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ABSTRACT

Agent-based models (ABMs) are a promising tool to simulate com-
plex environments. Their rapid adoption requires scalable speci-
fication, efficient data-driven calibration, and validation through
sensitivity analyses. Recent progress in tensorized and differentiable
ABM design (GRADABM) has enabled fast calibration of million-size
populations, however, validation through sensitivity analysis is still
computationally prohibitive due to the need for running the model
a large number of times. Here, we present a novel methodology
that uses automatic differentiation to perform a sensitivity analysis
on a calibrated ABM without requiring any further simulations.
The key insight is to leverage gradients of a GRADABM to compute
exact partial derivatives of any model output with respect to an
arbitrary combination of parameters. We demonstrate the benefits
of this approach on a case study of the first wave of COVID-19 in
London, where we investigate the causes of variations in infections
by age, socio-economic index, ethnicity, and geography. Finally,
we also show that the same methodology allows for the design of
optimal policy interventions. The code to reproduce the presented
results is made available on GitHub .
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1 INTRODUCTION

Decision making in complex environments, such as in the midst of a
public health crisis, is challenging. Data-driven modelling and simu-
lation tools to explore this complexity and the effects of policies can
be invaluable. Agent-based models (ABMs) are powerful tools for
capturing the dynamics of complex systems, most recently widely
deployed in response to the COVID-19 pandemic. For instance,
these have helped decide lockdown strategies [19], prioritize vacci-
nation schedules [14, 41] as well as inform mitigation strategies in
refugee settlements [6]. Their utility requires scalable specification,
data-driven calibration, and sensitivity analyses for validation —
which can often be challenging. First, simulations in fields such
as climate science and epidemiology are generally on the scale of
millions of agents with large networks of interactions [4, 16, 32],
and performing a single forward pass may take several days [5].
Second, this makes calibration subpar when procedures involve
running the model numerous times while iteratively tuning pa-
rameters [40, 46]. Third, sensitivity analyses require re-running the
model under different parameter configurations [9, 10] which suffer
from both the high computational cost as well as sub-optimally
calibrated parameters.

GRADABM [13] is a recent tensorized and differentiable design
of ABMs that has been shown to alleviate some of these concerns
regarding scalability and data-driven calibration. GRADABM fol-
lows a tensorized implementation where agents are represented
as vectors, their interaction networks as adjacency matrices, and
all discrete distributions (e.g. Bernoulli) are reparameterised with
continuous approximations. This framework realizes simulations
that scale to million-size populations in few seconds on commodity
hardware, run on both CPUs and GPUs, and are end-to-end dif-
ferentiable [13]. Ensuring differentiability enables gradient-based
learning, which allows to merge with deep neural networks (DNNs)
and integrate heterogeneous data sources, to improve calibration.
A remaining challenge is to perform sensitivity analyses of the
model outputs with respect to the input parameters, in an efficient
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manner. Even with faster (tensorized) simulations, current meth-
ods that rely on evaluating the simulator multiple times may be
prohibitive due to exponential cost scaling from joint regulation
of multiple parameters. However, sensitivity analyses are essential
to assess the confidence levels associated with a given model fit
and to validate its utility for robust decision making. Making these
computationally tractable is the focus of this work.

We introduce a gradient-based mechanism for conducting sen-
sitivity analyses. The key insight is to repurpose the gradients of
GRADABMSs to avoid having to rerun the simulations. Basically,
parametric sensitivity analyses require running the model under
different parameter configurations [9, 10]. These effectively seek to
estimate numerically the partial derivatives of the model parameters
with respect to the output. GRADABMs provide this information
directly by making use of automatic differentiation [7] in an ex-
act way. Essentially, this allows us to conduct sensitivity analyses
without requiring any new simulation runs.

For experiments, we utilize the highly-detailed JuNE epidemi-
ological ABM [5], which has been parameterised to simulate the
spread of COVID-19 among all the people in England (~55M agents).
We reformulate JUNE as a GRADABM (henceforth, call this imple-
mentation GRADABM-JUNE) and calibrate the model to the first
wave of the pandemic in London to investigate differences in in-
fection rates by age group, socio-economic index, ethnicity, and
geography. This allows us to ask questions of the form: i) was the
socio-economic status of an individual a risk factor for COVID-
19 infection? (section 5.1), ii) what made the Asian population of
London disproportionately vulnerable to infection? (section 5.2)

Further, beyond such retrospective analysis, our gradient-based
mechanism can also be used to ask prospective questions of the
form: what could the government have done differently when de-
signing a lockdown strategy? (section 5.3). Exploring such optimal
policy design is a core part of informing decision making and can
be made possible by ABMs that simulate counterfactuals. However,
their discovery presents similar challenges to those arising when
calibrating traditional ABMs — namely the time-consuming and
challenging nature of optimising complex models. GRADABM-JUNE
produces (epidemiological) cost-effective policies before and af-
ter the national lockdown in London during the first wave of the
pandemic.

2 RELATED WORK

In this section, we first contextualize the use of ABMs in policy
decision making, commenting on the current limitations that they
face. We then explain the importance of carrying sensitivity analy-
ses in ABMs and the high computational cost associated with them.
Lastly, we review other domains where gradients have been used
to understand latent model behaviour.

2.1 ABMs for Decision Making

ABMs aim to model the behaviour of complex systems through
the interactions of their most primitive components. For instance,
in an epidemiological model, ABMs simulate the movement and
interactions of a population, which enables the tracking of the
spread of an infection at an individual level. In principle, this makes
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ABMs an ideal tool for policy design, since we can study very
detailed counter-factuals.

ABMs have been used for decision making in many settings in-
cluding: economics [15], climate change [11, 17], public health [48]
and emergency response [28]. Recently, ABMs have been widely de-
ployed for decision making in response to the COVID-19 pandemic.
Uses include informing lockdown measures [19, 30], contact trac-
ing policies [8, 29], and vaccine distribution mechanisms [34, 41].
Specifically, the JuNE model used in this paper informed acute hos-
pital capacity planning in the UK in collaboration with the NHS [5]
and vaccination campaign planning [14], and it was deployed to
model intervention strategies in refugee settlements [6].

Barriers remain to the widespread use of ABMs. A key chal-
lenge is to specify realistic simulation populations, calibrate with
real-world data, and validate correctness of decisions [33]. This
must often be performed rapidly to inform timely decision making.
However, the complexity of the models, and their time consuming
inference and calibration time hinders their applicability.

2.2 Sensitivity of ABMs

ABMs tend to be parameterised by a large number of variables.
Several can be fixed by expert knowledge, while others require the
model to be calibrated to real world data. Given the non-linearity
of ABMs, small variations of input parameters can lead to a wide
range of emergent behaviour. It is therefore crucial to understand
which outputs are most sensitive to which parameters. Different
methods have been proposed to carry this task [9, 42, 47], but they
all require to run the ABM a large number of times, especially when
the number of input and output quantities is large. Since most ABMs
are slow to run, thorough sensitivity analyses of ABMs are often
computationally prohibitive. An example of this is the uncertainty
quantification study done by [18] on the CovidSim epidemiological
model [19]. The study required the use of a supercomputer and
thousands of evaluations of the CovidSim model to determine the
sensitivity of the model outputs to the input parameters. In a real
case scenario where the validity of a forecast is just as precious as
the time needed to obtain it, this hinders the adoption of ABMs as
a tool for real-time policy decision making. The key motivation for
this work is that implementing an ABM as a GRADABM allows to
significantly improve the speed and cost of such analyses by just
using the (directly accessible) gradients in the simulator to measure
sensitivity of output to specific parameters.

2.3 Analysis with Gradients

Gradient-based methods can be used to identify saliency of input
features by using the gradient to estimate their influence on the out-
put. Such saliency maps are a popular visualization technique used
to add a layer of interpretability to deep neural networks (DNNs).
They are used to localize input regions essential to classifying an
image in computer vision [12, 43, 45, 54]; to explain how agents
choose actions in deep reinforcement learning [2, 3, 39, 52]; and
to analyse the robustness of the trained DNN [35, 53]. The end-
to-end differentiability of DNNs allows to quickly execute such
analysis at scale, due to direct availability of gradients (from the
computation graph) via automatic differentiation. The key focus of
this work is to bring similar insights for validating ABMs through
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GRADABMs, which are amenable to gradient-based learning with
automatic differentiation.

3 PRELIMINARIES

This section describes the epidemiological model JUNE and sum-
marizes the specification and calibration of a GRADABM. We then
present the training and inference pipelines for GRADABM-JUNE.

3.1 JUNE Epidemiological Model

The JuNE epidemiological model is an ABM built with the highest
granularity that a demographic census allows. Initially designed
to model the spread of SARS-CoV-2 in England, JuNE models the
movement of a synthetic population in and between a variety of
locations such as households, care homes, companies, and leisure
venues. All locations are distributed according to real data, and the
daily activities of the agents are calibrated from time use surveys.
We refer to the main JUNE paper [5] for a thorough description of
the model.

The JuNE model assisted NHS operations and was afterwards
adapted to model refugee settlements in collaboration with United
Nations agencies [6]. The original implementation of JunEe follow-
ing an object-oriented Python approach is available in GitHub 2. We
focus here on the most relevant part of the model for the purpose
of this work: the transmission module, since it is the component
that needs to be calibrated using the observed infection data.

Given a susceptible agent exposed to the virus at location L, the
probability of that agent getting infected is given by

p=1-exp|—ys fr At ) Li(1)

ieg

)

where s is the inherent susceptibility to infection of the agent,
the summation is over all contacts with infected individuals at
the location, I;(t) is the time-dependent infectious profile of each
infected agent, At is the duration of the interaction, and finally fr
is a location-specific parameter that models the difference in the
nature of interactions for each location. Since the parameters f§ are
not a physical quantity that can be measured, they are typically
calibrated using data on the number of cases or fatalities over time.

3.2 GradABM

GRADABMs [13] are ABMs amenable to gradient-based learning
with automatic differentiation. First, in contrast to conventional
ABMs which follow an object-oriented design where agents are
modeled as objects (which is appealing but often inefficient), GRAD-
ABMs follow a tensorized design where agents are represented
as vectors and their interaction networks with adjacency matri-
ces. This allows to code ABMs using modern machine learning
frameworks, which can run forward simulations rapidly with high
parallelization through GPUs. Second, ABMs are stochastic simu-
lators which may conventionally require sampling from discrete
distributions during execution (e.g.: all interactions with an infected
agent may not result in a new infection; COVID-19 tests may re-
turn false positives/negatives with some probability). In GRADABM,
all discrete distributions (e.g. Bernoulli) are reparameterised with

Zhttps://github.com/idas-durham/june
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continuous approximation (e.g. Gumbel-Softmax [31]), to enable
end-to-end differentiability. This design allows scaling to realistic
populations and leveraging automatic differentiation, which pro-
vides a wide array of practical benefits (e.g. integrating with deep
neural networks).

A direct application of integrating the GRADABM with neural
networks is that we can use a deep neural network (CALIBNN) to
assist us in the calibration process. The CALIBNN is tasked with
predicting the optimal parameters 6, which are input to the GRAD-
ABM, that minimize a loss function £ that compares the GRADABM
output 7 to the calibration data y. Therefore, rather than learning
0 directly, we are learning the CALIBNN weights ¢, such that opti-
mization is done as
dL(y,79;6)

d¢
where y adjusts the learning rate. The full details of this frame-
work are described in [13]. The key takeaway is that the tensorized
and differentiable specification of Grad ABM makes simulation and
calibration of large-scale ABMs possible without the need to use
techniques that increase the model miss-specification error, such
as surrogate modeling [49].

bre1 =Pt —y X (2)

4 GRADABM-JUNE

In this section, we describe GRADABM-JUNE, which is the ported ver-
sion of the JUNE model into the GRADABM framework in PyTorch.
GRADABM-JUNE exhibits a computational speed-up of x10,000 with
respect to the original JUNE implementation, eliminating the com-
putational constraints that JuNE suffered from. Our objective is to
demonstrate how we can use the gradients of GRADABM-JUNE to
conduct fast sensitivity analyses. As a case study, we design an
experiment centered on the first wave of COVID-19 in London. The
first step is to specify the calibration of the GRADABM-JUNE model
for this experiment, which we do next.

4.1 GrRADABM-JUNE Calibration

To initialize GRADABM-JUNE, we need to specify the transmission
input parameters (see section 3.1), the symptoms input parameters
(e.g. mortality rate), and the active policies as a function of time.
We take all the clinical parameters regarding the probabilities and
the times to transition to different symptomatic stages from the
Covasim model (see Table 1 of [32] and references therein). This
fixes all the parameters regarding the progression of symptoms of
the agents. As for the transmission model, we aim to calibrate the
contact intensity parameters f;, described in section 3.1, as well as
the number of initial cases in the simulation. In Table 1, we show
the complete list of the parameters to calibrate, as well as the range
(in logarithmic space) within which they are allowed to vary.
GRADABM-JUNE can also simulate a wide range of policies, as
in the original JuNE model [5]. For simplicity, the only policy we
consider here is social distancing (SD), which we vary at 3 specific
dates corresponding to government guidelines that were active
during the first wave. A SD policy is parameterised by a; where
i corresponds to each location, similarly to f;. «; is then a multi-
plicative factor to f; that reduces the contact intensity at location i.
Table 2 describes the lockdown parameters that we consider. These
parameters should be interpreted as a heuristic implementation of
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Table 1: List of parameters that are calibrated in GRADABM-
June. All B’s are the respective location contact intensities,
and I; is the fraction of initial number of cases.

Parameters to calibrate

Name Range [log;,]
Phousehold [0.0, 1.5]
Beare home [0.0, 1.5]
Bschool [0.0 0.5]
Beompany [-1.0, 1.0]
ﬂuniversity [—1.0, 1.0]
Ppub [-1.0, 1.0]
ﬂgrocery [-1.0, 1.0]
Pgym [-1.0, 1.0]
ﬁcinema [—1.0, 1.0]
Presidence visits [—1.0, 1.0]
Bearevisits [-1.0, 1.0]
Ii [-4.0, —2.0]

the lockdown and are based on previous calibrations of the JUNE
model [49], where we also set a; = 0 in those locations that were
completely closed during the first lockdown.

Table 2: SD parameters as a function of time.

Lockdown parameters

SD parameter 16/03/2020 | 24/03/2020 | 11/05/2020
®household 0.8 0.5 0.6
Xcare home 0.8 0.5 0.6
school 0.8 0.1 0.1
Ocompany 0.8 0.2 0.4
Quniversity 0.8 0.0 0.0
Qpub 0.8 0.0 0.0
Qgrocery 0.8 0.3 0.3
Xgym 0.8 0.0 0.0
Qcinema 0.8 0.0 0.0
Oresidence visits 0.3 0.0 0.0
Xcarevisits 0.8 0.25 0.25

As for the calibration data, we consider the daily deaths time-
series for each of the London local authority districts [26]. We do
not consider any additional data sources, since quantities such as
case data or hospitalisations where very uncertain during the first
wave.

The original JuNE model was calibrated using a surrogate model
in the form of a Gaussian Process (GP), which was used to iteratively
discard implausible regions of the parameter space, a process known
as history matching [1, 49]. The procedure ends when the parameter
space has been reduced to a region containing parameters that
recreate the data. The training of the GP emulator using the JUNE
model required 100k CPU hours, due to the high computational
cost of the JuNE model and the required number of evaluations.

Here, we use CALIBNN to calibrate GRADABM-JUNE in the speci-
fied setup. Each calibration conducted by CALIBNN generates a set
of parameters that recover the observed data. Given that the deaths
data is not informative enough to break the degeneracy among
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all the f; parameters, there are multiple sets of ff; combinations
that can reproduce the same deaths curve. Ideally, one should per-
form a full Bayesian calibration to obtain the posterior distribution
over the parameters to correctly account for uncertainty, but this
is beyond the scope of this work. Instead, we run the calibration
algorithm 5 times to obtain 5 different sets of parameters and we
conduct future experiments on each of these sets. It is worth noting
that each calibration required fewer than 50 model evaluations,
showcasing the efficacy of the CALIBNN pipeline. For the ensemble
of 5 runs, we compute the mean deaths curve, which we plot in
Figure 1, where we also show a comparison with ground truth data
as well as with the previous calibration of the JuNE model. The
error of the data is taken to be 20}, With g = 4/t to account for
Poissonian counts error. For both JuNE and GRADABM-JUNE the
uncertainty bounds are computed by taking 2 standard deviations
of the set of fitted models. The original JuNE calibration [49] aimed
to reproduce the stratified deaths by age across all the regions of
England, so it is expected that GRADABM-JUNE provides a better
fit, since we only calibrate to London.

—— Observed Data
—— GradABM-JUNE
1 —— JUNE

Daily deaths

A[IJI‘ May
Figure 1: Daily deaths in London by date. Real data is shown
in black, with the shadowed region denoting a 20 Poisson
error. The blue region corresponds to the GRADABM-JUNE
average calibration of the 5 baseline runs. The red region
denotes the calibration fit from the original JUNE model to
London from [49]. For both simulations, the error denotes
20, where o is the standard deviation across the fitted models
outputs. It is important to note that the JunE calibration [49]
was performed for all England, so the London fit is a com-
promise across regions.

As an additional check, we compare in Figure 2 the obtained
prevalence at the end of the first wave in GRADABM-JUNE with the
Ward study [50], which measured the COVID-19 antibody preva-
lence at the end of the first wave in England. Although not directly
comparable, since the prevalence in London may differ from the
average England one, the good agreement between the two gives
us confidence that our calibrated model runs capture the real world
dynamics.
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12 A

—F— GradABM-JUNE
—— Ward +21

Prevalence [%]

45-54 55-64 65-74 75+

Age bin

18-24 25-34 35-44

Figure 2: Cases prevalence for different age groups. Black
error bars show estimates of prevalence from real data [50]
of prevalence in England, blue error bars are the average and
standard deviation of the 5 best fit models using GRADABM-
JuNE in London. Both lines show a downward trend with age,
with younger age groups being infected the most.

Simulation | Calibration | Sensitivity
Analysis
JUNE 50 hours 100k hours | 5k hours
GRADABM-JUNE . .
(CPU) 5 minutes 10 hours 10 minutes
GRADABM-JUNE .
(GPU) 5 seconds 20 minutes | 10 seconds

Table 3: Approximate running times for simulation, cali-
bration, and validation of the JuNE model compared to the
GRADABM-JUNE implementation, running on CPU and GPU.

4.2 GRADABM-JUNE Sensitivity Analysis

We now present the main methodological contribution of this work:
fast sensitivity analysis using gradients. The automatic differen-
tiation engine of machine learning frameworks such as PyTorch
[38] stores the computational graph of the model execution. This
computational graph contains a trace of all the operations that have
been executed in the model, thus allowing to calculate derivatives
in a very fast and exact way. Interpreting the gradient as the rate
of change of the output with respect to a variation of the input pa-
rameter, the gradients directly give us the sensitivity of the former
with respect to the latter. Hence, after one run of GRADABM-JUNE,
we can directly query the computational graph to obtain the sen-
sitivity of any output in GRADABM-JUNE to any input parameter.
In contrast, a non-differentiable simulator would need to be run
multiple times with slight variations of the input parameters to
achieve the same task. This can be a great limitation if the particular
ABM is computationally expensive [18]. In section 5.2, we present
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a series of sensitivity analyses carried on the calibrated GRADABM-
JUNE runs, with the aim of understanding how COVID-19 affected
different demographics groups during the first wave in London.

4.3 GRADABM-JuNE Optimal Policy Design

The last bit of utility that we can extract from the gradients is
a method to design optimal policies. Let us suppose we want to
implement a social distancing policy on the 16th of March 2020,
corresponding to the first time-stamp in Table 2. To fully contain
the virus, the most effective policy would be to just reduce all f; as
much as possible, but drastic policies come at a great economical
and social cost. Instead, let us suppose that we want to implement
a policy that moves us a step of length ¢ in the  parameter space,
where c is not too large. That is, after the policy, ﬁ' = ﬁ —¢. The
optimal direction of ¢ is directly given by the gradient of the number
of cases with respect to ;. In section 5.3, we design an experiment
where we compare this optimal policy to the lockdown described
in Table 2

4.4 Performance Benchmarking

To summarize the benefits of GRADABM-JUNE, we show in Table 3
the differences in running times for the tasks of simulation, calibra-
tion, and sensitivity analysis of JUNE compared to GRADABM-JUNE
(running on CPU or GPU). Even when memory requirements would
stop from running GRADABM-JUNE on a GPU, we still see massive
gains in the CPU version. Of particular importance is the amor-
tization of the computational graph, which allows us to perform
sensitivity analysis at a very low computational cost. This extends
prior results in [13] which demonstrate how GRADABM leads to
faster simulations and more efficient calibration (fewer CPU hours),
due to the tensorized implementation and end-to-end differentia-
bility.

5 RESULTS

As a first study, we query the computational graph to compute the
sensitivity of the number of cases at the end of the simulation with
respect to the contact intensity at each location (f;) . In Figure 3, we

d(cases)
d8;

plot the gradient averaged over the 5 calibrated runs, with

the error bars denoting 2 standard deviations. It is worth noting that
this plot is more informative than simply plotting the number of
infections in each location, since the gradient takes into account the
impact of input parameters on secondary infections. For instance,
locations such as pubs or household visits may not produce lots of
infections directly, but can play a critical role in spreading the virus
to previously unaffected parts of the population. These effects are
captured by the gradients.

5.1 Social Inequalities and COVID-19

One of the key components of the JuNE model, which is present
in the new GRADABM-JUNE version, is the level of detail of its
synthetic population. In particular, each agent is assigned an age,
sex, ethnicity, and socio-economic status following the English
census data. We use the ethnicity categorisation employed by the
English census [20], which divides the population into five groups:
White, Mixed, Asian, Black, and Other. As for the socio-economic
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Figure 3: Value of the gradient of the number of cases with
respect to each input parameter f;.

status, each agent in GRADABM-JUNE is assigned a quintile of Index
of Multiple Deprivation (IMD) according to their area of residence
[37]. Lower indices correspond to lower socio-economic status,
while higher indices correspond to those least deprived.

Epidemiological data from England shows that certain demo-
graphic groups suffer from higher attack rates to COVID-19. No-
tably, [27, 36, 51] find that non-white ethnic groups are at a higher
risk of death compared to the white population. Furthermore, peo-
ple living in the most deprived areas are significantly more vulner-
able than their less deprived counterparts. To examine whether our
calibrated models exhibit the same behaviour, we study the attack
rate for each demographic group,

_ n?/n;
nd/n’

fd

®)

where n? is the number of infected people in demographic group
d, n; is the total number of infected people, n? is the number of
people in demographic group d, and n is the total number of peo-
ple. Intuitively, if f d > 1 then the demographic group d is overly
represented among the infected population, and conversely for
fd <1

We find that the GRADABM-JUNE calibrated models naturally
reproduce the demographic imbalances that are present in the epi-
demiological data. In Figure 4, we plot the f d for each of the 5
ethnic groups. Consistent with the findings of [51], non-white eth-
nic groups are at a higher risk of infection. Similarly, in Figure 5,
we plot f 4 where d now denotes each of the IMD quintiles. We
observe that lower IMD agents are significantly more likely to be
infected than agents with higher IMDs, in accordance with [51].
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13

Fraction infected / fraction population

White Mixed Asian

Ethnicity

Black Other

Figure 4: Fraction of infected individuals by ethnicity, di-
vided by the fraction of the population they represent. Non-
white ethnic groups are disproportionately more affected
than White.

13

1.24

114

1.0 ¢

0.9 1

Fraction infected / fraction population

0.8 1

0.7 -
1 (most deprived) 2 3 4
IMD quintile

5 (least deprived)

Figure 5: Fraction of each IMD quintile in the infected popula-
tion normalised by the fraction of IMD agents in the general
population. Agents living in the most deprived areas are sig-
nificantly over-represented in the infected population.

5.2 Sensitivities of Demographic Groups to
Infection Locations

Given that we recover the broad social imbalances in the infection
data, we now study the specific mechanism in the model which
generates these inequalities. Even with a calibrated model, it is
hard to analyse the entire latent structure. However, we can use the
information in the gradients to circumvent this through a sensitivity
analysis. The differences in sensitivity across demographic groups
provides insight into the infection channels that are most relevant
for each group.

In what follows, we analyse the sensitivity of attack rates (fd )
for each demographic group to the input parameters. Given that
the most sensitive parameters are f; with i € {household, school,
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company, university} (see Figure 3), we restrict our analysis to

these, for clarity.

(1) Differences among age groups

We first look at differences in sensitivity among age groups.
In Figure 6, we plot the sensitivity of f d for 8 different age
groups. The results are quite intuitive. On the one hand, chil-
dren are very susceptible to Ss.001 and, on the other hand,
increasing fcompany reduces their representation in the num-
ber of infected individuals. Children tend to live in larger
households than adults, so they are significantly more sensi-
tive to the value of fpgusehold- It is also interesting to observe
that the fraction of young adults infected is anti-correlated
with Bgchool, Which highlights the fact that older adults are
more likely to have children or work at a school than young
ones. Lastly, the 18-24 age group is, unsurprisingly, the most
affected by Puniversity-

I Age bin

. 0-17 . 45-54

University - 18-24 N 55-64

- m 25-34 65-74

s 3544 mmm 75+
Hi
School - #
Hll
Household A %
Hl

Company 1
—————
-0.2 -0.1 0.0 0.1 0.2 0.3

Sensitivity of ¢

Figure 6: Sensitivity of ¢ for different age groups. Error
bars computed by running the sensitivity analysis over the

baseline runs.

(2) Differences among ethnic groups

Next, we look at different ethnic groups. We plot the sensitiv-
ity of f 4 for each ethnic group in Figure 7. We observe a very
distinct pattern between the white and non-white population.
First, the Asian ethnic group is very sensitive to Souseholds
which is consistent with the fact that larger households are
more common in this group [23]. Conversely, most of the peo-
ple who live alone are white [21], so the fraction of infected
white people is anti-correlated with Sy gusehold- Similarly,
non-white ethnic groups tend to have more children [21],
making them significantly more sensitive to fgcpo01 than the
white ethnic group. Lastly, the sensitivity to Bcompany has
multiple components. The digital population of JUNE takes
into account unemployment, which is more prevalent among
non-white ethnic groups [24]. However, our implemented
lockdown (Table 2) does not model key-worker status in the
population (although this is included in the original imple-
mentation of the JuNE model [5]), which would be skewed by
ethnicity [25] and would likely change this pattern. Finally,
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the Asian ethnic group is over-represented in higher educa-
tion [44], as we can see from their sensitivity to Suniversity-

Ethnicity
mmm \White ..*
University - Mixed
H
B Asian B
Bl Black
= Other _:___‘
School
————
Household | L—
—_—
——
Company - bﬁ‘
—
I
-0.06 -0.04 -0.02 0.00 0.02

Sensitivity of f¢

Figure 7: Sensitivity of f¢ for different ethnic groups. Error

bars computed by running the sensitivity analysis over the
baseline runs.

(3) Differences among socio-economic groups

We now focus our attention to the differences among socio-
economic groups. In Figure 8, we plot the sensitivity of f d
for each IMD quintile. We do not observe any significant
differences in the rates of infection among the IMD quintiles.
A more careful modeling of the lockdown which would take
into account the demographic differences among the fur-
loughed and key worker population which is included in the
original implementation of the JuNE model [5]) would likely
reveal more structure in the sensitivity pattern. It is likely
that the imbalances observed in Figure 5, are directly corre-
lated with differences in ethnic groups, rather than purely
to socio-economic status.

University L
[
H
School A j_‘_‘
—_—
—
Household - ’ﬁ‘_‘
I IMD quintile .
Il 1 (least deprived)
g2 :
Company 1 3
IT_: -
I 5 (most deprived)

0.02 0.04 0.06 0.12

Sensitivity of f¢

-0.04 -0.02 0.00 0.08 0.10

Figure 8: Sensitivity of f¢ for different socio-economic
groups. Error bars computed by running the sensitivity anal-
ysis over the baseline runs.
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(4) Differences among geographic groups

Lastly, we study the sensitivity of the fraction of cases in
each London local authority district. In Figure 9, we show
a geographical map highlighting the differences among dis-
tricts. We observe that West London is significantly sensitive
to Phousehold- This is consistent with its demographic being
predominantly of Asian origin, as we discussed previously.
Conversely, East London is more sensitive to Sscpo0l, given
its high birth rates [22].

Household School
Company University

T,

Figure 9: Sensitivity of f? for different London districts.
Higher sensitivity corresponds to lighter colors.

Y

5.3 Optimal Cost-Effective Policy Design

As outlined in section 4.3, we can use Figure 3 to design an optimal
policy, since it tells us the direction in the parameter space of
maximum sensitivity of the cases respect to the f5;. We construct a
study where we compare 4 different scenarios. We take each of the
baseline runs that fit the data and we let them run until the 15th
March 2020. On the 16th March 2020 we apply a different policy to
each of the scenarios:

(1) An optimal cost-effective lockdown policy, consisting of tak-
ing a step of unit size (c = 1) along the direction of maximum
variance.

(2) A naive cost-effective lockdown where a; = 1/ \/]Tﬁ, where
Ny is the number of f§ parameters.

(3) The lockdown used in Table 2.

(4) No lockdown is implemented.

In Figure 10, we plot the cumulative number of cases for each of
the 4 different scenarios. We observe that our designed optimal
policy achieves a similar reduction in the total number of cases to
the hard lockdown that was implemented, despite it only being a
much smaller displacement of the f; values.

6 CONCLUSIONS

We introduce a new way to conduct sensitivity analysis of ABMs:
using the gradients obtained by automatic differentiation engines.
This new method enables performing sensitivity analyses of large-
scale ABMs at almost zero computational cost.

As a case study, we have ported the JuNE [5] epidemiological
code to the GRADABM [13] framework, which allows for rapid sim-
ulation and calibration thanks to its tensorized implementation and
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10° |

Cumulative cases

105

—— Optimal cost-effective lockdown
Naive cost-effective lockdown

—— Real lockdown

— No lockdown

Mlar A;IJr Mlay
Figure 10: Comparison of the cumulative number of cases
for 4 scenarios: 1. [blue] Optimal cost-effective lockdown
obtained using the gradients, 2. [orange] Naive cost-effective
lockdown, where social-distancing is applied homoge-
neously, 3. [green] Parameterisation of the real lockdown
(Table 2), and 4. [red] No lockdown.

automatic differentiation. We have then calibrated GRADABM-JUNE
to reproduce the first wave of COVID-19 in London, obtaining a
good calibration fit much more rapidly than with the previously
employed methods [49]. After obtaining a set of calibrated models,
we have used the new proposed methodology to perform sensitivity
analyses on them at no extra computational cost. This has been
possible thanks to the exploitation of the automatic differentiation-
capabilities of machine learning frameworks such as PyTorch [38],
which allow for the amortization of the computational graph.

GRADABM-JUNE is able to reproduce the demographic and so-
cial inequalities present in the COVID-19 epidemiological data.
Thanks to the easiness at which we can conduct sensitivity analysis
in GRADABM-JUNE, we have studied how different demographic
groups differ in their sensitivity to different infection locations,
shedding light on opened questions regarding the imbalance of
representation in the infected population for certain demographic
groups. In particular, this work supports the hypothesis that the
differences in attack rates across ethnic groups in London can
be, at least partially, explained by considering sociological factors
such as household overcrowding or the presence of children in the
household. Lastly, we have also shown how the gradients obtained
through automatic differentiation can be used to quickly design
policies that can have maximum impact around a baseline scenario.
In particular, we have designed, caveated by our model uncertainty,
an alternative lockdown on March 2020 that has a comparable effect
to the more severe version that was actually implemented.

Overall, this work brings ABMs one step closer to becoming the
reference tool in simulation-based policy decision making which
are conventionally often hindered by the prohibitive cost and dif-
ficulty of analysis. Interesting directions of future work include
generalizing the idea to other application domains such as econom-
ics and biology, and going beyond the gradient to explore the utility
of higher order differentiation.
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