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ABSTRACT
This paper shows that an appropriately configured multi-agent sys-
tem (MAS) is formally equivalent to a graphical causal model (GCM,
a broad category that includes many formalisms expressed as di-
rected graphs), and offers benefits over other GCMs in modeling a
social scenario. MASs often use GCMs to support their operation,
but are not usually viewed as tools for enhancing their execution.
We argue that the definition of a GCM should include its update
mechanism, an often-overlooked component. We review a wide
range of GCMs to validate this definition and point out limitations
that they face when applied to the social and psychological di-
mensions of causality. Then we describe SCAMP (Social Causality
using Agents with Multiple Perspectives), a causal language and
multi-agent simulator that satisfies our definition and overcomes
the limitations of other GCMs for social simulation.
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1 INTRODUCTION
This paper [2] makes two claims.

(1) A stigmergic multi-agent system (MAS) with an appropriate
environment has the same mathematical structure (defined
in Section 2) as a graphical causal model (GCM).

(2) Such an MAS has advantages over other GCMs for modeling
social causality.

“Graphical causal models" (GCMs) include reasoning systems
(e.g., Bayes nets, POMDPs, fuzzy cognitive maps, causal loop dia-
grams), based on directed graphs. These models have a common
structure (Section 2). Multi-agent systems (MASs) often use GCMs,
but are not usually viewed as instances of such models. Claim 1
asserts that a stigmergic MAS can share this structure in a way that
other MASs do not. This insight allows the agent community to
contribute in a new way to the causal modeling community.

Once we recognize an appropriately configured MAS as a GCM,
we can compare it with other GCMs. Claim 2 arises from our expe-
rience with such an MAS, SCAMP (Social Causality using Agents
withMultiple Perspectives), for a major experiment in social science
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as part of the DARPA Ground Truth program. SCAMP generated
data from a synthetic society with known underlying causal struc-
ture [4]. Our society was inspired by civil strife in Syria, and agents
belonged to distinctive groups, including the government, an armed
opposition, radical insurgents, non-governmental organizations,
and civilians. We captured the behaviors of these agents as they
interacted, and teams of social scientists used this data to evaluate
methods of causal discovery. Section 3 aligns SCAMP (described
elsewhere [2, 4, 5]) with our definition to validate Claim 1, and
shows how it supports Claim 2. We are not concerned with any spe-
cific context for a GCM, but rather highlight a potential application
of agent-based reasoning to graphical representations of causality
in general.

SCAMP implements Simon’s Law [7]: the complexities of be-
havior, human as well as insect, can be explained as simple agent
behaviors constrained by a complex environment. It uses stigmergic
agents to explore a variety of graphical environments that encode
psychological and social behavior. Two of these environments are
directed graphs that satisfy our definition for the structural com-
ponent of a GCM (Section 2): a Causal Event Graph (CEG) whose
nodes are event types andwhose edges show causal relations among
them, and a hierarchical graph network (HGN) whose nodes are
(sub)goals and whose edges show how they combine and relate to
events. As we explain in more detail in Section 3,

• Every GCM includes not only a directed graph, but also a
process that updates values on the nodes of the graph.

• If a graph is the environment in a stigmergic system, agents
can update node values as they move over it.

• Such an architecture has advantages over other GCMs for
modeling social causality.

2 DEFINITION OF A GCM
Humans often represent causality as a directed graph. Philosophers
struggle to define causality [1] (in graph theoretic terms, the se-
mantics of the directed edges). The formalisms we discuss sidestep
this question. For example, Pearl refuses to define causality, instead
treating “cause” as an undefined primitive, like “point” and “line”
in Euclidean geometry [6, pp. 27, 48]. We adopt this position. If
an approach presents causal information as a directed graph, we
understand a directed edge as a causal claim, with a cause at the
tail and an effect at the head, without quibbling over the precise
nature of the edge’s causality.

A graphical causal model (GCM) requires not only a digraph with
values associated with the nodes, but also an updating mechanism
that updates the values on nodes. This mechanism is a significant
component of the causal semantics of the formalism. Formally, we
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define a graphical causal model

C ≡ ⟨N ,E,V , F ,U ⟩ (1)

where the components are
• a set of nodes N ;
• a set of directed edges between nodes E ⊂ N × N ;
• a set of values V (possibly vectors) that nodes can carry;
• a function F : N → V (Fk (n) indicates the kth element of
the vector v associated with node n);

• an updating functionU : F → F ′ that changes the values to
which individual nodes evaluate.

U often uses information associated with the edges to propagate
causal effects from one node to another. Formalisms intended for
human inspection and not computation may lack an explicit V , F ,
and U and rely on informal, qualitative node updating, but do not
evade this definition. The human users of such formalisms have an
informal sense of the prominence of each node, and interpret the
graph according to conventions that function as U .

In most methods with computational updating, U is analytic,
and involves solving an equation. In an appropriately configured
MAS,U , executed by agents, can be algorithmic, offering a much
richer space of options.

Most GCMs focus on the directed graph G ≡< N ,E >. In the
Ground Truth program, the “causality" that the social science teams
were challenged to recover consisted only of such a graph, without
V , F , or U . Our interaction with the social science teams showed
us that the semantics of a GCM involvesU , and thus the values V
assigned to nodes, as much as the structure G, and configuring an
MAS as a GCM greatly enhances the potential power of U .

The full paper validates this definition by aligning it with eleven
different kinds of GCMs (and numerous subtypes) that have been
proposed, including factor trees, causal loop diagrams, path dia-
grams, causal diagrams, influence nets, the causal influence models,
influence diagrams, POMDPs, fuzzy cognitive maps, system dynam-
ics models and their underlying ODEs, and stochastic Petri nets.
This review identifies four desirable features in a causal model. No
previous formalism satisfies all four.

(1) Does the formalism estimate the relative probability of dif-
ferent nodes and pathways? Decision-makers want to focus
on the most likely outcomes, as well as those that are intrin-
sically most interesting.

(2) Does the formalism support cycles and feedback? Feedback
loops are pervasive in real systems, and are critical for un-
derstanding stability, instability, and emergent behavior.

(3) Does the formalism model the quantitative passage of time?
Users want to know not just that one thing is likely to happen
after another, but how long it will take.

(4) Does the formalism represent agency, expressing who is
responsible for the various causal influences? Certain dimen-
sions of causality, such as considering the goals of different
groups, can only be captured if we know who is doing what.

-

3 DEMONSTRATING THE CLAIMS
SCAMP demonstrates both claims from Section 1. SCAMP has the
same four features in Equation 1 that we found in other formalisms,
demonstrating the first claim:

• N (Nodes in directed graph): Event types in the CEG; Sub-
goals in the HGN;

• E (Directed edges among nodes): agency and influence edges
in the CEG; and, or, zip edges and their inverses in the HGN.

• V , F (Values on nodes): On the CEG, wellbeing, urgency,
presence features; the groups that are eligible to participate
in (have agency for) an event type; the nominal duration of
the event. On the HGN: satisfaction, urgency, frustration,
tolerance.

• U (Update function): pheromone deposits on the CEG; up-
date of urgency through the HGN.

Our second claim asserts that an appropriately configured MAS
supports the four requirements addressed variously by other GCMs:
probability, cycles, time, and agency. SCAMP supports all four
requirements.

Probability is supported in two ways. 1) Roulette-based decisions
model the non-determinism of human choice. The probability of
these transitions is not static and defined exogenously, but emerges
dynamically from psychologically realistic modeling primitives
(agent preferences and event features) that vary over time. 2) The
presence features on each event type are deposited by polyagent
ghosts [3] as they plan paths for their avatars, and avatars follow
the crest of the presence field for their group. Thus the presence
features on event type nodes are, up to a normalizing constant,
the probability that agents of each group will participate in that
event type. While each avatar follows only a single path, we log the
presence features over time, allowing us to recover the time-varying
probability of alternative futures.

Cycles and feedback are possible because CEG nodes represent
event types, not specific events: they have nominal durations but not
start times. Time-anchored events emerge from SCAMP’s execution,
as agents begin and end their participation in event types. Thus an
agent can meaningfully revisit a node by participating in different
events of the same type.

Time is based on the duration feature of a CEG node F3(n) from
which an agent samples the duration of its participation in event
type n. Agents execute in order of their individual time, so the
temporal order of events is respected.

Agency is supported in three ways. 1) An agent can only choose
an event type n for which its group has agency (that is, the group
is a member of F2(n)). 2) Agents belong to groups within which
preferences are similar. 3) Each agent’s wellbeing preferences (and
an overall wellbeing variable) vary with its experiences, so that
different agents with different histories encountering the same
environmental state may behave differently.
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