗 )) 𝑗≠𝑖, 𝑗∈𝑁 .
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Definition 3.5. A distributed mechanism 𝑑𝑀 is a tuple 𝑑𝑀 =

(Σ, (𝜋, 𝑝), 𝑠𝑀 ), where Σ = (Σ1, ..., Σ𝑛) is the strategy space of all

buyers, 𝜋 = {𝜋𝑖 }𝑖∈𝑁 is the allocation function, 𝑝 = {𝑝𝑖 }𝑖∈𝑁 is

the payment function, and 𝑠𝑀 = (𝑠𝑀
1
, ..., 𝑠𝑀𝑛 ) ∈ Σ is the intended

strategy of the mechanism. Particularly, 𝜋𝑖 : Σ → {0, 1} and 𝑝𝑖 :

Σ → R are the allocation and payment functions for 𝑖 respectively.

For every buyer 𝑖 , the intended strategy 𝑠𝑀
𝑖

∈ Σ𝑖 can be con-

sidered as a series of algorithms or actions that the mechanism

requires 𝑖 to perform. 𝑠𝑀
𝑖

is parameterized by the private type \𝑖 of

buyer 𝑖 , and 𝑠𝑀
𝑖
(\𝑖 ) indicates which actions buyer 𝑖 should execute

in every state of the mechanism. In the centralized scenario, the

strategy of each buyer is only reporting her type to the center, so

the strategy space is reduced to type space, i.e. Σ𝑖 = Θ𝑖 . Since there

is only one kind of action, which is private information revelation,

we can define 𝑠𝑖 (\𝑖 ) = \ ′
𝑖
by viewing 𝑠𝑖 as a mapping function

from her type \𝑖 to the type space Θ𝑖 , and we usually intend each

buyer to truthfully report her type, i.e., 𝑠𝑀
𝑖
(\𝑖 ) = \𝑖 . However, in

the distributed scenario, the strategy space is very complex and

does not have a standard structure, which includes many varieties

of actions besides reporting type. Here we refer to the canonical

literature [14] and decompose the strategy 𝑠𝑖 into three kinds of

actions, 𝑠𝑖 = (𝑡𝑖 , 𝑞𝑖 , 𝑓𝑖 ), which are information-revelation action 𝑡𝑖 ,

message-passing action 𝑞𝑖 , and computational action 𝑓𝑖 . For each

buyer 𝑖 ∈ 𝑁 , 𝑡𝑖 decides whether to reveal her type truthfully, 𝑞𝑖
determines how she passes messages to her neighbors (for exam-

ple, she can decide whether to deliver to one neighbor or multiple

neighbors), and 𝑓𝑖 decides how to conduct local computation based

on messages she receives. Similarly, the intended strategy 𝑠𝑀
𝑖

can

also be represented as (𝑡𝑀
𝑖
, 𝑞𝑀

𝑖
, 𝑓𝑀
𝑖

).
Instead of using 𝜋 (\ ′) and 𝑝 (\ ′) to represent the outcomes that

depend only on the reported information, we now must update the

notation to 𝜋 (𝑠 (\ )) and 𝑝 (𝑠 (\ )) that depend on the sequence of

actions taken by buyers. Hence, the utility of a buyer is updated

to 𝑢𝑖 (\𝑖 , 𝑠 (\ ), (𝜋, 𝑝)) = 𝜋𝑖 (𝑠 (\ )) · 𝑣𝑖 − 𝑝𝑖 (𝑠 (\ )). We have mentioned

that the challenges in distributed mechanism design are different

from centralized mechanism design, because the computation of

a distributed mechanism is performed by the strategic buyers in

the absence of a trusted center. The buyers can manipulate the

computation to their own interests. In such a scenario, the pursuit

of IC might be impossible, because there might be no single com-

putational behavior that is optimal regardless of what the other

buyers do [4]. Hence, we will focus on a more suitable solution

concept called ex-post incentive compatibility, which can be viewed

as a compromise of distributing the computation to the buyers.

Definition 3.6. A distributed mechanism 𝑑𝑀 = (Σ, (𝜋, 𝑝), 𝑠𝑀 ) is
ex-post incentive compatible if for all \ ∈ Θ, all buyers 𝑖 ∈ 𝑁 ,

and all 𝑠𝑖 ∈ Σ𝑖 , 𝑢𝑖 (\𝑖 , (𝑠𝑀𝑖 , 𝑠𝑀−𝑖 ), (𝜋, 𝑝)) ≥ 𝑢𝑖 (\𝑖 , (𝑠𝑖 , 𝑠𝑀−𝑖 ), (𝜋, 𝑝)).

It means no one can obtain a higher utility by deviating from

the equilibrium that everyone executes the intended strategy. If a

mechanism is ex-post IC, then 𝑠𝑀 is an ex-post Nash equilibrium.

Although weaker than a dominant strategy equilibrium, ex-post IC

is also a strong solution concept because it does not require buyers

to have any knowledge of the private types of the others.

In addition, for any buyer 𝑖 ∈ 𝑁 , if we restrict her strategy

to 𝑠𝑖 (\𝑖 ) = (𝑡𝑖 , 𝑞𝑀𝑖 , 𝑓𝑀
𝑖

), there always exists a centralized mecha-

nism𝑀 such that 𝐸 [𝜋 (𝑠 (\ ′))] = 𝜋 ′ (\ ′) and 𝐸 [𝑝 (𝑠 (\ ′))] = 𝑝′ (\ ′)1,
where 𝜋 is the outcome of the distributed mechanism 𝑑𝑀 , 𝜋 ′ is the
outcome of the corresponding centralized mechanism 𝑀 , 𝑝 and 𝑝′

are the payment functions of these two mechanisms respectively.

We call this mechanism 𝑀 the centralized reduction mechanism
(CRM) of 𝑑𝑀 and say 𝑑𝑀 is a distributed implementation of𝑀 .

4 THE MECHANISM
In this section, we will formally describe the very first distributed

mechanism in social networks called the Sequential Resale Auction
(SRA). There already exist many centralized mechanisms in social

networks such as the InformationDiffusionMechanism [8, 9]. These

mechanisms are highly dependent on the cut-points of the network

and they only compute incentives for the cut-points which do not

form complete paths. In addition, it is hard to locate the cut-points

in decentralized settings since no one can know the structure of the

whole graph, and we cannot pass the item distributively without

a complete path. Therefore, our distributed mechanism will not

implement the existing centralized diffusion auctions. Moreover, the

centralized reduction of our mechanism gives another novel way to

design the diffusion incentive which is based on their connection

power to the item receiver.

4.1 Sequential Resale Auction
We describe the distributed auction as a three-stage process and

buyers will perform different kinds of actions in each stage. In the

first stage, the buyers diffuse the sale information to their neighbors.

In the second stage, the buyers collect their invited neighbors’

bids and represent them to join the sale. In the last stage, we do

sequential resales from the seller to the final winner.

Stage 1 (Top-down Diffusion): The first stage is top-down diffu-
sion, in which the sale information is spread in the social network

starting from the original seller 𝑆 . Any buyer 𝑖 ∈ 𝑁 who is aware of

the sale can decide her information-revelation action in this stage.

Definition 4.1 (Information-revelation Action). Given buyer 𝑖’s

type \𝑖 = (𝑣𝑖 , 𝑟𝑖 ), her information-revelation action 𝑡𝑖 is to decide

her bid 𝑣 ′
𝑖
in the sale and choose neighbors 𝑟 ′

𝑖
⊆ 𝑟𝑖 to invite, i.e., 𝑡𝑖 =

(𝑣 ′
𝑖
, 𝑟 ′
𝑖
). The intended information-revelation action is to truthfully

reveal her type, i.e., 𝑡𝑀
𝑖

= (𝑣𝑖 , 𝑟𝑖 ).

The intended information-revelation action is the same as the

reporting action in centralized mechanisms. However, instead of

reporting her valuation and neighbors to the seller in centralized

scenarios, a buyer now only needs to invite her neighbors on her

own interest and does not need to tell her valuation to anyone.

When buyer 𝑖 invites a neighbor 𝑗 ∈ 𝑟 ′
𝑖
to join the sale, the edge

𝑒𝑖 𝑗 becomes a directed edge from 𝑖 to 𝑗 and we say buyer 𝑖 is an

inviter of buyer 𝑗 . A buyer may have multiple inviters on a network

and she can further invite her neighbors except for her inviters.

Finally, the social network becomes a connected directed graph

𝐺 ′
containing all valid buyers. Note that the graph is unknown to

1
We take the expectation results of the distributed mechanism because distributed

mechanisms usually have randomized outcomes in practice and the expectation results

are only used for analysis.
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any agent, and everyone only knows who invites her and who she

invites.

Stage 2 (Bottom-up Aggregation): The second stage is bottom-
up aggregation, where each buyer determines her message-passing

action𝑞𝑖 and computational action 𝑓𝑖 . In our distributed mechanism,

each buyer may receive several messages from the neighbors she

invites, and she can aggregate those messages into a new message

called aggregated bid and pass it to her inviters. We first discuss

each buyer’s computational action 𝑓𝑖 of the aggregation process and

describe the message-passing action later. For simplicity, we denote

the aggregated bid as 𝑏𝑖 ∈ R≥0 and use 𝐵𝑖 to represent the set of

all bids buyer 𝑖 receives. The computational action 𝑓𝑖 corresponds

to an aggregation algorithm, which takes 𝐵𝑖 and her own bid 𝑣 ′
𝑖

as input and outputs a new bid, and we denote the computational

action space as 𝐹 to contain all possible aggregation algorithms.

Definition 4.2 (Computational Action). Given a buyer 𝑖’s received

bids set 𝐵𝑖 , and her bid 𝑣
′
𝑖
, the computational action 𝑓𝑖 ∈ 𝐹 will gen-

erate her aggregated bid𝑏𝑖 = 𝑓𝑖 (𝐵𝑖 , 𝑣 ′𝑖 ). The intended computational

action 𝑓𝑀
𝑖

is to select the largest bid among all the bids collected

by buyer 𝑖 as her aggregated bid, i.e., 𝑓𝑀
𝑖

(𝐵𝑖 , 𝑣 ′𝑖 ) = max(𝐵𝑖 ∪ {𝑣 ′
𝑖
}).

After generating 𝑏𝑖 , the next action a buyer can manipulate is to

choose whether to pass the message𝑏𝑖 truthfully and which inviters

to pass the message to. Since misreporting 𝑏𝑖 to 𝑏
′
𝑖
is actually the

same as choosing another aggregation algorithm whose output is

the misreported value 𝑏′
𝑖
and reporting 𝑏′

𝑖
truthfully, we categorize

this kind of manipulation into 𝑓𝑖 and assume buyers will truthfully

report their aggregated bids when considering message-passing ac-

tion. Hence, the message-passing action only cares about reporting

the aggregated bid to one or more inviters, and we denote buyers’

message-passing action space as 𝑄 to contain all possible actions.

Definition 4.3 (Message-passing Action). Buyer 𝑖’s message-passing

action 𝑞𝑖 ∈ 𝑄 is to select one or more inviters to report her ag-

gregated bid. The intended message-passing action 𝑞𝑀
𝑖

∈ 𝑄 is to

randomly select one inviter.

The intended message-passing action is designed as above be-

cause all inviters are equivalent from a buyer’s local view, and it

prevents the buyer’s bid from being aggregated multiple times. For

an inviter who receives buyer 𝑖’s aggregated bid, the inviter still

does not know which buyer the bid actually belongs to, and this can

effectively protect buyers’ privacy. The second stage starts from the

leaf nodes, who do not invite anyone and just report their bids, and

ends until the original seller receives all her neighbors’ aggregated

bids. If all buyers execute the intended message-passing action,

the social network will finally become a directed tree. An example

social network after this stage is shown in Figure 1(a).

Stage 3 (Top-down Allocation): The third stage is top-down allo-
cation. We model the entire auction as a series of resales, and each

resale is called a local auction. Suppose the item is resold to buyer

𝑖 currently, 𝑖 can initiate a local auction and notify all neighbors

she invites in Stage 1 to join (including neighbors who do not pass

messages to her in Stage 2). Notice that if a buyer 𝑗 in this local

auction does not pass her bid to 𝑖 in Stage 2, then there must exist

another path connecting the 𝑖 and 𝑗 . To prevent other buyers on

the path from using the buyer 𝑗 ’s bid to compete with 𝑗 , 𝑗 should

connect herself only to the current seller 𝑖 and disconnect from
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Figure 1: (a) An example of social network after bottom-up
aggregation stage. The red number beside each node is the
computation result using the intended algorithm. (b) An
example of social network after top-down allocation stage.
The blue number beside each node is the purchasing price to
win the item, and the red number is the selling price.

other inviters. All participants affected by this disconnection should

re-aggregate their bids. For example, in Figure 1(a), suppose 𝐵 holds

a local auction now. 𝐹 is invited by 𝐵, so 𝐹 should disconnect her-

self from 𝐸 and join 𝐵’s auction, such that 𝐸’s aggregated bid will

become 10 since she cannot receive message from 𝐹 now. We do

this because both 𝐸 and 𝐹 are the participants in the local auction

held by 𝐵, then 𝐸 should not compete for the item with 𝐹 ’s bid. The

definition of a local auction hosted by buyer 𝑖 is given as follows:

Definition 4.4. A local auction hosted by buyer 𝑖 , �̂�𝑖 , is composed

of a local allocation function 𝜋𝑖 = {𝜋𝑖
𝑗
} 𝑗∈𝑟 ′

𝑖
and a local payment

function 𝑝𝑖 = {𝑝𝑖
𝑗
} 𝑗∈𝑟 ′

𝑖
, where 𝜋𝑖

𝑗
∈ {0, 1} and 𝑝𝑖

𝑗
∈ R are the local

allocation and local payment for participant 𝑗 respectively.

The seller 𝑖 determines the local allocation results 𝜋𝑖 and local

payment results 𝑝𝑖 based on her received bids set 𝐵𝑖 , her own bid 𝑣 ′
𝑖
,

and her purchasing price 𝑝𝑖 which represents the amount she pays

to win the item from the previous local auction
2
. The local auction

is a classic one-layer VCG auction with a reserve price which is

equal to the purchasing price. The local auctions run iteratively

from the original seller until someone chooses to keep the item,

where all the local sellers form a resale path. Note that a local seller

actually participates in only two consecutive local auctions, once

as a buyer and once as a seller. A running example of this stage is

shown in Figure 1(b).

To prevent malicious manipulation on the purchasing price, we

utilize the Distributed Ledger Technology (DLT) [15] to encrypt

the record of each purchasing price, and everyone can access the

ledger to know the historical transactions. In terms of how to use a

DLT, we may face three different situations: (1) The exact DLT is a

common knowledge, e.g., in a completely distributed environment

like the digital world (the metaverse), all exchanges are recorded in

a kind of DLT, where they may have a fixed DLT for all kinds of

exchanges. In this case, we don’t need to propagate the information

of the DLT. (2) The need for a DLT is common, but which DLT is not

common, e.g., in the digital world, we use multiple cryptocurrencies

to exchange goods, and each market may have different choices.

2
The purchasing price of the original seller is initialized as 0.
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In this case, the agents of our mechanism also need to propagate

the DLT information. Here, each agent doesn’t have any incentive

to misreport the DLT, because the invitees will easily notice the

manipulation because they cannot find the exchange records of

the previous resales in a misreported DLT. (3) The last case is that

the network is owned by a centralized platform and DLT is not

common to record exchanges. Then, an agent may not tell the DLT

information to her neighbors at all so that she can increase her

reserve price to gain more. To prevent such manipulation, we can

make the rules of the mechanism public and the agents only join a

mechanism where they believe no one can manipulate. Then each

agent in our mechanism will also need to propagate the mechanism

id where misreporting the id is not beneficial.

The above distributed mechanism is summarized as follows:

Sequential Resale Auction (SRA)

(1) Top-down diffusion. The original seller 𝑆 starts to prop-

agate the auction information to her neighbors. Each buyer

who is aware of the sale executes her information-revelation

action 𝑡𝑖 = (𝑣 ′
𝑖
, 𝑟 ′
𝑖
), which contains both deciding her bid 𝑣 ′

𝑖
and inviting her neighbors 𝑟 ′

𝑖
⊆ 𝑟𝑖 . The social network finally

becomes a directed graph 𝐺 ′
.

(2) Bottom-up aggregation. Each buyer executes the

message-passing action 𝑞𝑖 to pass the result of the compu-

tational action 𝑏𝑖 = 𝑓𝑖 (𝐵𝑖 , 𝑣 ′𝑖 ) to one of her inviters. This stage

starts from all leaf node who invites no buyers, and terminates

until the original seller receives all her neighbors’ aggregated

bids.

(3) Top-down allocation. The original seller 𝑆 starts the first

local auction. For a local auction hosted by 𝑖 , let 𝑏1st

𝑟 ′
𝑖

and 𝑏2nd

𝑟 ′
𝑖

be the highest and second-highest bid among all participants

respectively. The local allocation and payment function of a

participant 𝑗 ∈ 𝑟 ′
𝑖
are defined as below:

• Local allocation function:

𝜋𝑖𝑗 =

{
1, if 𝑣 ′

𝑗
= 𝑏1st

𝑟 ′
𝑖

, and 𝑣𝑖 < max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

},
0, otherwise.

(1)

• Local payment function:

𝑝𝑖𝑗 =

{
max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

}, if 𝜋𝑖
𝑗
= 1,

0, otherwise.
(2)

After the local auction �̂�𝑖 finishes, the local winner 𝑤 , i.e.,

𝜋𝑖𝑤 = 1, will host next local auction �̂�𝑤 and her payment in

�̂�𝑖 will be the purchasing price 𝑝𝑤 in the new local auction

�̂�𝑤 . The whole resale process terminates if a local seller 𝑖

keeps the item, i.e., Σ 𝑗∈𝑟 ′
𝑖
𝜋𝑖
𝑗
= 0.

In Equation (1), the local seller will not allocate the item to any-

one if her valuation is no less than the selling price, i.e., Σ 𝑗∈𝑟 ′
𝑖
𝜋𝑖
𝑗
= 0

if 𝑣𝑖 ≥ max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

}. In Equation (2), the local winner𝑤 (if exists)

pays the selling price, max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

}, to the local seller 𝑖 and other

buyers’ payments are zero. Therefore, for a local seller 𝑖 except for

the winner, the transactions she involves in include purchasing the

item from previous local auction by paying 𝑝𝑖 , then selling the item

to next local seller by charging max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

}, so her utility can

be represented as 𝑢𝑖 = max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

} − 𝑝𝑖 . For the winner 𝑤 who

keeps the item, her utility can be represented as 𝑢𝑤 = 𝑣𝑤 − 𝑝𝑤 .

4.2 Centralized Reduction of the SRA
To facilitate a better understanding of our distributed mechanism,

we will briefly discuss the centralized reduction mechanism of

the sequential resale auction in this part. The centralized setting

is equivalent to the situation that everyone follows the intended

message-passing action and intended computational action, and

she can only manipulate how to reveal her private type in her

information-revelation action 𝑡𝑖 = (𝑣 ′
𝑖
, 𝑟 ′
𝑖
). Therefore, everyone’s

strategy 𝑠𝑖 (\𝑖 ) = (𝑡𝑖 , 𝑞𝑀𝑖 , 𝑓𝑀
𝑖

) is reduced to the reported type \ ′
𝑖

which is consistent with traditional centralized mechanisms.

Reviewing the first stage of the SRA, each buyer does not need

to report her valuation to anyone and only needs to invite her

neighbors to diffuse the auction information. In the centralized

setting, each buyer is required to report her type to the seller, so

the seller can get access to the whole network structure 𝐺 (\ ′)
containing all valid buyers. Hence, in the centralized scenarios,

the seller can quickly locate the highest bidder denoted as 𝑧 with

𝑣 ′𝑧 = 𝑣1st

𝐺 (\ ′ ) , where we denote 𝑣
1st

D = max𝑖∈D 𝑣 ′
𝑖
to be the highest

reported valuation in the subset D ⊆ 𝐺 (\ ′).
The social network becomes a randomized tree after the second

stage in our distributed auction, we also generate a spanning tree

𝑇 randomly from 𝐺 (\ ′) in the centralized reduction mechanism.

Denote the set containing all possible spanning trees asT . The seller

can determine the simple path from 𝑆 to 𝑧 in each spanning tree.

We define a special class of paths and explain how it corresponds

to the resale path in the third stage of our distributed auction.

Definition 4.5. A diffusion path to buyer 𝑚 is a simple path

from 𝑆 to𝑚, denoted as ℎ𝑚 = (ℎ0, ℎ1, ..., ℎ𝑘 ), where ℎ0 = 𝑆 , ℎ𝑘 =𝑚,

and it satisfies for any two buyers ℎ𝑖 , ℎ 𝑗 (𝑖 < 𝑗 − 1), there is no edge

between ℎ𝑖 and ℎ 𝑗 in the connected graph 𝐺 (\ ′). That is, there are
no back-edges between any two buyers on a diffusion path.

For each spanning tree, if the simple path from 𝑆 to 𝑧 is not a

diffusion path, we make a transformation on the path. A transfor-

mation runs as follows: for each existing back-edge between ℎ𝑖 ,

ℎ 𝑗 (𝑖 < 𝑗 − 1) on the path ℎ𝑧 , remove all nodes between ℎ𝑖 and ℎ 𝑗
on the path and add the back-edge into the path. As we described

in the third stage of the SRA, for any local auction, each neighbor

of the local seller needs to disconnect herself from other inviters

and add the edge to the local seller. The transformation is actually

corresponding to this operation we mentioned before.

The intuition of the centralized mechanism is to resell the item

iteratively on the diffusion path. The difference between the selling

price and the purchasing price of each local seller is considered as

her connecting contribution on the diffusion path. One place where

the mechanism is different from the SRA is that we can enumerate

all spanning trees in the centralized scenarios since the seller is

aware of the entire network structure, so we will average a buyer’s

connection contribution over all spanning trees as her final payoff.

The centralized reduction mechanism is summarized as follows:
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Centralized Reduction Mechanism of the SRA

(1) Given a reported type profile \ ′ ∈ Θ, build the subgraph

𝐺 (\ ′) of valid buyers, and find the valid buyer 𝑧 with the

highest valuation in 𝐺 (\ ′) (with random tie-breaking).

(2) For a spanning tree𝑇 generated from𝐺 (\ ′), check whether
the simple path from 𝑆 to 𝑧 is a diffusion path. If it is, go to (4);

else, go to (3).

(3) Transform the simple path to a diffusion path.

(4) Denote the corresponding diffusion path from 𝑆 to 𝑧 as

ℎ𝑧 = {𝑆, ℎ1, ℎ2, ..., 𝑧} and use 𝑇−𝑖 to represent the remaining

buyer set without the participation of 𝑖 on the tree. Allocate

the item on the current spanning tree where the allocation

function can be recursively defined as:

𝜋𝑇𝑖 (\ ′) =


1 if 𝑖 = ℎ 𝑗 ∈ ℎ𝑧 , 𝑣 ′

𝑖
= 𝑣1st

𝑇−ℎ𝑗+1

,

and

∑
𝑘∈𝑇−𝑖 𝜋

𝑇
𝑘
(\ ′) = 0,

0 otherwise.

(3)

(5) Denote the winner as𝑤 = ℎ𝑙 ∈ ℎ𝑧 . The payment function

for the current spanning tree is defined as:

𝑝𝑇𝑖 (\
′) =


𝑣1st

𝑇−𝑤
if 𝑖 = 𝑤,

𝑣1st

𝑇−ℎ𝑗

− 𝑣1st

𝑇−ℎ𝑗+1

if 𝑖 = ℎ 𝑗 ∈ ℎ𝑧 , 𝑗 < 𝑙,

0 otherwise.

(4)

(6) For each possible spanning tree generated from 𝐺 (\ ′),
repeat (2)-(5). In the process, for each buyer 𝑖 ∈ 𝐺 (\ ′), count
her total number of wins denoted as 𝑐𝑛𝑡 (𝑖), and her total

payments denoted as 𝑠𝑢𝑚(𝑝𝑇
𝑖
).

(7) Denote the number of all possible spanning trees as |T |.
The overall allocation function and payment function are de-

fined as:

𝜋𝑖 (\ ′) =
𝑐𝑛𝑡 (𝑖)
|T | , 𝑝𝑖 (\ ′) =

𝑠𝑢𝑚(𝑝𝑇
𝑖
)

|T | (5)

Next, we formally analyze the relationship between the mecha-

nism described above and the SRA mechanism.

Theorem 4.6. The mechanism above is the centralized reduction
mechanism of the sequential resale auction.

Proof. Without loss of generality, we only need to compare

the allocation and payment results of the two mechanisms on the

same spanning tree 𝑇 . In the following proof, we always use ℎ 𝑗 to

represent 𝑖 on the path to 𝑧. We first prove that each local seller’s

purchasing price is the highest bid without her participation, i.e.,

𝑝𝑖 = 𝑣1st

𝑇−ℎ𝑗

using the mathematical induction method. Suppose

the condition holds for 𝑖’s previous buyer, i.e., 𝑝ℎ 𝑗−1
= 𝑣1st

𝑇−ℎ𝑗−1

.

Then, 𝑝ℎ 𝑗
= max{𝑝ℎ 𝑗−1

, 𝑏2nd

𝑟 ′
ℎ𝑗−1

} where 𝑏2nd

𝑟 ′
ℎ𝑗−1

= max𝑘∈𝑟 ′
ℎ𝑗−1

\ℎ 𝑗
𝑏𝑘 ,

so 𝑝ℎ 𝑗
= 𝑣1st

𝑇−ℎ𝑗

since 𝑇−ℎ 𝑗
= 𝑇−ℎ 𝑗−1

∪ 𝑟 ′
ℎ 𝑗−1

\ ℎ 𝑗 . On this basis, it is

easy to deduce that the allocation and payment results of the two

mechanisms are the same on the same spanning tree. □

Discussion. (1) Different from the existing centralized mechanisms

like the Information Diffusion Mechanism (IDM) [9] which only

gives rewards to the critical ancestors, our mechanism can reward

more buyers including those non-cut-points, which gives all buyers

stronger incentive to participate in the mechanism. (2) The seller’s

revenue is always no less than that of traditional VCG among neigh-

bors without diffusion (see Proposition 5.4). (3) Most importantly,

the mechanism presents a method to calculate the payoff of each

buyer over complete paths, which provides a sound basis for its cor-

responding distributed implementation, and this is why we show

this mechanism here.

5 EVALUATIONS
In this section, we provide theoretical analysis for the sequential

resale auction. We also conduct experiments to compare the cen-

tralized reduction mechanism of the SRA with the IDM, which is a

representative of existing centralized mechanisms.

5.1 Theoretical Analysis
In this part, without loss of generality, we consider one randomized

instance of running the distributed auction in the following proofs

since the properties of IC and IR hold for the whole mechanism if

they hold in all instances. Suppose 𝑧 is the highest valid buyer and𝑤

is the winner in the instance. LetY = {𝑆,𝑦1, 𝑦2, ...,𝑤} represent the
resale path containing all local sellers involved in the resale process.

According to the payment function of the SRA defined in Eq. 2, only

buyers on the resale path are involved in money transactions and

may gain nonnegative utilities. Therefore, we classify all buyers

into three different categories: (1) The final winner: 𝑤 . (2) Local

sellers: Y \ {𝑆,𝑤}, i.e., all buyers on the resale path except the

original seller and final winner. (3) Other buyers: ∀𝑖 ∉ Y, i.e., all

other buyers who are not on the resale path.

Given the above classification, we will prove that the sequential

resale auction satisfies the properties of IR and ex-post IC. Before

that, we first show that a buyer’s payment is independent of her

bid when all buyers execute the intended strategy.

Lemma 5.1. When everyone executes the intended message-passing
action 𝑞𝑀

𝑖
and intended computational action 𝑓𝑀

𝑖
, each buyer 𝑖’s

payment is independent of her bid.

Proof. As we mentioned before, the social network becomes a

directed tree after the second stage if all buyers execute the intended

message-passing action. Hence, the purchasing price 𝑝𝑖 of each local

seller 𝑖 must come from another branch she does not belong to,

which is independent of her bid aggregated only in the branch

she belongs to. Therefore, (1) for the winner 𝑤 , her payment is

𝑝𝑖 which is not dependent on her bid; (2) for other local seller

𝑖 ∈ Y \ {𝑆,𝑤}, her utility is 𝑢𝑖 = max{𝑝𝑖 , 𝑏2nd

𝑟𝑖
} − 𝑝𝑖 , where 𝑏

2nd

𝑟𝑖
is

the second-highest aggregated bid among her children, which is

also independent of her bid; (3) for all other buyers, their payments

are always 0. □

We then show that no buyer in the SRA will gain a negative

utility as long as she uses her true valuation as her bid and ev-

eryone executes intended message-passing action and intended

computational action.

Theorem 5.2. The sequential resale auction is IR.
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Proof. Assume that buyer 𝑖 reveals her valuation truthfully. (1)

If she is the winner, 𝑖 = 𝑤 , her utility is 𝑢𝑖 = 𝑣𝑖 − 𝑝𝑖 ≥ 0 because

she will choose to keep the item only if 𝑣𝑖 ≥ max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

} ≥ 𝑝𝑖

according to Eq. 1. (2) If she is a local seller, 𝑖 ∈ Y \ {𝑆,𝑤}, her
utility is 𝑢𝑖 = max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

} − 𝑝𝑖 ≥ 0. (3) For any other buyer, her

utility is 0. Therefore, the SRA is individually rational. □

Now we show that the intended strategy 𝑠𝑀 is an ex-post Nash

equilibrium for all buyers, i.e., no one can gain a higher utility by

deviating the intended strategy herself.

Theorem 5.3. The sequential resale auction is ex-post IC.

Proof. We discuss the effects of different actions by different

categories of buyers separately.

1. For determined 𝑞𝑀
𝑖
, 𝑓𝑀
𝑖

and other buyers’ strategies 𝑠𝑀−𝑖 , we
first prove that disobeying the intended information-revelation ac-

tion 𝑡𝑀
𝑖

cannot gain a higher utility for any buyer. As the information-

revelation action concerns the buyer’s revealed valuation 𝑣 ′
𝑖
and

her invited neighbors 𝑟 ′
𝑖
, we first prove that, for all kinds of buyers,

revealing the true valuation maximizes their utilities when their

invited neighbors are also determined. Based on Lemma 5.1, we

only need to consider how a buyer’s bid affects her category.

Case 1.1 For the winner 𝑤 , any 𝑣 ′𝑤 ≥ 𝑣𝑤 will only increase the

aggregated bid on the resale path. The allocation result will not

change, so her utility remains unchanged. For any bid 𝑣 ′
𝑖
< 𝑣𝑖 , she

may still be the winner with unchanged utility. If she becomes a

local seller, her new utility will be𝑢′
𝑖
= max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

}−𝑝𝑖 ≤ 𝑣𝑖−𝑝𝑖 =
𝑢𝑖 because she is the original winner with 𝑣𝑖 ≥ max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

}.
Otherwise, her utility will degenerate to 0.

Case 1.2 For a local seller 𝑖 ∈ Y \ {𝑆,𝑤}, we can defer that her

valuation is not larger than her aggregated bid since she is not the

final winner. Therefore, the message she passes to her inviter will

not change for any 𝑣 ′
𝑖
< 𝑣𝑖 , so the allocation result and her utility

will not change. If she reveals a larger valuation to become the new

winner, her utility will be 𝑢′
𝑖
= 𝑣𝑖 − 𝑝𝑖 ≤ max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

} − 𝑝𝑖 = 𝑢𝑖

according to allocation rule. So misreporting valuation cannot gain

a higher utility for any local seller.

Case 1.3 For other buyers 𝑖 ∉ Y, her utility is 0. To gain some pay-

offs, she needs to reveal a larger enough bid and becomes the new

winner. However, her purchasing price will be the original highest

bid among all buyers which must be larger than her valuation, then

her utility will be a negative value.

Above all, we have showed that no buyers can obtain a higher

utility by revealing bids different from her valuation. Then, given

buyer 𝑖’s declared valuation 𝑣 ′
𝑖
= 𝑣𝑖 , we prove that for all kinds

of buyers, inviting all neighbors (i.e., 𝑟 ′
𝑖
= 𝑟𝑖 ) maximizes their

utilities. Before that, we can easily find the fact that, as the intended

computational action outputs the highest value among all received

bids, inviting less neighbors may only decrease her aggregated bid

which is used to participate in previous local auctions.

Case 1.4 If 𝑖 is the winner when diffusing the auction information

to all neighbors, her utility is 𝑣𝑖 − 𝑝𝑖 . For winner who is the highest

bidder, 𝑖 = 𝑧, she will still win for any 𝑟 ′
𝑖
≠ 𝑟𝑖 . And for winner who

is an ancestor of 𝑧, she will belong to other buyers if she is not

the ancestor of 𝑧 by inviting less neighbors. Otherwise, her utility

always keeps unchanged since her selling price may only decrease

or remain such that the allocation result will not change and her

purchasing price is not related to her neighbors.

Case 1.5 For a local seller, her utility is 𝑢𝑖 = max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

} − 𝑝𝑖 .

For any 𝑟 ′
𝑖

⊆ 𝑟𝑖 , her aggregated bid may decrease, which will

affect the allocation result of previous local auctions. If she can

still win the item, her selling price max{𝑝𝑖 , 𝑏2nd

𝑟 ′
𝑖

} must be no larger

than before since the second-highest bid among her children may

decrease when she invites less neighbors, and her purchasing price

is independent of her neighbors. So her new utility is always no

larger than before. Otherwise, she may not be able to win the item

from previous local auctions, which causes that she belongs to other

buyers now and her new utility will be 0.

Case 1.6 For other buyers 𝑖 ∉ Y and any 𝑟 ′
𝑖
⊆ 𝑟𝑖 , she will always

be other buyers with utility equaling to 0.

Hence, any buyer 𝑖 ∈ 𝑁 has no incentives to violate the intended

information-revelation action 𝑡𝑀
𝑖
.

2. For determined 𝑡𝑀
𝑖
, 𝑓𝑀
𝑖

and other buyers’ strategies 𝑠𝑀−𝑖 , we
then show that any buyer has no incentives to violated the intended

message-passing action 𝑞𝑀
𝑖
. As we mentioned in section 4, passing

a false aggregated bid is equivalent to executing another compu-

tational action with different outputs but executing the intended

message-passing action, so we only care about reporting the aggre-

gated bid to one or more inviters for the message-passing action

here and leave the discuss for passing a false aggregated bid later.

For any 𝑞′
𝑖
≠ 𝑞𝑀

𝑖
, if a buyer reports nobody, she will have no chance

to be on any resale path, thus her utility will always be 0. If she

reports her aggregated bid to more than one inviters, the bid may

be propagated through more than one paths, and it may raise her

purchasing price then reduce her utility.

3. For determined 𝑡𝑀
𝑖
, 𝑞𝑀

𝑖
and other buyers’ strategies 𝑠𝑀−𝑖 , we

prove that executing any other computational action with different

outputs (𝑓 ′
𝑖
≠ 𝑓𝑀

𝑖
) cannot increase the utility for any buyer.

Case 3.1 For the winner 𝑤 , her utility is 𝑢𝑤 = 𝑣𝑤 − 𝑝𝑤 . If her

aggregation algorithm (i.e. her computational action) outputs a

lower value than before, she may lose the item so 𝑢′𝑤 = 0 ≤ 𝑢𝑤 .

Otherwise, the allocation result and her purchasing price will not

change so her utility keeps unchanged.

Case 3.2 For a local seller, i.e., ∀𝑦 𝑗 ∈ Y \ {𝑆,𝑤}, her utility is

𝑢𝑦𝑖 = max{𝑝𝑦𝑖 , 𝑏2nd

𝑟𝑦𝑖
} − 𝑝𝑦𝑖 . If her chosen algorithm outputs a

higher value than before, 𝑓 ′
𝑖
> 𝑓𝑀

𝑖
, it is equivalent to the situation

that she decides a larger enough bid 𝑣 ′
𝑖
= 𝑓 ′

𝑖
and executes the

intended computational action. This situation has been discussed

in the first point. If she outputs a lower value than before, the resale

path may change to a new one and she may not belongs to the new

resale path such that her utility will be zero.

Case 3.3 For any other buyer 𝑖 ∉ Y, her utility is 0 when she

executes our intended computational action. To gain some payoffs,

she needs to output a larger enough value such that the resale

path changes and she becomes the final winner. In this case, her

purchasing price must be the highest valuation among the remain-

ing buyers and her utility changes to 𝑢𝑖 = 𝑣𝑖 − 𝑝𝑖 ≤ 0 where the

purchasing price 𝑝𝑖 must be the old highest bid larger than her

valuation 𝑣𝑖 . The new utility is worse than truthfully executing.
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Therefore, any buyer cannot gain a higher utility by disobeying the

intended computational action.

Taking all together, the distributed implementation is ex-post

incentive compatible and the intended strategy 𝑠𝑀 is an ex-post

Nash equilibrium. □

Ex-post IC is commonly achieved in the distributed mechanism

design literature and IC is impossible to get. The intuition is that if

one agent does not follow the designed computation process, other

agents may also change their behaviors to correct the agent’s mis-

behavior. However, the centralized SRA is IC because the execution

is done by the center and for each randomly chosen resale path,

the execution is similar to IDM which is proved to be IC in [9].

Finally, we can guarantee that our mechanism will not sacrifice

the seller’s revenue compared to the traditional VCG only among

neighbors, which encourages the seller to apply our mechanism.

Proposition 5.4. The seller’s revenue of the connecting-based
distributed auction and its centralized reduction mechanism is always
no less than that of traditional VCG without diffusion.

Proof. As we decompose the entire sale into a series of local

auctions, the seller’s revenue only depends on the first local auc-

tion hosted by 𝑆 . From Eq.2, the seller’s revenue is 𝑏2nd

𝑟𝑆
which

is the second-highest aggregated bid among all neighbors. Each

neighbor of the seller represents a branch to aggregate bids among

the subtree rooted at the neighbor, so each neighbor’s aggregated

bid will always no less than her own bid. Therefore, the second-

highest aggregated bid will always no less than the second-highest

bid among neighbors which is the revenue under traditional VCG

among neighbors without diffusion. □

5.2 Experimental Results
At last, since our distributed mechanism does not rely on any ex-

isting centralized mechanism, we conduct experiments to show

the differences between the centralized reduction of our SRA and

others. We choose the IDM mechanism [9] as a representative to

compare with, which is the first proposed IC diffusion mechanism.

Experiment Settings.We conduct our experiment on the graph

shown in Figure 2. The valuation distribution of each agent is

related to her distance to the seller, i.e., the buyer away from the

seller has a higher chance to have a higher valuation. This is to

demonstrate the characteristics of diffusion auctions more clearly

since the goal is to find higher bids in the network. Concretely,

we set the valuation distribution of a buyer 𝑖 with depth (i.e., the

length of the shortest path from 𝑆 to 𝑖) 1 ≤ 𝑑𝑖 ≤ 4 to be U[0.1 +
0.1𝑑𝑖 , 0.6 + 0.1𝑑𝑖 ]. We sample 10

4
instances according to the given

distributions and run the centralized reduction of SRA and IDM

on these instances respectively. Especially, since the centralized

reduction of SRA is a randomized mechanism, we take the average

of 10
3
times running as the estimated expected result. We record

the winning probabilities and average utilities over all 10
4
samples

of two mechanisms.

Results and Observations.We summarize the numerical results

of the experiment in Figure 3 and Figure 4. In Figure 3, it shows the

distribution of winning probabilities of all buyers, and in Figure 4, it

shows the expected utilities of all buyers. From these results, we can

observe that our mechanism gives more equal chances to win for

s

a b

dc

f e

hg i

Figure 2: The network for the experiment.

Figure 3: Winning probability for each buyer in average.

Figure 4: Utility for each buyer in average.

all buyers. Moreover, it rewards more buyers and especially gives

some utilities to buyers near to the seller and those non-critical

buyers (e.g., buyer 𝑎, 𝑏), who have almost no rewards in the IDM.

This will incentivize the buyers near the seller or the non-critical

buyers to be more willing to engage in the diffusion process.

Therefore, our mechanism can not only distributively computed

without any trustworthy centers (which is our core contribution),

but also give incentives to more buyers including those non-critical

buyers to invite others in the centralized version, which is an inter-

esting and worthwhile extra effects.

6 CONCLUSION
In this paper, we propose the first distributed mechanism in so-

cial networks called the Sequential Resale Auction. The distributed

auction achieves complete decentralization without relying on any

trustworthy third party. We also present the centralized reduction

mechanism of our distributed auction to exhibit the extra contri-

bution of our mechanism, which provides a novel way to reward

more buyers including those non-critical buyers.
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