
Implicit Poisoning Attacks in Two-Agent Reinforcement Learning:
Adversarial Policies for Training-Time Attacks

Mohammad Mohammadi
∗

MPI-SWS

Saarbrücken, Germany

mmohamma@mpi-sws.org

Jonathan Nöther
∗

Saarland University

Saarbrücken, Germany

s8jonoet@stud.uni-saarland.de

Debmalya Mandal

MPI-SWS

Saarbrücken, Germany

dmandal@mpi-sws.org

Adish Singla

MPI-SWS

Saarbrücken, Germany

adishs@mpi-sws.org

Goran Radanovic

MPI-SWS

Saarbrücken, Germany

gradanovic@mpi-sws.org

ABSTRACT
In targeted poisoning attacks, an attacker manipulates an agent-

environment interaction to force the agent into adopting a policy

of interest, called target policy. Prior work has primarily focused

on attacks that modify standard MDP primitives, such as rewards

or transitions. In this paper, we study targeted poisoning attacks

in a two-agent setting where an attacker implicitly poisons the

effective environment of one of the agents by modifying the policy

of its peer. We develop an optimization framework for designing

optimal attacks, where the cost of the attack measures how much

the solution deviates from the assumed default policy of the peer

agent. We further study the computational properties of this opti-

mization framework. Focusing on a tabular setting, we show that in

contrast to poisoning attacks based on MDP primitives (transitions

and (unbounded) rewards), which are always feasible, it is NP-hard

to determine the feasibility of implicit poisoning attacks. We pro-

vide characterization results that establish sufficient conditions for

the feasibility of the attack problem, as well as an upper and a

lower bound on the optimal cost of the attack. We propose two

algorithmic approaches for finding an optimal adversarial policy: a

model-based approach with tabular policies and a model-free ap-

proach with parametric/neural policies. We showcase the efficacy

of the proposed algorithms through experiments.

KEYWORDS
Adversarial Policies, Poisoning Attacks, Reinforcement Learning

ACM Reference Format:
MohammadMohammadi, Jonathan Nöther, DebmalyaMandal, Adish Singla,

and Goran Radanovic. 2023. Implicit Poisoning Attacks in Two-Agent Rein-

forcement Learning: Adversarial Policies for Training-Time Attacks. In Proc.

of the 22nd International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023,

IFAAMAS, 10 pages.

1 INTRODUCTION
Recent works on adversarial attacks in reinforcement learning (RL)

have demonstrated the susceptibility of RL algorithms to various

∗
Equal contributions

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,

London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

forms of adversarial attacks [14, 17, 22, 42, 43], including poisoning

attacks which manipulate a learning agent in its training phase,

altering the end result of the learning process, i.e., the agent’s pol-

icy [23, 26, 37–39, 43, 61]. In order to understand and evaluate the

stealthiness of such attacks, it is important to assess the underlying

assumptions that are made in the respective attack models. Often,

attack models are based on altering the environment feedback of a

learning agent. For example, in environment poisoning attacks, the

attacker can manipulate the agent’s rewards or transitions [26, 37]—

these manipulations could correspond to changing the parameters

of the model that the agent is using during its training process.

However, directly manipulating the environment feedback of a

learning agent may not always be practical. For example, rewards

are often internalized or are goal specific, in which case one cannot

directly poison the agent’s rewards. Similarly, direct manipulations

of transitions and observations may not be practical in environ-

ments with complex dynamics, given the constraints on what can

be manipulated by such attacks.

In order to tackle these practical challenges, Gleave et al. [11]

introduce a novel class of attack models for a competitive two-

agent RL setting with a zero-sum game structure. In particular, they

consider an attacker that controls one of the agents. By learning an

adversarial policy for that agent, the adversary can force the other,

victim agent, to significantly degrade its performance. Gleave et al.

[11] focus on test-time attacks that learn adversarial policies for an

already trained victim. This idea has been further explored by Guo

et al. [13] in the context of more general two-player games, which

are not necessarily zero-sum, and by Wang et al. [47] in the context

of backdoor attacks, where the action of the victim’s opponent can

trigger a backdoor hidden in the victim’s policy.

In this paper, we focus on targeted poisoning attacks that aim

to force a learning agent into adopting a certain policy of interest,

called target policy. In contrast to prior work on targeted poisoning

attacks [26, 37, 38], which primarily considered single-agent RL

and attack models that directly manipulate MDP primitives (e.g.,

rewards or transitions), we consider a two-agent RL setting and

an attack model that is akin to the one studied in [11, 13, 47], but

tailored to environment poisoning attacks. More specifically, in our

setting, the attacker implicitly poisons the effective environment of

a victim agent by controlling its peer at training-time. To ensure

the stealthiness of the attack, the attacker aims to minimally alter

Session 5E: Adversarial Learning + Social Networks + Causal Graphs

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1835

AAMAS ’23, May 29 – June 2, 2023, London, United Kingdom Mohammad Mohammadi, Jonathan Nöther, Debmalya Mandal, Adish Singla, and Goran Radanovic

Victim Agent

Peer Agent

Attacker

Self-play

Victim Agent

Peer Agent

Attacker

Test-time interaction

Training-time interaction

Bi-level opt.

Test-time
adversarial policies

Our approach

Training-time interaction

Test-time interaction

Training
Attacker

No training

Best-response

(a) Comparison to test-time adversarial policies

Environment
ℳ

Environment
Poisoning Attacks

Our approach

Victim Agent

Attacker

ℳ"

𝜋$

Peer Agent
𝜋%&

𝜋'
$

ℳ, 𝜋%

Victim Agent

Attacker

Environment
ℳ

Modified
policy

Modified
environment

Effective
environment

(Victim)

Default policy
(Peer)

(b) Comparison to environment poisoning attacks

Figure 1: The figure compares our approach to the closely related prior work. Fig. 1a illustrates the differences between our
setting and test-time adversarial policies (from [11]). Test-time adversarial policies are attacking a fixed victim (trained in
self-play), whereas our approach attacks a victim during training phase. We consider an optimization framework based on
bi-level optimization that minimizes the attack cost while ensuring that the victim’s best response to our attack is to adopt
target policy 𝜋†

2
. As shown in Fig. 1b, this optimization approach is similar to environment poisoning attacks (from [26, 37, 38]).

However, it differs from environment poisoning attacks in that the attack only modifies the default policy of the victim’s peer,
𝜋0

1
, but not the underlying environmentM. I.e, our approach implicitly poisons the effective environment of the victim.

the default behavior of the peer, which we model through the cost

of the attack.

Fig. 1 illustrates the main aspects of the setting considered in this

work. In this setting, the default policy of the victim’s peer is fixed

and the victim is trained to best respond to a corrupted version

of the peer’s policy.
1
This is different from test-time adversarial

policies where the victim is fixed and the adversary controls the

victim’s opponent/peer at test-time. Our setting corresponds to

a practical scenario in which an attacker controls the peer agent

at training-time and executes a training-time adversarial policy

instead of the peer’s default policy. If the victim is trained offline,

the attacker can corrupt the offline data instead, e.g., by executing

training-time adversarial policies when the offline data is collected

or by directly poisoning the data. Note that direct access to the

training process of the victim agent is not required to train an

adversarial policy. It suffices that the victim agent approximately

best respond to the adversarial policy. This is effectively the same

assumption that prior work on environment poisoning attacks in

offline RL adopts, where the attacker first manipulates the underly-

ing environment, after which the victim agent optimizes its policy

in the poisoned environment [26, 37, 38]. Fig. 1 also shows how

our setting compares to environment poisoning target attacks. As

explained in the figure, there are conceptual differences between

the corresponding attack models.

To the best of our knowledge, this is the first work that studies

adversarial policies for training-time attacks. Our contributions are

summarized below:

• We introduce a novel optimization framework for studying an

implicit form of targeted poisoning attacks in a two-agent RL

1
While the setting is similar to Stackelberg models where the peer agent commits its

policy (e.g., [20]), a critical difference is that the adversary can modify this policy. See

also the related work section.

setting, where an attacker manipulates the victim agent by con-

trolling its peer at training-time.

• We then analyze computational aspects of this optimization

problem. We show that it is NP-hard to decide whether the opti-

mization problem is feasible, i.e., whether it is possible to force a

target policy. This is in contrast to general environment poison-

ing attacks that manipulate both rewards and transitions [38],

which are always feasible.
2

• We further analyze the cost of the optimal attack, providing a

lower and an upper bound on the cost of the attack, as well as

a sufficient condition for the feasibility of the attack problem.

To obtain the lower bound, we follow the theoretical analysis

in recent works on environment poisoning attacks [26, 37, 38]

that establish similar lower bounds for the single-agent setting,

and we adapt it to the two-agent setting of interest. The theoret-

ical analysis that yields the upper bound does not follow from

prior work, since the corresponding proof techniques cannot be

directly applied to our setting.

• We propose two algorithmic approaches for finding an efficient

adversarial policy. The first one is a model-based approach with

tabular policies which outputs a feasible solution to the attack

problem, if one is found. It is based on a conservative policy

search algorithm that performs efficient policy updates that ac-

count for the cost of the attack, while aiming to minimize the

margin by which the constraints of the attack problem are not

satisfied. The second one is a model-free approach with paramet-

ric/neural policies, which is based on a nonconvex-nonconcave

minimax optimization.

2
Attacks that poison only rewards are always feasible. Attacks that poison only transi-

tions may not be always feasible since transitions cannot be arbitrarily changed [37].

Similarly, when rewards are bounded, Rangi et al. [39] show that reward poisoning

attacks may be infeasible. The computational complexity of such attacks have not

been formally analyzed.

Session 5E: Adversarial Learning + Social Networks + Causal Graphs

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1836

Implicit Poisoning Attacks in Two-Agent Reinforcement Learning AAMAS ’23, May 29 – June 2, 2023, London, United Kingdom

• Finally, we conduct extensive experiments to demonstrate the

efficacy of our algorithmic approaches.

The full version of the paper that includes the Supplementary Ma-

terial can be found in [28].

1.1 Related Work
Adversarial Attacks inML. Adversarial attacks on machine learn-

ing models have been extensively studied by prior work. We recog-

nize two main attack approaches on machine learning: test-time

attacks [6, 29, 31, 32, 44], which do not alter a learning model, but

rather they fool the model by manipulating its input, and training-

time or data poisoning attacks [7, 21, 27, 52, 53], which manipulate a

learning model by, e.g., altering its training points. We also mention

backdoor attacks [8, 12, 24], that hide a trigger in a learned model,

which can then be activated at test-time.

Adversarial Attacks in RL. Needless to say, such attack strate-

gies have also been studied in RL. [5, 14, 18, 22, 42] consider efficient

test-time attacks on agents’ observations. In contrast to this line

of work, we consider training-time attacks which are not based

on state/observation perturbations. [17, 48, 54] consider backdoor

attacks on RL policies. These works are different in that backdoor

triggers affect the victim’s observations; our attack model influ-

ences the victim’s transitions and rewards. Poisoning attacks in

single-agent RL have been studied under different poisoning aims:

attacking rewards [26, 37, 39], attacking transitions [37], attack-

ing both rewards and transition [38], attacking actions [23], or

attacking a generic observation-action-reward tuple [43]. Reward

poisoning attacks have also been studied in multi-agent RL [51].

In contrast to such poisoning attacks, our attack model does not

directly poison any of the mentioned poisoning aims. It instead in-

directly influences the victim’s rewards and transitions. This work,

therefore, complements prior work on poisoning attacks in RL and

adversarial policies, as already explained.

Other Related Work. We also mention closely related work

on robustness to adversarial attacks and settings that have similar

formalisms. Much of the works on robustness to these attacks study

robustness to test-time attacks [33, 49, 55, 56] and, closer to this

paper, poisoning attacks [4, 19, 25, 50, 59, 60]. Out of these, [4]

has the formal setting that is the most similar to ours, focusing on

defenses against targeted reward poisoning attacks. Our setting

is also related to stochastic Stackelberg games and similar frame-

works [10, 20, 46] in that we have an attacker who acts as a leader

that aims to minimize its cost, while accounting for a rational fol-

lower (victim) that optimizes its return. However, in our framework,

the cost of the attack is not modeled via a reward function, while

the attack goal of forcing a target policy is a hard constraint. Hence,

the computational intractability results for Stackelberg stochastic

games do not directly apply to our setting. Nonetheless, the reduc-

tion that we use to show our NP-hardness result is inspired by the

proofs of the hardness results in [20]. Finally, we also mention the

line of work on policy teaching [3, 57, 58], whose formal settings are

quite similar to those of targeted reward poisoning attacks [26, 38].

2 IMPLICIT POISONING ATTACKS
In this section, we formalize the attack problem of interest: adver-

sarial policies for training-time attacks.

2.1 Multi-Agent Environment
Environment model. We study a reinforcement learning set-

ting formalized by a two-agent Markov Decision Process M =

({1, 2}, 𝑆, 𝐴, 𝑃, 𝑅2, 𝛾, 𝜎), where 1 is the index of an agent controlled

by an attacker, 2 is the index of a learning agent (victim) under

attack, 𝑆 is the state space,𝐴 = 𝐴1×𝐴2 is the joint action space with

𝐴1 and 𝐴2 defining the action spaces of agents 1 and 2 respectively,

𝑃 : 𝑆 ×𝐴×𝑆 → [0, 1] is the transition model, 𝑅2 : 𝑆 ×𝐴→ R is the

reward function of the learner, 𝛾 is the discount factor, and 𝜎 is the

initial state distribution. We denote the probability of transitioning

to state 𝑠 ′ from 𝑠 by 𝑃 (𝑠, 𝑎1, 𝑎2, 𝑠
′) and the reward obtained in state

𝑠 by 𝑅2 (𝑠, 𝑎1, 𝑎2), where 𝑎1 and 𝑎2 are the actions of agent 1 and

agent 2 taken in state 𝑠 . In our formal treatment of the problem, we

will primarily focus on finite state and action spaces 𝑆 and 𝐴.

Policies. The policy of agent 1 is denoted by 𝜋1 and we assume

that it comes from the set of stochastic stationary policies Π1
. That

is, policy 𝜋1 is mapping 𝜋1 : 𝑆 → P(𝐴1), where P(𝐴1) is the
probability simplex over 𝐴1. Analogously, the policy of agent 2 is

denoted by 𝜋2. A stochastic stationary policy 𝜋2 ∈ Π2
is a mapping

𝜋2 : 𝑆 → P(𝐴2). The set of all deterministic policies in Π2
is

denoted by Π2

det
= {𝜋2 ∈ Π2

s.t. 𝜋2 (𝑠, 𝑎2) ∈ {0, 1}}.
Score & Occupancy Measures. We further consider standard

quantities. The (normalized) expected discounted return of agent 2

under policies 𝜋1 and 𝜋2 is defined as

𝜌2 = (1 − 𝛾) · E
[∞∑︁
𝑡=1

𝛾𝑡−1 · 𝑅2 (𝑠𝑡 , 𝑎1,𝑡 , 𝑎2,𝑡) |𝜎, 𝜋1, 𝜋2

]
,

where the expectation is taken over trajectory (𝑠1, 𝑎1,1, 𝑎2,1, ...) ob-
tained by executing policy 𝜋 starting in a state sampled from 𝜎 .

The return 𝜌
𝜋1,𝜋2

2
is equal to

𝜌
𝜋1,𝜋2

2
=

∑︁
𝑠,𝑎1,𝑎2

𝜓𝜋1,𝜋2 (𝑠, 𝑎1, 𝑎2) · 𝑅2 (𝑠, 𝑎1, 𝑎2), (1)

where𝜓𝜋1,𝜋2 (𝑠, 𝑎1, 𝑎2) = 𝜇𝜋1,𝜋2 (𝑠) · 𝜋1 (𝑠, 𝑎1) · 𝜋2 (𝑠, 𝑎2) is the state-
action occupancy measure, and 𝜇𝜋1,𝜋2

is the state occupancy mea-

sure, i.e., 𝜇𝜋1,𝜋2 (𝑠) = (1 − 𝛾) · E
[∑∞

𝑡=1
𝛾𝑡−1 · 1 [𝑠𝑡 = 𝑠] |𝜎, 𝜋1, 𝜋2

]
.

Note that we do not assume that the underlying MDP is ergodic,

i.e., we allow that 𝜇𝜋1,𝜋2 (𝑠) = 0 for some states 𝑠 . Finally, we also

define value function 𝑉 𝜋1,𝜋2
: 𝑆 → R as

𝑉 𝜋1,𝜋2 (𝑠) = E
[∞∑︁
𝑡=1

𝛾𝑡−1 · 𝑅2 (𝑠𝑡 , 𝑎1,𝑡 , 𝑎2,𝑡) |𝑠1 = 𝑠, 𝜋1, 𝜋2

]
.

Remark 1. To simplify the notation, we often abbreviate sum-

mations, e.g., the summation over 𝑎1 and 𝑎2 can be replaced by

𝑅2 (𝑠, 𝜋1, 𝜋2). Furthermore, since in our formal treatment of the prob-

lem we focus on a tabular setting with finite state and action spaces,

we in part utilize vector notation when convenient. For example, 𝑅2

can be thought of as a vector with |𝑆 | · |𝐴| components.

2.2 Problem Statement
We focus on an attack model that manipulates a default policy of the

victim’s peer,𝜋0

1
, to force a target policy 𝜋

†
2
. Following priorwork on

targeted policy attacks [26, 37, 38], we first consider an optimization

problem which models the attack goal as a hard constraint with

deterministic 𝜋
†
2
and a victim agent that adopts an approximately

Session 5E: Adversarial Learning + Social Networks + Causal Graphs

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1837

AAMAS ’23, May 29 – June 2, 2023, London, United Kingdom Mohammad Mohammadi, Jonathan Nöther, Debmalya Mandal, Adish Singla, and Goran Radanovic

optimal deterministic policy
3
:

min

𝜋1

Cost(𝜋1, 𝜋
0

1
) s.t. Opt

𝜖
2
(𝜋1) ⊆ Π†

2
(𝜋1) . (P1)

Here, Π†
2
(𝜋1) is a set of policies 𝜋2 that are equal to 𝜋

†
2
on visited

states, i.e., 𝜋2 (𝑠, 𝑎2) = 𝜋†
2
(𝑠, 𝑎2) when 𝜇𝜋1,𝜋

†
2 (𝑠) > 0. Furthermore,

Opt
𝜖
2
(𝜋1) is the set of approximately optimal deterministic policies

𝜋2 given 𝜋1, i.e., Opt
𝜖
2
(𝜋1) = {𝜋2 ∈ Π2

det
s.t. 𝜌𝜋1,𝜋2 > 𝜌𝜋1,𝜋

∗|𝜋
1

2 − 𝜖},
where 𝜋

∗|𝜋1

2
∈ arg max𝜋2

𝜌
𝜋1,𝜋2

2
, while 𝜖 ≥ 0 is a parameter that

controls the sub-optimality of the learner. As standard in this line

of work, in our characterization results of (P1), we focus on a norm-

based attack cost function:

Cost(𝜋1, 𝜋
0

1
) = ©­«

∑︁
𝑠

(∑︁
𝑎1

|𝜋1 (𝑠, 𝑎1) − 𝜋0

1
(𝑠, 𝑎1) |

) 1

𝑝 ª®¬
𝑝

,

where 𝑝 ≥ 1. In the next sections, we formally analyze (P1) and

propose an algorithm for solving it. We also consider an optimiza-

tion problem that relaxes the attack goal, but is more amenable to

optimization with deep RL and allows stochastic target policies 𝜋
†
2
:

min

𝜃
max

𝜙
L𝐼 (𝜃, 𝜋0

1
) − 𝜆 ·

[
𝜌
𝜋𝜃 ,𝜋

†
2

2
− 𝜌𝜋𝜃 ,𝜋𝜙

2

]
. (P2)

Here, 𝜋𝜃 and 𝜋𝜙 are parametric policies that respectively corre-

spond to 𝜋1 and 𝜋2, and L𝐼 (𝜃, 𝜋0

1
) is an imitation learning loss

function. The imitation learning loss corresponds to the cost of

the attack: we instantiate it with standard cross-entropy imitation

objective for deterministic 𝜋0

1
and Kullback–Leibler divergence for

stochastic 𝜋0

1
. We further motivate (P2) in the next sections.

3 CHARACTERIZATION RESULTS
In this section, we provide a theoretical treatment of the optimiza-

tion problem (P1) akin to those from prior work on poisoning

attacks in RL [26, 37, 38]. We start by analyzing the complexity of

the optimization problem, followed by the analysis that provides

bounds on the optimal value of (P1). The proofs of our results from

this section are provided in the full version of the paper [28].

3.1 Computational Complexity
To study the properties of the optimization problem (P1), let us more

explicitly write its constraint using the following set of inequalities:

𝜌
𝜋1,𝜋

†
2

2
≥ 𝜌𝜋1,𝜋2

2
+ 𝜖, ∀𝜋2 ∈ Π2

det
\Π†

2
(𝜋1) .

At the first glance, the optimization problem (P1) appears to be

computationally challenging: the number of inequality constraints

is exponential. On the other hand, Lemma 1 from [38] suggests

that it suffices to consider neighbor policies of the target policy to

determine whether a solution is feasible—a neighbor policy 𝜋{𝑠, 𝑎}
of policy 𝜋 is equal to 𝜋 in all states except in 𝑠 , where it is de-

fined as 𝜋{𝑠, 𝑎}(𝑠, 𝑎) = 1.0. However, given the differences between

the setting of Rakhsha et al. [38] and the setting of this paper, in

particular, because the latter considers a two-agent and possibly

non-ergodic MDP environment, this result does not directly apply.

In the full version of the paper [28], we prove a couple of results

3
Similar learner models have been considered in prior work that analyzes a dual to

optimal reward poisoning attacks [3].

akin to Lemma 1 from [38], but for the setting of interest. These

results allow us to reduce the number of constraints one ought to

account for when testing the feasibility of solution 𝜋1. For example,

if the MDP environment is ergodic, 𝜋1 is a feasible solution iff

𝜌
𝜋1,𝜋

†
2

2
≥ 𝜌𝜋1,𝜋

†
2
{𝑠,𝑎2 }

2
+ 𝜖 ∀𝑠, 𝑎 s.t. 𝜋†

2
(𝑠, 𝑎2) = 0. (2)

While such results are useful as they reduce the number of con-

straints one ought to account for when testing the feasibility of

solution 𝜋1, they do not necessarily imply that the optimization

problem is easy to solve. The difficulty lies in the quadratic form of

the constraints in Eq. (2). Namely, as can be seen from Eq. (1), they

depend on 𝜋1 through policy 𝜋1 itself but also through the state

occupancy measure 𝜇𝜋1,·
. Our next result verifies this intuition.

Theorem 1. It is NP-hard to decide if the optimization problem

(P1) is feasible, i.e., whether there exists a solution 𝜋1 s.t. the con-

straints of the optimization problem are satisfied.

The proof of the claim can be found in [28], and is based on a

polynomial time reduction of the Boolean 3-SAT problem to our

optimization framework. Hence, the tractability of the optimization

problem (P1) would imply that NP=P. To conclude, despite the

similarities between our implicit poisoning attack model and the

general environment poisoning attacks from [38], which are always

feasible, determining the feasibly of implicit poisoning attacks is

computationally challenging.

3.2 Bounds on the Optimal Value
Lower Bound. Next, we aim to bound the value of the optimal

solution. We first focus on a lower bound on the cost of optimal

solution. In particular, we follow the recent line of work on poison-

ing attacks in RL [26, 37, 38], and adapt their proof techniques to

our problem setting in order to establish a lower bound on the cost

of the optimal attack. To state the main theorem, we define a state-

action dependent quantity 𝜒𝜖′ (𝑠, 𝑎) similar to the one from [38],

but adapted to the setting of the paper. In particular, we define
4

𝜒𝜖′ (𝑠, 𝑎2) =
[
𝜌
𝜋0

1
,𝜋
†
2
{𝑠,𝑎

2
}

2
−𝜌

𝜋0

1
,𝜋
†
2

2
+𝜖′

𝜇
𝜋0

1
,𝜋
†
2
{𝑠,𝑎

2
} (𝑠)

]+
if 𝜇𝜋1,𝜋

†
2 (𝑠) > 0 for all 𝜋1 and

𝜋
†
2
(𝑠, 𝑎2) = 0, while 𝜒𝜖′ (𝑠, 𝑎2) = 0 otherwise.

5 𝜒𝜖′ (𝑠, 𝑎) is a measure

of the utility gap between the target policy 𝜋
†
2
and the neighbor

policy 𝜋
†
2
{𝑠, 𝑎} given the default policy 𝜋0

1
and some offset 𝜖 ′. To-

gether with 𝑅2 and 𝑉 𝜋
0

1
,𝜋
†
2 , 𝜒𝜖′ can be used to obtain the following

lower bound.

Theorem 2. The attack cost of any solution to the optimization

problem (P1), if it exists, satisfies

Cost(𝜋1, 𝜋
0

1
) ≥ 1 − 𝛾

2

·

𝜒

0

∞

∥𝑅2∥∞ + 𝛾 ·

𝑉 𝜋0

1
,𝜋
†
2

∞

.

The lower bound in Theorem 2 is similar to the corresponding

lower bound for general environment poisoning attacks [38], al-

beit not being fully comparable given the differences between the

4
Note that [𝑥]+ = max(0, 𝑥) .

5
The first condition can be verified for any given state 𝑠 by optimizing over 𝜋1 a

reward function that is strictly negative in state 𝑠 , and is equal to 0 otherwise. The

condition is satisfied iff the optimal value is 0. In general, the condition holds if the

underlying Markov chain is ergodic for 𝜋
†
2
and every policy 𝜋1 (see Theorem 3).

Session 5E: Adversarial Learning + Social Networks + Causal Graphs

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1838

Implicit Poisoning Attacks in Two-Agent Reinforcement Learning AAMAS ’23, May 29 – June 2, 2023, London, United Kingdom

settings and the definitions of 𝜒 . One notable difference is that the

bound in Theorem 2 additionally depends on the reward vector 𝑅2

because the adversary only influences rewards through its actions.

Upper Bound. Compared to environment poisoning attacks,

providing an interpretable upper bound in our setting is more chal-

lenging since the attack model of this paper cannot in general

successfully force a target policy 𝜋
†
2
. This is in stark contrast to, e.g.,

reward poisoning attacks, which remain feasible even under the

restriction that rewards obtained by following 𝜋
†
2
are not modified.

Additionally, as per Theorem 1, the feasibility of the attack prob-

lem is computationally intractable. Due to the latter challenge, we

consider a special case when transitions are independent of policy

𝜋1 (i.e., 𝑃 (𝑠, 𝑎1, 𝑎2) = 𝑃 (𝑠, 𝑎′
1
, 𝑎2) for all 𝑎1 and 𝑎′

1
) and the Markov

chain induced by 𝜋
†
2
and any policy 𝜋1 is ergodic. In [28], we show

that (P1) can be efficiently solved in this case.

To state our formal result, we first define two quantities,𝛼
𝜋1

2
(𝑠, 𝑎) =

𝜌
𝜋1,𝜋

†
2

2
−𝜌𝜋1,𝜋

†
2
{𝑠,𝑎}

2
, and𝛼∗

2
= sup𝜋1

min𝑠,𝑎 𝛼
𝜋1

2
(𝑠, 𝑎). Intuitively,𝛼𝜋1

2

measures the utility gap between 𝜋
†
2
and its neighbor policy 𝜋

†
2
{𝑠, 𝑎}

for a given policy 𝜋1, whereas 𝛼
∗
2
denotes the optimal guaranteed

gap that can be achieved. Note that there exists 𝜋∗
1
s.t. 𝛼

𝜋∗
1

2
= 𝛼∗

2
,

and in [28] we provide a linear program for finding 𝜋∗
1
.

Theorem 3. Assume that 𝑃 (𝑠, 𝑎1, 𝑎2) = 𝑃 (𝑠, 𝑎′
1
, 𝑎2) for all 𝑎2 and

𝑎′
1
, and that for 𝜋

†
2
and every policy 𝜋1 the underlying Markov chain

is ergodic, i.e., 𝜇𝜋1,𝜋
†
2 (𝑠) > 0 for all 𝜋1. If 𝛼

∗
2
≥ 𝜖 , the optimization

problem (P1) is feasible and the cost of an optimal solution satisfies

Cost(𝜋1, 𝜋
0

1
) ≤ 2 ·

 𝜒𝜖

𝜒∗
2
+ 𝜒𝜖

∞
· |𝑆 |1/𝑝

with the element-wise division (equal to 0 if 𝜒𝜖 (𝑠, 𝑎2) = 𝜒∗
2
(𝑠, 𝑎2) = 0),

where 𝜒∗
2
(𝑠, 𝑎2) =

𝛼∗
2
(𝑠,𝑎2)−𝜖

𝜇
𝜋0

1
,𝜋
†
2
{𝑠,𝑎

2
} (𝑠)

.

As with the lower bound, the upper bound is not directly compa-

rable to the bounds obtained in prior work [38]. In the full version

of the paper [28], we analyze another special case, when both 𝜋1

and 𝜋2 do not influence transitions, and obtain a slightly tighter

bound. In that case, we obtain the upper bound 2 ·

 𝜒𝜖
𝜒∗

2
+𝜒𝜖

𝑝,∞

,

where 𝜒𝜖 and 𝜒
∗
2
are now treated as matrices with |𝐴2 | × |𝑆 | entries.

We leave for the future work whether it is possible to improve the

result in Theorem 3 and match this bound.

4 ALGORITHMS
In this section, we study two algorithmic approaches for solving the

optimization problem (P1): a model-based approach with tabular

policies for solving (P1), and a model-free approach with neural

policies for solving (P2).

4.1 Conservative Policy Search for Implicit
Attacks

In this subsection, we propose an algorithm for (P1). To simplify

the exposition, we focus on a version of the algorithm that applies

to ergodic environments—in the full version of the paper [28], we

provide an extension to non-ergodic environments.

Algorithm 1 Conservative Policy Search for Implicit Attacks

and Ergodic Environments

Input: M = ({1, 2}, 𝑆, 𝐴, 𝑃, 𝑅,𝛾, 𝜎), 𝜖 , 𝛿𝜖 , 𝜋0

1
, 𝜆, 𝑝

Output: Policy of the adversary, 𝜋1

Initialize 𝑡 = 0

for 𝑡 = 0 to 𝑇 − 1 do
Calculate state occupancy measures 𝜇𝜋

𝑡
1
,𝜋
†
2 and 𝜇𝜋

𝑡
1
,𝜋
†
2
{𝑠,𝑎2 }

Evaluate the gap 𝜖𝜋𝑡
1

= min𝜖′ 𝜖
′
s.t. 𝜌

𝜋𝑡
1
,𝜋
†
2

2
≥ 𝜌𝜋

𝑡
1
,𝜋
†
2
{𝑠,𝑎2 }

2
+ 𝜖 ′

Solve the optimization problem (P1’) to obtain 𝜋𝑡+1
1

if 𝜋𝑡+1
1

= 𝜋𝑡
1
then

break
end if

end for
Set the result 𝜋1 to solution 𝜋

𝑡
1
that minimizes

𝜋𝑡
1
− 𝜋0

1

1,𝑝

while

satisfying 𝜖𝜋𝑡
1

≥ 𝜖

To design an efficient algorithmic procedure for finding a solu-

tion to (P1), we utilize the fact that (P1) can be efficiently solved

when policy 𝜋1 does not affect the transition dynamics. Inspired by

conservative policy iteration [16] and similar approaches in RL [40],

we propose an algorithm that alternates between two phases.

(1) In the first phase, we obtain the occupancy measures of the

current solution 𝜋𝑡
1
and policies 𝜋

†
2
and 𝜋

†
2
{𝑠, 𝑎}. That is, we

calculate 𝜇𝜋
𝑡
1
,𝜋
†
2 and 𝜇𝜋

𝑡
1
,𝜋
†
2
{𝑠,𝑎}

.

(2) In the second phase, we update the current solution 𝜋𝑡
1
by

solving a relaxed version of (P1), i.e.,

min

𝜋1∈B(𝜋𝑡
1
,𝛿),𝜖′

Cost(𝜋1, 𝜋
0

1
) − 𝜆 ·min{𝜖 ′, 𝜖 · (1 + 𝛿𝜖)}

s.t. 𝜌
𝜋1,𝜋

†
2

2
≥ 𝜌𝜋1,𝜋

†
2
{𝑠,𝑎2 }

2
+ 𝜖 ′, (P1’)

for all 𝑠 s.t. 𝜇𝜋1,𝜋
†
2 (𝑠) > 0 and 𝑎2 s.t. 𝜋

†
2
(𝑠, 𝑎2) = 0. Here,

𝐵(𝜋𝑡
1
, 𝛿) = {𝜋1 s.t. |𝜋1 (𝑠, 𝑎1) − 𝜋𝑡

1
(𝑠, 𝑎1) | ≤ 𝛿}, 𝜌𝜋1,𝜋2

2
is ob-

tained via Eq. (1) but by using 𝜇𝜋
𝑡
1
,𝜋2

instead of 𝜇𝜋1,𝜋2
, and

𝛿𝜖 ≥ 0 is a positive offset which adjusts 𝜖 (and whose role is

explained later in the text).

The optimization problem (P1’) is a relaxation of (P1) since we

optimize over the margin parameter 𝜖 ′, which can take negative

values. Hence, (P1’) is always feasible. Critically, when solving (P1’),

the state occupancy measures are fixed to 𝜇𝜋
𝑡
1
,𝜋
†
2 and 𝜇𝜋

𝑡
1
,𝜋
†
2
{𝑠,𝑎}

,

which implies that we can solve (P1’) efficiently since the objective

is convex, while the constraints are linear in 𝜋1 and 𝜖 ′. The con-
servative update is reflected in the constraint 𝜋1 ∈ 𝐵(𝜋𝑡

1
, 𝛿), which

ensures that solutions to (P1’) approximately satisfy the constraints

of the original problem (P1) (e.g., see Lemma 14.1 in [1]). We can

control the quality of this approximation through the hyperparam-

eter 𝛿𝜖 : for higher values of 𝛿𝜖 and 𝜖
′ ≥ 𝜖 · (1 + 𝛿𝜖), solution 𝜋1 to

(P1’) is more likely to be be a feasible solution to (P1).

The final step of each iteration is to evaluate the true gap 𝜌
𝜋𝑡

1
,𝜋
†
2

2
−

𝜌
𝜋𝑡

1
,𝜋2

2
that each solution 𝜋𝑡

1
achieves. The output of the algorithm is

the solution that minimizes the cost while ensuring that the target

gap 𝜖 is achieved.

Session 5E: Adversarial Learning + Social Networks + Causal Graphs

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1839

AAMAS ’23, May 29 – June 2, 2023, London, United Kingdom Mohammad Mohammadi, Jonathan Nöther, Debmalya Mandal, Adish Singla, and Goran Radanovic

Algorithm 1 summarizes the main steps of conservative policy

search for ergodic environments.
6
The algorithm assumes access to

the model of the environment, i.e., the corresponding MDP param-

eters (rewards and transition probabilities), needed for obtaining

relevant quantities, such as occupancy measures. The algorithm

also takes the learner’s parameter 𝜖 as its inputs; in practice, one

can use a conservative estimate of the true parameter instead.

4.2 Alternating Policy Updates for Implicit
Attacks

We now turn to (P2). First, note that we can view (P2) as a para-

metric relaxation of (P1’). Namely, (P2) is equivalent to the bi-level

optimization problem:

min

𝜃
L𝐼 (𝜃, 𝜋0

1
) − 𝜆 ·

[
𝜌
𝜋𝜃 ,𝜋

†
2

2
− 𝜌𝜋𝜃 ,𝜋𝜙∗

2

]
(P2’)

s.t. 𝜋𝜙∗ ∈ arg max

𝜙
𝜌
𝜋𝜃 ,𝜋𝜙
2

.

The second term, 𝜌
𝜋𝜃 ,𝜋

†
2

2
−𝜌𝜋𝜃 ,𝜋𝜙∗

2
, measures the sub-optimality gap

of the target policy, and corresponds to parameter 𝜖 ′ in (P1’), while

the first term corresponds to the cost of the attack. This bi-level

structure also motivates our algorithmic approach for finding an

optimal 𝜃 .

In general, the objective of (P2) is nonconvex-nonconcave, so

the order of min and max is important (e.g., see [15]). To solve the

optimization problem (P2), we alternate between minimizing the

loss function L(𝜃, 𝜙) over parameters 𝜃 while keeping parameters

𝜙 fixed, and maximizing 𝜌
𝜋𝜃 ,𝜋𝜙
2

over parameters 𝜙 while keeping 𝜃

fixed. Each optimization subroutine optimizes for a few episodes,

with the latter one using more episodes. As shown by [36], this type

of alternating optimization can be more effective in solving game-

theoretic bi-level optimization problems in RL similar to (P2’) than a

gradient descent-ascent approach that, in our setting, would simul-

taneously update 𝜃 and 𝜙 . Algorithm 2 summarizes the main steps

of our alternating policy updates (APU) approach. In our implemen-

tation, we pre-train policy 𝜋𝜙 for 𝜙-pretrain timesteps, which is

typically larger than the number of timesteps (𝜙-update timesteps)

used for updating 𝜋𝜙 in each epoch (𝜙-pretrain timesteps = 10000

and 𝜙-update timesteps = 5000 in our experiments).

5 EXPERIMENTS
In this section, we demonstrate the efficacy of our algorithmic ap-

proaches through simulation-based experiments. As explained in

the introduction, our setting differs from those studied in prior

work, so our algorithms are not directly comparable to approaches

from prior work. Hence, we compare our algorithms against their

simplified versions and naive baselines. Additional results and im-

plementation details, including running times and training parame-

ters, are provided in the full version of the paper [28].
7

6
While the algorithm is well defined for any 𝜋𝑡

1
, in the experiments we only consider

𝜋𝑡
1
that are fully stochastic, i.e., 𝜋1 (𝑠, 𝑎1) > 0 for any 𝑠 and 𝑎1 . In this case, the set of

states 𝑠 s.t. 𝜇
𝜋𝑡

1
,𝜋
†
2 (𝑠) does not change over time, and can be precalculated.

7
The code for this paper is available at https://github.com/gradanovic/rl-implicit-

poisoning-attacks.

Algorithm 2Alternating Policy Updates for Implicit Attacks

Input: 𝑒𝑝𝑜𝑐ℎ𝑠 , 𝜆, 𝜖 , 𝜋
†
2
, 𝜋0

1
, 𝜙-pretrain timesteps, 𝜙-update

timesteps

Initialize 𝜋𝜃 and 𝜋𝜙
Train 𝜋𝜙 for 𝜙-pretrain timesteps with PPO that optimizes per-

formance under 𝑅2 and 𝜋𝜃
for epoch = 0, 1, . . . do
Update 𝜋𝜙 for 𝜙-update timesteps with PPO that optimizes

performance under 𝑅2 and 𝜋𝜃
Collect trajectory 𝜏𝜙 with 𝜋𝜃 and 𝜋𝜙

Collect trajectory 𝜏† with 𝜋𝜃 and 𝜋
†
2

𝑏𝑐_𝑙𝑜𝑠𝑠 ← 𝑐𝑜𝑠𝑡_𝑓 𝑛(𝜋0

1
, 𝜋𝜃) {either cross entropy or kl-

divergence}

𝑙𝑜𝑠𝑠† ← L𝑃𝑃𝑂 (𝜏†, 𝜋𝜃)
𝑙𝑜𝑠𝑠𝜙 ← L𝑃𝑃𝑂 (𝜏𝜙 , 𝜋𝜃)
𝑝𝑜𝑙𝑖𝑐𝑦_𝑙𝑜𝑠𝑠 ← 1

|𝜏𝜙 |+ |𝜏† | · (𝑙𝑜𝑠𝑠
𝜙−𝑙𝑜𝑠𝑠†) {where |𝜏 | is the length

of trajectory 𝜏 , i.e., the number of timesteps in 𝜏 }

𝑙𝑜𝑠𝑠 ← 𝑏𝑐_𝑙𝑜𝑠𝑠 + 𝜆 · 𝑝𝑜𝑙𝑖𝑐𝑦_𝑙𝑜𝑠𝑠
Update 𝜋𝜃 with gradients of 𝑙𝑜𝑠𝑠

Update critic network of adversary with 𝜏𝜙 and 𝜏†

end for

5.1 Experiments for Conservative Policy Search
We consider two environments based on or inspired by prior work

[34, 38], but modified to fit the two-agent setting of this paper.

Navigation Environment. This environment is based on the

navigation environment from [38], developed for testing environ-

ment poisoning attacks on a single RL agent in a tabular setting. We

refer the reader to [38] for the description of the original environ-

ment and to [28] for the full description of the two-agent variant

that we introduce. The original environment is ergodic, contains 9

states and the action space of an agent specifies in which direction

(“left” or “right”) the agent should move. The two-agent variant

has an extended action space to include the actions of the attacker,

who has the same action space as the victim agent. Rewards and

transitions primarily depend on whether the actions of the two

agents match, e.g., if the agents’ actions match, the victim agent

moves in the desired direction with high probability and obtains a

positive reward. The default policy of the attacker is to always take

“left”, while the target policy is that the victim takes action “right”

in each state.

InventoryManagement.We consider a modified version of the

inventory management environment from [34], with two agents.

As in the original version, we have a manager of a warehouse that

decides on the current inventory of a warehouse (the number of

stocks/items in the warehouse). In our two agent version of the

environment, the victim agent is controlling the amount of stock

in the inventory and the attacker is controlling the demand. The

victim’s actions are “buy” actions that select between 0 and𝑀 − 1

items. The attacker’s actions are “create demand” of 0 to𝑀−1 items.

In our experiments, we set𝑀 = 10 and 𝛾 = 0.9. The default policy

of the attacker is to select the demand uniform at random over all

possible values. The target policy is defined by the following rule:

if there are more than 𝑘 = 7 items, do not buy anything, otherwise

Session 5E: Adversarial Learning + Social Networks + Causal Graphs

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1840

https://github.com/gradanovic/rl-implicit-poisoning-attacks
https://github.com/gradanovic/rl-implicit-poisoning-attacks

Implicit Poisoning Attacks in Two-Agent Reinforcement Learning AAMAS ’23, May 29 – June 2, 2023, London, United Kingdom

CPS COPS Naive UPS

0.01 0.03 0.05 0.07 0.09
ε

10
12
14
16
inf

Co
st

(a) Navigation, 𝜖

0.80 0.85 0.90 0.95 1.00
ι

10
12
14
16
inf

Co
st

(b) Navigation, Influence

0.1 0.3 0.5 0.7 0.9
ε

5
9

13
17
inf

Co
st

(c) Inventory, 𝜖

0.6 0.7 0.8 0.9 1.0
ι

5
9

13
17
inf

Co
st

(d) Inventory, Influence

Figure 2: The cost of the attack as a function of the victim’s sub-optimality and the adversary’s influence over the victim’s peer
agent. We use the same cost function as for the characterization results. The default value of 𝜖 is 0.05 for Navigation and 0.4 for
Inventory. When inf is reached, no solution was found. As explained in the text, 𝜖 parameter controls the sub-optimality of the
learner. Fig. 2a and Fig. 2c show that the more sub-optimal the learner is, the harder it is to force a target policy. We further
vary the influence of the attacker 𝜄 by executing policy 𝜋 𝜄

1
(𝑠, 𝑎) = (1 − 𝜄) · 𝜋0

1
(𝑠, 𝑎) + 𝜄 · 𝜋1 (𝑠, 𝑎) instead of 𝜋1. Fig. 2b and Fig. 2d

show that the lower the influence of the attacker is, the harder it is to force a target policy. The default value of 𝜄 is 1.0.

λ=20, δ=0.01 λ=5, δ=0.01 λ=75, δ=0.01 λ=20, δ=0.1 λ=20, δ=1

0.01 0.03 0.05 0.07 0.09
ε

10
12
14
16
inf

Co
st

(a) Navigation, 𝜖

0.80 0.85 0.90 0.95 1.00
ι

10
12
14
16
inf

Co
st

(b) Navigation, Influence

0.1 0.3 0.5 0.7 0.9
ε

5
9

13
17
inf

Co
st

(c) Inventory, 𝜖

0.6 0.7 0.8 0.9 1.0
ι

5
9

13
17
inf

Co
st

(d) Inventory, Influence

Figure 3: The effect of hyperparameters 𝜆 and 𝛿 on the performance of conservative policy search (CPS). The plots correspond
to those from Figure 2. The results suggest that 𝜆 and 𝛿 affect the success rate of CPS in finding a feasible solution. To find a
suitable hyperparameters, one can run a meta-search over hyperparameters.

buy 𝑘 − 𝑠 items. Other details of this environment are explained

in [28]. Note that this is a non-ergodic environment.

Results. In order to show the efficacy of our conservative pol-

icy search algorithm, we consider 4 different algorithms: Naive

baseline–in the Navigation environment it sets 𝜋1 to always take

“right”, and in the Inventory Management, 𝜋1 buys 7 items; b) Con-

servative PS (CPS)–the policy search algorithm from the previous

section that sets 𝜆 = 20, 𝛿 = 0.01, and 𝛿𝜖 = 0.1; c) Constraints Only

PS (COPS)–a modification of CPS that ignores Cost; d) Unconser-

vative PS (UPS)–a modification of CPS that sets 𝛿 = 1.
8

Fig. 2 compares these algorithmic approaches along two dimen-

sions. We test the effect of the victim’s sub-optimality on the cost

and the effect the attacker’s influence over the victim’s peer on the

cost. The results show that our algorithmic approach can lead to a

significant cost reduction compared to the baselines. These results

demonstrate the importance of having: a) a cost-guided search that

does not only aim to satisfy the constraint of the optimization prob-

lem, but also minimizes the attack cost (CPS outperforms COPS),

8
To solve (P1’), we use CVXPY solver in our experiments (see [2, 9]). We provide

additional details in [28].

b) conservative updates that account for the change in occupancy

measures when adopting a new solution (CPS outperforms UPS).

Fig. 3 shows the effect that the hyperparameters have on the per-

formance of CPS. These results confirm that conservative updates

are important, especially in non-ergodic environments (Fig. 3c and

Fig. 3d for 𝛿 = 0.1 and 𝛿 = 1.0), where the performance critically

depends on 𝜖 and 𝜄. We observe similar instabilities for UPS in Fig.

2c and Fig. 2d.

5.2 Experiments for Alternating Policy Updates
Push Environments.We consider two multi-agent RL environ-

ments inspired by prior work [30, 45]. We refer to them as Push

environments. Both of them have a continuous state space, and are

modifications of environments from [45]. In Push environments,

the victim is rewarded based on the distance to a given goal location.

The target policy stands still if the distance to the goal is within

a certain interval, and otherwise moves towards this area. The

default policy of the adversary moves towards the goal and stays

there. We consider two variants. In 1D Push, the agents can move

move left, right, or stand still, on a line segment. In 2D Push, the

Session 5E: Adversarial Learning + Social Networks + Causal Graphs

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1841

AAMAS ’23, May 29 – June 2, 2023, London, United Kingdom Mohammad Mohammadi, Jonathan Nöther, Debmalya Mandal, Adish Singla, and Goran Radanovic

RA MTP DAPU APU RL SAPU RA ED DAPU APU RL SAPU

0.0 0.5 1.0 1.5
λ

0.00

0.25

0.50

0.75

1.00

1.25

co
st

(a) 1D Push: Cost, 𝜆

0.0 0.5 1.0 1.5
λ

0.4

0.6

0.8

1.0

1.2

di
st

(b) 1D Push: Distance, 𝜆

0 2 4
λ

0.5

1.0

1.5

2.0

co
st

(c) 2D Push: Cost, 𝜆

0 2 4
λ

1.2

1.4

1.6

1.8

di
st

(d) 2D Push: Distance, 𝜆

Figure 4: Figures show the test-time performance of each adversary in 1D and 2D Push, for different values of 𝜆. Two empirical
performancemetrics are plotted, cost and dist, which reflect the cost of the attack and the distance to the attack goal, respectively.
More concretely, for a given adversary-victim pair (𝜃, 𝜙), we sample 𝐾 trajectories 𝜏𝑘 of length 𝑇 and calculate cost({𝜏𝑘 }) =

1

𝑇 ·𝐾
∑
𝑠∈𝜏𝑘

𝜋𝜃 (𝑠, ·) − 𝜋0

1
(𝑠, ·)

1
and dist({𝜏𝑘 }) = 1

𝑇 ·𝐾
∑
𝑠∈𝜏𝑘

𝜋𝜙 (𝑠, ·) − 𝜋†2 (𝑠, ·)

1

. For each 𝜆, we train 5 adversarial policies (using 5

different random seeds). For each adversarial policy, we train 5 victim policies (using 5 different random seeds) against this
adversarial policy. The results show the mean and 95% confidence intervals of the obtained data points. In [28], we provide the
confidence intervals for baselines whose behavior does not change with 𝜆.

agents have two additional actions, up and down, and are located

in a plane. Compared to the 1D version, the reward of the victim

has an additional penalty term since the adversary cannot easily

“block” the learner from reaching the goal. Note that in 2D Push

the target policy is stochastic and encodes the direction to the goal

(while minimizing its support). I.e., outside of the annulus where

the victim should stay still, the target policy is identified by the

vector that connects the victim’s position and the closest point of

the annulus. We specify other details in [28].

Results. To test the efficacy of our alternating policy updates

approach, we consider 4 different algorithms trained with Proxi-

mal Policy Optimization (PPO) [41]:
9
a) Random Adversary (RA)

baseline–the adversary takes actions uniformly at random; b) Move

to Target Position (MTP) baseline for 1D Push–the adversary fol-

lows a hard-coded policy that moves to the target position; c) Equal

Distance (ED) baseline for 2D Push–the adversary follows a hard-

coded policy that keeps the same distance to the victim and goal;

d) Alternating Policy Updates (APU)–our approach from the previ-

ous section, where PPO is used for policy updates and the victim

is trained for 5 times as many episodes per epoch as the adver-

sary; e) Random Learner (RL)–a modification of APU which fixes

the victim’s parameters 𝜙 to random values; f) Symmetric APU

(SAPU)–a modification of APU in which 𝜃 and 𝜙 are updated in

a symmetric manner, i.e., using the same number of episodes; g)

Distance-only APU (DAPU)–a modification of APU that does not

use the imitation learning loss. Fig. 4 compares the test-time per-

formance of these approaches for different values of 𝜆. For larger

values of 𝜆, our approach outperforms naive baselines (RA, MTP,

ED) both in terms of the attack cost and success; only MTP has

a comparable attack costs for large 𝜆 in 1D Push. In terms of the

attack cost, APU achieves similar performance as its modifications

9
Weuse the implementation from stable-baselines3 [35].We provide additional training

details in [28].

in most cases, while outperforming SAPU in 2D Push. However,

in terms of the success rate, it outperforms most of them for large

enough 𝜆. One exception is RL, which achieves similar performance

in 2D Push. These results suggest that: a) it is important to train

(the model of) the victim alongside the attacker (APU vs. RL in 1D

Push), b) it is important to have asymmetric update rules that more

conservatively update the adversary’s policy (APU vs. SAPU), c) it

is important to have a cost guided optimization that does not only

aim to optimize the attack success (APU vs. DAPU).

Remark 2. Alternating Policy Updates can also be applied to Nav-

igation and Inventory Management, and we report the experimental

results for these two environments in the full version of the paper [28].

6 CONCLUSION
In this paper, we studied a novel form of poisoning attacks in re-

inforcement learning based on adversarial policies. In this attack

model, the attacker utilizes the presence of another agent to in-

fluence the behavior of a learning agent. We showed that such an

implicit form of poisoning differs from the standard environment

poisoning attack models in RL. In particular, the implicit attack

model appears to be more restrictive in that it is not always feasible,

while determining its feasibility is a computationally challenging

problem. In contrast, and as argued by prior work, this type of

attack may be more practical as the aspects that are controlled

by an attacker are expressed through an agency, i.e., the learner’s

peer. Hence, we believe that our results contribute valuable insights

important for understanding trade-offs between different attack

models. One of the most interesting future research directions is

to consider settings with more than two agents. In such settings,

an attacker has to reason about the agents’ equilibrium behavior,

which brings additional computational challenges. On the other

hand, the attacker could potentially use the conflicting goals of the

agents in its own favor, which may decrease the cost of the attack.

Session 5E: Adversarial Learning + Social Networks + Causal Graphs

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1842

Implicit Poisoning Attacks in Two-Agent Reinforcement Learning AAMAS ’23, May 29 – June 2, 2023, London, United Kingdom

7 ACKNOWLEDGEMENTS
This research was, in part, funded by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) – project number

467367360.

REFERENCES
[1] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. 2019. Reinforcement

learning: Theory and algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech.

Rep (2019).

[2] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. 2018.

A rewriting system for convex optimization problems. Journal of Control and

Decision 5, 1 (2018), 42–60.

[3] Kiarash Banihashem, Adish Singla, Jiarui Gan, and Goran Radanovic. 2022. Ad-

missible policy teaching through reward design. arXiv preprint arXiv:2201.02185

(2022).

[4] Kiarash Banihashem, Adish Singla, and Goran Radanovic. 2021. Defense

against reward poisoning attacks in reinforcement learning. arXiv preprint

arXiv:2102.05776 (2021).

[5] Vahid Behzadan and Arslan Munir. 2017. Whatever does not kill deep reinforce-

ment learning, makes it stronger. arXiv preprint arXiv:1712.09344 (2017).

[6] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against

machine learning at test time. In Joint European conference on machine learning

and knowledge discovery in databases. 387–402.

[7] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against

support vector machines. In International Conference on Machine Learning. 1467–

1474.

[8] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted

backdoor attacks on deep learning systems using data poisoning. arXiv preprint

arXiv:1712.05526 (2017).

[9] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling

language for convex optimization. The Journal of Machine Learning Research 17,

1 (2016), 2909–2913.

[10] Christos Dimitrakakis, David C Parkes, Goran Radanovic, and Paul Tylkin. 2017.

Multi-view decision processes: the helper-AI problem. Advances in neural infor-

mation processing systems (2017), 5449–5458.

[11] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart

Russell. 2020. Adversarial Policies: Attacking Deep Reinforcement Learning. In

International Conference on Learning Representations.

[12] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying

vulnerabilities in the machine learning model supply chain. arXiv preprint

arXiv:1708.06733 (2017).

[13] Wenbo Guo, Xian Wu, Sui Huang, and Xinyu Xing. 2021. Adversarial policy

learning in two-player competitive games. In International Conference on Machine

Learning. 3910–3919.

[14] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel.

2017. Adversarial attacks on neural network policies. arXiv preprint

arXiv:1702.02284 (2017).

[15] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. 2020. What is local optimality

in nonconvex-nonconcave minimax optimization?. In International Conference

on Machine Learning. 4880–4889.

[16] Sham Kakade and John Langford. 2002. Approximately Optimal Approximate

Reinforcement Learning. In International Conference on Machine Learning. 267–

274.

[17] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. 2020. TrojDRL:

evaluation of backdoor attacks on deep reinforcement learning. In 2020 57th

ACM/IEEE Design Automation Conference (DAC). 1–6.

[18] Jernej Kos and Dawn Song. 2017. Delving into adversarial attacks on deep policies.

arXiv preprint arXiv:1705.06452 (2017).

[19] Aounon Kumar, Alexander Levine, and Soheil Feizi. 2021. Policy Smoothing for

Provably Robust Reinforcement Learning. In International Conference on Learning

Representations.

[20] Joshua Letchford, LiamMacDermed, Vincent Conitzer, Ronald Parr, and Charles L

Isbell. 2012. Computing optimal strategies to commit to in stochastic games. In

Proceedings of the AAAI Conference on Artificial Intelligence. 1380–1386.

[21] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data poi-

soning attacks on factorization-based collaborative filtering. Advances in neural

information processing systems (2016), 1885–1893.

[22] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu,

and Min Sun. 2017. Tactics of adversarial attack on deep reinforcement learning

agents. In Proceedings of the 26th International Joint Conference on Artificial

Intelligence. 3756–3762.

[23] Guanlin Liu and Lifeng Lai. 2021. Provably efficient black-box action poisoning

attacks against reinforcement learning. Advances in Neural Information Processing

Systems (2021), 12400–12410.

[24] Yuntao Liu, Yang Xie, and Ankur Srivastava. 2017. Neural trojans. In 2017 IEEE

International Conference on Computer Design (ICCD). 45–48.

[25] Thodoris Lykouris, Max Simchowitz, Alex Slivkins, and Wen Sun. 2021.

Corruption-robust exploration in episodic reinforcement learning. In Conference

on Learning Theory. 3242–3245.

[26] Yuzhe Ma, Xuezhou Zhang, Wen Sun, and Jerry Zhu. 2019. Policy poisoning

in batch reinforcement learning and control. Advances in Neural Information

Processing Systems (2019), 14543–14553.

[27] Shike Mei and Xiaojin Zhu. 2015. Using machine teaching to identify optimal

training-set attacks on machine learners. In Proceedings of the AAAI Conference

on Artificial Intelligence. 2871–2877.

[28] Mohammad Mohammadi, Jonathan Nöther, Debmalya Mandal, Adish Singla, and

Goran Radanovic. 2023. Implicit Poisoning Attacks in Two-Agent Reinforce-

ment Learning: Adversarial Policies for Training-Time Attacks. arXiv preprint

arXiv:2302.13851 (2023).

[29] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.

Deepfool: a simple and accurate method to fool deep neural networks. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition. 2574–2582.

[30] Igor Mordatch and Pieter Abbeel. 2018. Emergence of grounded compositional

language in multi-agent populations. In Proceedings of the AAAI Conference on

Artificial Intelligence. 1495–1502.

[31] AnhNguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are easily

fooled: High confidence predictions for unrecognizable images. In Proceedings of

the IEEE conference on computer vision and pattern recognition. 427–436.

[32] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine

learning. In Proceedings of the 2017 ACM on Asia conference on computer and

communications security. 506–519.

[33] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish

Chowdhary. 2017. Robust deep reinforcement learning with adversarial attacks.

arXiv preprint arXiv:1712.03632 (2017).

[34] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Inc.

[35] Antonin Raffin, AshleyHill, Maximilian Ernestus, AdamGleave, Anssi Kanervisto,

and Noah Dormann. 2019. Stable baselines3.

[36] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. 2020. A game theoretic

framework for model based reinforcement learning. In International conference

on machine learning. 7953–7963.

[37] Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla.

2020. Policy teaching via environment poisoning: Training-time adversarial

attacks against reinforcement learning. In International Conference on Machine

Learning. 7974–7984.

[38] Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla.

2021. Policy teaching in reinforcement learning via environment poisoning

attacks. Journal of Machine Learning Research 22, 210 (2021), 1–45.

[39] Anshuka Rangi, Haifeng Xu, Long Tran-Thanh, and Massimo Franceschetti.

2022. Understanding the Limits of Poisoning Attacks in Episodic Reinforcement

Learning. In Proceedings of the 31st International Joint Conference on Artificial

Intelligence. 3394–3400.

[40] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

2015. Trust region policy optimization. In International conference on machine

learning. 1889–1897.

[41] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347

(2017).

[42] Jianwen Sun, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie Chen, and

Yang Liu. 2020. Stealthy and efficient adversarial attacks against deep reinforce-

ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence.

5883–5891.

[43] Yanchao Sun, Da Huo, and Furong Huang. 2020. Vulnerability-Aware Poisoning

Mechanism for Online RL with Unknown Dynamics. In International Conference

on Learning Representations.

[44] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.

In International Conference on Learning Representations.

[45] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari,

Ryan Sullivan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo

Perez-Vicente, et al. 2021. Pettingzoo: Gym for multi-agent reinforcement learn-

ing. Advances in Neural Information Processing Systems (2021), 15032–15043.

[46] Yevgeniy Vorobeychik and Satinder Singh. 2012. Computing stackelberg equi-

libria in discounted stochastic games. In Proceedings of the AAAI Conference on

Artificial Intelligence. 1478–1484.

[47] Lun Wang, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing, and Dawn Song.

2021. BACKDOORL: Backdoor Attack against Competitive Reinforcement Learn-

ing. In 30th International Joint Conference on Artificial Intelligence. 3699–3705.

Session 5E: Adversarial Learning + Social Networks + Causal Graphs

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1843

AAMAS ’23, May 29 – June 2, 2023, London, United Kingdom Mohammad Mohammadi, Jonathan Nöther, Debmalya Mandal, Adish Singla, and Goran Radanovic

[48] Yue Wang, Esha Sarkar, Wenqing Li, Michail Maniatakos, and Saif Eddin Jabari.

2021. Stop-and-go: Exploring backdoor attacks on deep reinforcement learning-

based traffic congestion control systems. IEEE Transactions on Information Foren-

sics and Security 16 (2021), 4772–4787.

[49] Fan Wu, Linyi Li, Zijian Huang, Yevgeniy Vorobeychik, Ding Zhao, and Bo Li.

2021. CROP: Certifying Robust Policies for Reinforcement Learning through

Functional Smoothing. In International Conference on Learning Representations.

[50] Fan Wu, Linyi Li, Huan Zhang, Bhavya Kailkhura, Krishnaram Kenthapadi, Ding

Zhao, and Bo Li. 2021. COPA: Certifying Robust Policies for Offline Reinforcement

Learning against Poisoning Attacks. In International Conference on Learning

Representations.

[51] Young Wu, Jermey McMahan, Xiaojin Zhu, and Qiaomin Xie. 2022. Reward

Poisoning Attacks on OfflineMulti-Agent Reinforcement Learning. arXiv preprint

arXiv:2206.01888 (2022).

[52] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and

Fabio Roli. 2015. Is feature selection secure against training data poisoning?. In

international conference on machine learning. 1689–1698.

[53] Han Xiao, Huang Xiao, and Claudia Eckert. 2012. Adversarial label flips attack

on support vector machines. In Proceedings of the 20th European Conference on

Artificial Intelligence. 870–875.

[54] Zhaoyuan Yang, Naresh Iyer, Johan Reimann, and Nurali Virani. 2019. Design

of intentional backdoors in sequential models. arXiv preprint arXiv:1902.09972

(2019).

[55] Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. 2021. Robust

reinforcement learning on state observations with learned optimal adversary.

arXiv preprint arXiv:2101.08452 (2021).

[56] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning,

and Cho-Jui Hsieh. 2020. Robust deep reinforcement learning against adversarial

perturbations on state observations. Advances in Neural Information Processing

Systems (2020), 21024–21037.

[57] Haoqi Zhang and David Parkes. 2008. Value-based policy teaching with active

indirect elicitation. In Proceedings of the 23rd national conference on Artificial

intelligence-Volume 1. 208–214.

[58] Haoqi Zhang, David C Parkes, and Yiling Chen. 2009. Policy teaching through

reward function learning. In Proceedings of the 10th ACM conference on Electronic

commerce. 295–304.

[59] Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. 2021. Robust policy

gradient against strong data corruption. In International Conference on Machine

Learning. 12391–12401.

[60] Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. 2022. Corruption-

robust offline reinforcement learning. In International Conference on Artificial

Intelligence and Statistics. 5757–5773.

[61] Xuezhou Zhang, YuzheMa, Adish Singla, and Xiaojin Zhu. 2020. Adaptive reward-

poisoning attacks against reinforcement learning. In International Conference on

Machine Learning. 11225–11234.

Session 5E: Adversarial Learning + Social Networks + Causal Graphs

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1844

	Abstract
	1 Introduction
	1.1 Related Work

	2 Implicit Poisoning Attacks
	2.1 Multi-Agent Environment
	2.2 Problem Statement

	3 Characterization Results
	3.1 Computational Complexity
	3.2 Bounds on the Optimal Value

	4 Algorithms
	4.1 Conservative Policy Search for Implicit Attacks
	4.2 Alternating Policy Updates for Implicit Attacks

	5 Experiments
	5.1 Experiments for Conservative Policy Search
	5.2 Experiments for Alternating Policy Updates

	6 Conclusion
	7 Acknowledgements
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 48.51, 719.76 Width 518.09 Height 14.45 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 48.5062 719.7567 518.0874 14.4487

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 10

 1

 HistoryList_V1
 qi2base

