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ABSTRACT
In this work, we investigate Markov aggregation for agent-based

models (ABMs). Specifically, if the ABM models agent movements

on a graph, if its ruleset satisfies certain assumptions, and if the

aim is to simulate aggregate statistics such as vertex populations,

then the ABM can be replaced by a Markov chain on a comparably

small state space. This equivalence between a function of the ABM

and a smaller Markov chain allows to reduce the computational

complexity of the agent-based simulation from being linear in the

number of agents, to being constant in the number of agents and

polynomial in the number of locations.

We instantiate our theory for a recent ABM for forced migration

(Flee). We show that, even though the rulesets of Flee violate some

of our necessary assumptions, the aggregated Markov chain-based

model, MarkovFlee, achieves comparable accuracy at substantially

reduced computational cost. Thus, MarkovFlee can help NGOs and

policy makers forecast forced migration in certain conflict scenarios

in a cost-effective manner, contributing to fast and efficient delivery

of humanitarian relief.
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1 INTRODUCTION
To model the dynamics of complex systems of autonomous and

interacting agents, agent-based models (ABMs) are an effective ap-

proach. It enables the observation of the collective effects of agent

behaviour and interaction [22], and is well-suited for modelling

sociological and psychological behaviour and the interactions of hu-

mans with each other and their environment [28]. Therefore, ABMs

can be applied across a wide variety of domains and disciplines [14].

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

Capable of eliciting an understanding of the behaviour of moving

people, the ABMs have been used to develop and implement move-

ment simulations [1, 4, 21, 28]. A major drawback, however, is the

computational complexity of ABMs, which typically increases with

the number of agents and the complexity of agent interactions, and

limits their applicability in certain large-scale application scenarios.

To remedy this shortcoming, several approaches have been pro-

posed to reduce the computational complexity of simulating ABMs,

including parallelization [6], distributed computation [26], and sur-

rogate models, which replace the ABM by machine learning models

that predict aggregate statistics of ABM simulation results, e.g., [2].

For settings in which agent interactions are determined by (static

or dynamic) social graphs (such as in epidemic simulations), dis-

tributed computation of ABM simulations can further be sped up

by allocating agents to processes according to their community

membership [26]. That ABMs are Markov chains (MCs) on large

state spaces has been utilized in [3, 20], where the authors proposed

to aggregate this MC to a chain on a much smaller state space, and

discussed in which situations the thus obtained computationally

efficient model yields results that are equivalent to the ABM.

While the works of [3, 20] focus on voter models and similar

ABMs, Markov aggregation has not been applied to agent-based

movementmodels, to the best of our knowledge:While [10] reduced

the ABM to a MC on a small state space (see Section 2), their

resulting model can only be used to simulate average movement

behavior, i.e., is deterministic and therefore does not allow for

uncertainty quantification.

We complement the existing literature by applying Markov ag-

gregation to agent-based movement models. We investigate the

setting in which N agents move independently from each other

on a graph with L vertices (Section 3). We show that, if movement

probabilities do not depend on agent identities but only on proper-

ties of locations, the sequence of vertex populations derived from

the ABM is a MC (Section 4). This MC allows for computationally

more efficient simulation than the original ABM, while yielding a

mathematically equivalent model for the vertex populations.

Using these insights, in Section 5 we instantiate our theory for

the ABM for forced migration (Flee) proposed in [30, 31]. By devi-

ating only slightly from the ruleset of Flee, we show in Sections 6

and 7 that Markov aggregation (MarkovFlee) can provide a substan-

tial speed-up with little or no cost of accuracy in both synthetic

and realistic settings. Such a speed-up is particularly attractive for
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NGOs, which rely on accurate migration forecast simulations to

provide humanitarian relief. We believe that this work is thus not

only interesting theoretically, but that it also contributes to coping

with real-world conflict scenarios.

2 RELATEDWORK
ABMs are used to simulate different types of movement, including

route configuration [9, 12, 27] and route choice [5, 7, 13, 24, 25]

in pedestrian movement, traffic flows [23], bicycle traffic [15], and

forced displacement [4, 19, 21, 29]. Gilbert et al. [8] and Suleimenova

et al. [32] studied effects of policy decisions in human movement

simulations to provide insights for governments, stakeholders, and

policymakers. Searle et al. [28] designed an ABM to simulate con-

flicts and decisions behind the movement of refugees from the

affected areas. Jahani et. al. [11] proposed and analyzed a weather-

coupled multi-scale ABM for South Sudanese refugee movement.

A work related to ours is the paper of Huang and Unwin [10].

There, the authors replaced the ABM of [31] by a MC on a smaller

state space. Indeed, the authors obtain a probabilistic model concep-

tually similar to ours (for which they also recursively compute jour-

ney probabilities, cf. Section 5 and [10]). For N agents migrating on

a graph with L locations during T days and with a maximum daily

distance of dmax, the authors find that their approach has a runtime

complexity of O(L3 + L4dmax + L
2T ), compared to O(LNT ) of the

original ABM. However, while we aim at simulating this reduced

MC to sample vertex population trajectories, the authors instead

used the probabilistic model to obtain the sequence of expected

vertex populations. Thus, their approach results in a deterministic

model and does not allow uncertainty quantification.

Another branch of the literature connected to our work is [3, 20].

There, the authors investigated opinion dynamics on graphs, e.g.,

voter models, and investigated settings in which the corresponding

ABMs can be simplified. Specifically, Banisch showed that there

exist conditions such that the opinion frequencies, i.e., the number of

agents with a given opinion, form aMC; these conditions are rare [3,

Sec. 5.7]. Thus, the authors propose aggregations to MCs on a state

space with finer granularity than the opinion frequencies would re-

quire, and quantify discrepancies with information-theoretic quan-

tities. Similarly, Lamarche-Perrin et al. [20] investigate information-

theoretic formulations to find the optimal aggregate statistics of

an ABM at time t to best predict a desired aggregate statistic at

time t + T . They show that, if agent behavior is homogeneous,

then aggregate statistics derived from the ABM have similar predic-

tive performance for a future aggregate state, while having lower

complexity [20, Fig. 8 & 9].

3 SETTING AND NOTATION
We consider an ABM with N agents moving on a graph G = (V ,E),
where V = {1, . . . ,L} is the set of vertices and E is the set of

(undirected or directed) edges. The state of agent i at time t is the
vertex at which it resides at time t and shall be denoted by the

random variable (RV) Xi,t . Specifically, if agent i is at vertex ℓ at
time t , then we write Xi,t = ℓ. At each time t , agents select their
next vertex according to a (potentially probabilistic) ruleset. We

call the collection Xt = (X1,t , . . . ,XN ,t ) of agent states the world

state.1 The world state evolves according to a MC {Xt , t ∈ N0},

with transition probabilities determined by the agent ruleset and

(potentially) by vertex metadata. Since the transition probabilities

thus may be different for each t , the MC is non-homogeneous.

The state space X = V N
of the world has cardinality LN . We

denote a realization of states by lower-case letters, e.g., Xt = x :=

(x1, . . . ,xN ).
Depending on the scenario under investigation, the resulting

ABM is used to determine some statistics derived from the world

state, e.g., the numbers (but not the identities) of agents at a given

vertex or the number of agents in some induced subgraph of G.

The quantity of interest at time t , denoted by Yt , is then a function

of Xt . Specifically, let f : X → Y be a function from the state

space of the world to a smaller set and let the process {Yt , t ∈ N0}

be defined by Yt = f (Xt ) for all t . A function of a MC need not

possess the Markov property in general; the situation in which it

does is known under the concept of lumpability [17, §6.3]. Indeed,

a sufficient condition for {Yt , t ∈ N0} to be a non-homogeneous

MC is that [16]

P(Yt+1 = y |Xt = x) = P(Yt+1 = y |Yt = f (x)) (1)

holds for all y ∈ Y, x ∈ X, and all t ∈ N0. In this situation, the MC

{Yt , t ∈ N0} is probabilistically equivalent to the function of the

MC {Xt , t ∈ N0}. In other words, rather than simulating the ABM,

it suffices to create a trajectory of the MC {Yt , t ∈ N0}, which

typically lives on a much smaller state space.

4 VERTEX POPULATIONS ARE MARKOV
We now investigate a specific statistic derived from the world state,

namely, the sequence of vertex populations, i.e., the number of agents

that reside at each vertex. Specifically, let Yℓ,t be the number of

agents in location ℓ at time t , i.e.,

Yℓ,t = fℓ(Xt ) :=

Nt∑
i=1

I(Xi,t = ℓ) (2)

where I(A) = 1 if and only if A is true. The process {Yt , t ∈ N0}

defined by Yt = (Y1,t , . . . ,YL,t ) is a function of a MC. For the sake

of brevity, we define the function f := (f1, . . . , fL), i.e., Yt = f (Xt ).
We now show that the sequence of vertex populations is Markov

given that the following two assumptions hold.

Assumption 1. Agents move independently from one another, i.e.,

∀x ,x ′ ∈ X: P(Xt+1 = x |Xt = x ′) =

Nt+1∏
n=1

pn (xn |x
′). (3)

Assumption 2. The movement probabilities of all agents are iden-
tical and influenced only by vertex populations, i.e.,

∀x ,x ′ ∈ X,∀n: pn (xn |x
′) = p(xn |x

′
n , f (x

′)). (4)

Both assumptions are common in ABMs While Assumption 1

allows different movement probabilities of different agents, As-

sumption 2 requires that all agents have the same movement model.

Thus, while Assumption 1 excludes models in which agent behavior

is coupled (e.g., via an underlying social network), Assumption 2

1
Simulations with changing agent numbers, i.e., where N = Nt , can be accomplished

by creating a separate location that acts as a reservoir form which agents can be

spawned or to which agents can resign.
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excludes agent rule sets that depend on internal agent states (but

see also Section 8 for potential generalizations). With these assump-

tions, we are ready to present the following theorem.

Theorem 1. Under Assumptions 1 and 2 and with f defined in (2),
the sequence of vertex populations {Yt } satisfies the Markov property.

The proof relies on [3, Th. 3.2] and the fact that, given the two

assumptions, neither P(Xt+1 = x |Xt = x ′) nor the vertex popula-
tions change under permutations of agent identities. To keep the

paper self-contained, we carry out the proof in detail.

Proof. It suffices to prove that (1) holds. Let f −1(y) := {x ∈

X: ∀ℓ ∈ V :

∑N
i=1
I(xi = ℓ) = yℓ} denote the preimage of y under

f and suppose that at time t the world configuration is x ′. Then,
with (3) and (4) we obtain

P(Yt+1 = y |Xt = x ′)

=
∑

x ∈f −1(y)

N∏
n=1

p(xn |x
′
n , f (x

′)) (5)

=
∑

x ∈f −1(y)

L∏
ℓ′=1

L∏
ℓ=1

∏
n: x ′n=ℓ′,x ′n=ℓ

p(xn |x
′
n , f (x

′)) (6)

=
∑

x ∈f −1(y)

L∏
ℓ′=1

L∏
ℓ=1

p(ℓ |ℓ′, f (x ′)) | {n: x ′n=ℓ
′,xn=ℓ } | . (7)

The first sum in the last line contains the element x• such that the

first y1 elements of x• are equal to 1, the next y2 elements of x• are
equal to 2, etc, i.e.,

x• = (1, 1, . . . , 1, 2, 2, . . . ,L,L, . . . ,L). (8)

All other elements in this sum are multiset permutations of x•.
Letting Π(y) denote the set of multiset permutations, we have

f ((x•π (1), . . . ,x
•
π (N ))) = y for every π ∈ Π(y). Thus,

P(Yt+1 = y |Xt = x ′)

=
∑

π ∈Π(y)

L∏
ℓ′=1

L∏
ℓ=1

p(ℓ |ℓ′, f (x ′))
| {n: x ′n=ℓ

′,x •π (n)=ℓ } | . (9)

Suppose further that y′ = f (x ′) and that x ′′ is an arbitrary world

state such that y′ = f (x ′′), i.e., x ′′ and x ′ are world states resulting
in the same vertex population. Evidently, x ′′ is obtained by per-

muting the agent indices of x ′; let π◦ denote the corresponding
permutation, i.e., x ′′n = x ′π◦(n)

. Then,

P(Yt+1 = y |Xt = x ′′)

=
∑

π ∈Π(y)

L∏
ℓ′=1

L∏
ℓ=1

p(ℓ |ℓ′, f (x ′))
| {n: x ′π◦(n)=ℓ

′,x •π (n)=ℓ } |
(10)

=
∑

π ∈Π(y)

L∏
ℓ′=1

L∏
ℓ=1

p(ℓ |ℓ′, f (x ′))
| {n: x ′n=ℓ

′,x •
π−1

◦ (π (n))
=ℓ } |
. (11)

Since π◦ is a permutation, so is π−1

◦ . Further, the set of all multiset

permutations is closed under permutations (any unique assignment

of the labels in (8) must be achievable by applying some π ∈ Π(y)),
thus π−1

◦ Π(y) = Π(y). Using this in (11) and comparing the result

to (7) yields P(Yt+1 = y |Xt = x ′) = P(Yt+1 = y |Xt = x ′′). Since this

holds for every pair x ′,x ′′ of elements from the preimage f −1(y′),
we have P(Yt+1 = y |Xt = x) = P(Yt+1 = y |Yt = f (x)), i.e., we
have (1). This completes the proof. □

Given Theorem 1, one can thus simulate how vertex populations

change by simulating {Yt } directly instead of simulating the ABM.

The result of this direct simulation is probabilistically equivalent,

i.e., the distribution of several random rollouts of {Yt } coincides
with the distribution of the vertex populations from several runs

of the ABM — the ABM does not provide any additional useful

information for the computation of the vertex populations than

what a direct simulation of {Yt } does.
We close this section by providing a closed form for P(Yt+1 =

y |Yt = y′). To this end, suppose that at iteration t there are y′
ℓ′

agents at vertex ℓ′. Since these agents all decide for their next vertex

independently (Assumption 1) and homogeneously (Assumption 2),

the number of agents that move from vertex ℓ′ to any other vertex

is given by a multinomial distribution with y′
ℓ′
attempts and with

probabilities given by p(ℓ |ℓ′,y′). Specifically, letting nℓ′→ℓ denote

the number of agents that move from vertex ℓ′ to vertex ℓ, we have

that the probability for the vector nℓ′→ = (nℓ′→1
, . . . ,nℓ′→L) is

given by

p(nℓ′→) =

(
y′
ℓ′

nℓ′→

) L∏
ℓ=1

p(ℓ |ℓ′,y′)nℓ′→ℓ
(12)

if

∑L
ℓ=1

nℓ′→ℓ = y
′
ℓ′
and zero otherwise, and where(
y′
ℓ′

nℓ′→

)
=

y′
ℓ′

!

nℓ′→1
! · · · · · nℓ′→L !

(13)

is the multinomial coefficient. From this follows that the MC of

vertex populations has a transition probability matrix defined by

P(Yt+1 = y |Yt = y
′) =

∑
nℓ′→

L∏
ℓ′=1

(
y′
ℓ′

nℓ′→

) L∏
ℓ=1

p(ℓ |ℓ′,y′)nℓ′→ℓ
(14)

where the sum runs over all nℓ′→ such that

∑L
ℓ=1

nℓ′→ℓ = y
′
ℓ′
and∑L

ℓ′=1
nℓ′→ℓ = yℓ hold.

5 INSTANTIATION FOR MIGRATION
SIMULATION

We now instantiate the previous results for the agent-based refugee

movement model Flee proposed in [30, 31].

5.1 Description of Flee
Flee is an agent-based simulation toolkit tailored for simulating

the movement of individuals across geographical locations. In Flee,
agents move on a weighted graph G = (V ,E,W ), where each vertex
in V corresponds to a geographic location of interest (city, settle-

ment, conflict region, humanitarian camp, etc.), and each edge

(ℓ,k) ∈ E has a weight wℓ,k ∈ W corresponding to the distance

between locations ℓ and k . The total number of agents changes

over time as conflicts evolve, i.e., N = Nt . Each agent represents a

forcibly displaced person that, in each time step, decides whether to

stay at its current or move to a neighbouring location, attempting

to reach a safety zone (i.e., camps).

Specifically, let ρ(ℓ, t) denote the probability that an agent leaves

location ℓ at iteration t , and let the probability of moving to location
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P(Xi,t+1 = ℓ |Xt = x ′)

=
∑

(ℓ0, ℓ1, ..., ℓn )∈Rℓ′, ℓ

n−1∏
m=1

ρ(ℓm , t)

Zℓm

ϕ(ℓm+1, t)

wℓm, ℓm+1

κ(ℓm+1, fℓm+1
(x ′))+

∑
(ℓ0, ℓ1, ..., ℓn )∈Rℓ′, ℓ

(1−ρ(ℓn , t))
n−1∏
m=1

ρ(ℓm , t)

Zℓm

ϕ(ℓm+1, t)

wℓm, ℓm+1

κ(ℓm+1, fℓm+1
(x ′))

(15)

ℓ from one of its neighbors be proportional to its attractivity score

ϕ(ℓ, t). Further, let κ(ℓ,yℓ) be a scaling factor that depends on the

vertex populationyℓ of location ℓ – concretely, if ℓ is a humanitarian

camp, then κ(ℓ,yℓ) is 1 if its vertex population is below 90% of

its capacity, 0 if it is above capacity, and decreases smoothly in

between. At the beginning of iteration t , each agent has a travel

budget of B = dmax. Each agent i then performs the following steps

in sequence (see also Algorithm 1): i) it decides whether to change

its current location xi,t depending on ρ(xi,t , t) (line 11); if it decides
not to move, then xi,t+1 = xi,t ; ii) it picks its next destination ℓ,
which is a neighbor of xi,t in G, with a probability proportional

to
ϕ(ℓ,t )
wxn,t , ℓ

κ(ℓ, fℓ(xt )) (line 15); iii) if wxi,t , ℓ > B, then the agent

stays on the route to ℓ and can only complete its journey in one of

the next iterations; otherwise the agent starts again at step i) with

xi,t = ℓ and B = B −wxi,t , ℓ (line 20). The simulation runs for T
time steps.

In the second version of the Flee ruleset (FleeV2), some rules

have been revised, enabling travelling on foot in case of blocked or

waylaid roads and lack of resources. Further, the movement speed

of agents has been changed, a new mechanism has been developed

to prevent agents pausing at the start of new trip, and the weights

of camp and conflict locations have been revised.

Computational Complexity Analysis. To evaluate the com-

putational complexity of one iteration of Flee, leth := dmax/minℓ,k wℓ,k
denote the maximum number of edges an agent can traverse before

its travel budget is exhausted. Therefore, while the outer loop in

Algorithm 1 runs over N agents, the inner loop runs over at most

h iterations. In practice, the number of iterations of the inner loop

will be much smaller, because the agents may choose to stay at a

location without exhausting their budget. Therefore, the worst-case

runtime complexity of a single iteration is O(Nh).

5.2 Markov Aggregation of Flee: MarkovFlee
To convert the agent ruleset of Flee to a probabilistic model that

is compatible with Assumption 2, we assume that agents do not

reside on routes, but always terminate their journey at a location

in the graph G. Thus, we either have to allow that some agents

exceed their daily movement budget in order to arrive at their next

destination, or that agents cannot fully exploit their movement

budget. Both options exhibit similar performance if the distances

in G are small in comparison to dmax. In this work, we choose the

former option.

Specifically, let P(ℓ′, ℓ) ⊂ V ∗ denote all sequences (ℓ0, ℓ1, . . . , ℓn )
of vertices with initial vertex ℓ0 = ℓ

′
and last vertex ℓn = ℓ. Then,

Algorithm 1 Flee [31] (abbridged)

1: Initialize agent ecosystem

2: t ← 0

3: while t < T do
4: t ← t + 1

5: for all agents n do
6: Travel budget B ← dmax

7: if Agent n is on a route then
8: Move agent towards destination ℓ and adjust B
9: end if
10: while B > 0 do
11: Choose whether to move based on ρ(xn,t , t)
12: if chose to stay then
13: break
14: end if
15: Pick destination ℓ based on

ϕ(ℓ,t )
wxn,t , ℓ

κ(ℓ, fℓ(xt ))

16: B ← B −wxn,t , ℓ
17: if B < 0 then
18: Assign agent to route

19: else
20: xn,t ← ℓ
21: end if
22: end while
23: end for
24: end while

we have

Rℓ′, ℓ :=

{
(ℓ0, ℓ1, . . . , ℓn ) ∈ P(ℓ

′, ℓ):

n∑
m=1

wℓm−1, ℓm < dmax

}
(16)

and

Rℓ′, ℓ :=

{
(ℓ0, ℓ1, . . . , ℓn ) ∈ P(ℓ

′, ℓ):

n−1∑
m=1

wℓm−1, ℓm < dmax,

n∑
m=1

wℓm−1, ℓm ≥ dmax

}
(17)

for the set of routes starting at ℓ′ and terminating at ℓ, having

a total length less than dmax and exceeding dmax only at the last

leg of the route, respectively. For example, for the toy graph in

Fig. 1 and dmax = 250, we have RA,C = {(A,C), (A,B,C)} and

RA,C = {(A,B,A,C), (A,B,A,B,C)}.
Now suppose that the world state at iteration t is x ′ and that

agent i is at location ℓ′, i.e., Xi,t = ℓ
′
. Then, the probability that

agent i moves to location ℓ at iteration t + 1 is given by (15) at the

top of the previous page, where Zℓm is a normalization constant
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that ensures that the term
ϕ(ℓm+1,t )
wℓm , ℓm+1

κ(ℓm+1,y
′
ℓm+1

) sums to one

over the neighbors of ℓm in G.

In our code, we use a recursion to compute the probabilities

in (15) for all pairs of vertices once at the beginning of each simu-

lation, and update them whenever the change in camp utilization

yℓ between iteration t and t + 1 induces a change in the scaling

factor κ(ℓ,yℓ). Repeatedly performing these updates slows down

MarkovFlee, as we show in the experiments in Sections 6.2. To im-

prove the computational efficiency of these updates, we only update

the probabilities for pairs of vertices for which at least one path

passes through a camp with changed scaling factor. To further im-

prove the efficiency of the recursion, we use dynamic programming,

i.e., we store the results of each recursive state once computed and

reuse them when we encounter the same state later. This avoids

computing probabilities that are already computed, which may

happen in the recursive approach due to cycles in the graph G.

As it is evident from (15), the dependence of the movement of

agent i on the past world state simplifies as

P(Xi,t+1 = ℓ |Xt = x ′)

= P(Xi,t+1 = ℓ |Xi,t = ℓ
′,Yt = f (x ′)) =: p(ℓ |ℓ′, f (x ′)) (18)

i.e., Assumption 2 is fulfilled. Together with Assumption 1, Theo-

rem 1, (12), and (15) we can thus formulate ourMC-based simulation

in Algorithm 2. We henceforth refer to this algorithm asMarkovFlee.

Algorithm 2 MarkovFlee (this work)

1: Initialize simulation ecosystem

2: Compute travel probabilities p(ℓ |ℓ′, f (x ′)) by (15)

3: t ← 0

4: while t < T do
5: t ← t + 1

6: for all locations ℓ′ do
7: Sample agent reassignments nℓ′→ according to (12)

8: end for
9: for all locations ℓ do
10: update population by yℓ ←

∑
ℓ′ nℓ′→ℓ

11: if Population yℓ induces a change in κ(ℓ,yℓ) then
12: Update travel probabilities for all affected routes

13: end if
14: end for
15: end while

Remark 1. The main difference between Algorithm 1 and Algo-
rithm 2 is that the former iterates over all agents, while the latter
iterates over all locations. Thus, in MarkovFlee, agents move jointly,
while in Flee they move individually. In Flee, as individual agents
enter a camp ℓ, the scaling factor κ(ℓ,yℓ) decreases, which makes
the camp less attractive for agents that are iterated subsequently. In
MarkovFlee, in contrast, the fact that agents move jointly may lead
to camp overutilization, i.e., more agents arrive at the camp location
ℓ than the camp can handle.

Computational Complexity Analysis. We now evaluate the

computational complexity of a single iteration of MarkovFlee. Sam-

pling agent reassignments (line 7) and updating vertex populations

(line 10) have a complexity of O(L|Nmax |), where |Nmax | ≤ L is

maximum number of locations that can be reached from an arbi-

trary location with a budget of dmax. We remain to analyze the

complexity of computing travel probabilities (15). For each location

ℓ ∈ V , the recursive implementation explores travels to locations

in the neighborhood N(ℓ) of ℓ in G. With |N(ℓ)| ≤ L and h being

the the maximum number of edges an agent can traverse with a

budget of dmax, the worst-case runtime complexity ofMarkovFlee is
O(Lh ). Since h is a very crude upper bound, the worst-case runtime

complexity will be smaller for most realistic graphs.

The dynamic programming implementation of one iteration of

MarkovFlee has the same worst-case runtime complexity of O(Lh ).
However, this worst-case scenario is only attainable when no two

paths have the same total distance, which is impossible in prac-

tice due to cycles. In particular, if we have a path with distance d
that has c non-identical (possibly nested) cycles, the same budget

B = dmax − d is obtained regardless of the direction in which the

cycles are traversed. This effectively reduces the number of unique

location/budget tuples that the dynamic programming implemen-

tation has to consider.

Remark 2. Note that h and |Nmax | depends on both the agent
ruleset (viadmax) and the graph (viawℓ,k ). While for large geographic
regions these numbers may increase if the number L of locations is
increased, in practice increasing L will at some point not lead to a
decrease of wℓ,k , as routes below a certain minimum distance will
not lead to more accurate simulation results. Therefore, h and |Nmax |

can be considered constant, or at most o(L).

6 SYNTHETIC EXPERIMENTS
We performed of experiments on two synthetic toy examples (Sec-

tions 6.1 and 6.2) to illustrate and validate our approach. The code

for our experiments is fully backwards compatible with Flee and is

available online
2
. All synthetic experiments were run on a virtual

machine with 250 GB RAM and 28 Intel® Xeon® Gold 6248 CPUs

with 2.50 GHz.

6.1 Toy Example on a Small Graph
The first example considers movements on a small graph with four

vertices, as depicted in Figure 1. Initial agent populations are set

to Y0 = (500γ , 0, 0, 0), and in each iteration γ · 5500/365 agents are

spawned at vertex A, where γ ∈ {1, 2, 5, 10, 20, 50, 100, 200, 1000}.

We set dmax = 250. The two camps C and D have unlimited capac-

ities, i.e., we have κ(C,yC ) = κ(D,yD ) ≡ 1. The probabilities that

agents leave a location are static, i.e., ρ(ℓ, t) = ρ(ℓ) for all ℓ. We ran

both Flee and MarkovFlee for T = 100 iterations and recorded the

vertex populations for all four locations. To account for random

effects, 50 independent simulations were run. Figure 1 displays the

means and standard deviations of vertex populations and shows

good agreement between Flee and MarkovFlee. Differences seen
especially early during simulation (small t ) can be attributed to the

fact that agents may reside on routes for Flee, but must be assigned

to vertices during each iteration for MarkovFlee. This difference
continues to affect vertex populations throughout the simulation,

giving the appearance that the numbers of Flee “lag behind” those

of MarkovFlee.

2
https://github.com/bcgeiger/MarkovFlee
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Figure 1: Top: Toy example with a single conflict site (A) and
two camps (C,D) with unlimited capacity. Edge labels corre-
spond to route distances wℓ,ℓ′ , values inside vertices denote
the probability that agents leave the vertex ρ(ℓ, t). Bottom:
Population (means and standard deviations) at vertex B com-
puted by Flee and MarkovFlee for γ = 2 (left) and γ = 100

(right).
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Figure 2: Runtime in seconds for Flee andMarkovFlee in the
toy example (left) and the synthetic conflict scenario (right).

We present the runtime complexity of Flee and MarkovFlee in
Figure 2. While, as anticipated, the runtime of Flee increases linearly
with the number of agents (or, equivalently, with the scaling factor

γ ), the runtime of MarkovFlee appears to be independent of the

number of agents. While we believe that drawing samples from (12)

should depend mildly on the vertex populations Yℓ,t , apparently
this is not a bottleneck for the current implementation.

6.2 Synthetic Conflict Scenario with Limited
Camp Capacities

The second example is a synthetic conflict scenario with a single

conflict site (at which agents are spawned with the same rule as in

Section 6.1) and two camps. The camps have limited capacity, i.e.,

κ(E,yE ) and κ(F ,yF ) depend onyE andyF as indicated in Section 5.

As a consequence, the travel probabilities in (15) must be updated

whenever the camp utilization approaches capacity. We still have

ρ(ℓ, t) = ρ(ℓ) for all ℓ and dmax = 250. We again ran Flee and

MarkovFlee for T = 100 iterations, with 25 restarts to account for

random effects. The results in Figure 3 indicate a good agreement

between Flee and MarkovFlee. For larger values of γ , we see larger

deviations between Flee and MarkovFlee for the camp populations.

Specifically, we see that the camp populations regularly overshoot

capacity, followed by a phase during which agents leave the camps

(with a probability of ρ(E) = ρ(F ) = 0.01).

This behavior is related to our observations in Remark 1 and

to the fact that in MarkovFlee agents move jointly, while in Flee
they move individually. At some iteration t , let YD,t = 100000 and

YE,t = YF ,t = 0. Since camps can be considered more attractive

than other locations, i.e., ϕ(E, t),ϕ(F , t) > ϕ(B, t) > ϕ(A, t), we
can assume that MarkovFlee will distribute the 100000 agents at

D over the camps E and F, exceeding their capacities. Since then

κ(E,yE ) = κ(F ,yF ) = 0, no more agents will travel to these camps,

until capacity has been freed by agents leaving the camps. Flee, in
contrast, will assign agents individually and recomputes κ after

each agent movement. Thus, as soon as camp capacities are reached,

agents will stop moving from D to E or F, but will rather move to

location B instead.

The fact that camps have finite capacity and that, thus, the fac-

tors κ(E,yE ) and κ(F ,yF ) need to be recomputed regularly also has

effects on the runtime ofMarkovFlee. While Flee still scales linearly

in the number of agents, we now see that the repeated computation

of (15) increases the runtime of MarkovFlee as γ increases from 10

to 100 (see Figure 2). After γ has reached 100, the travel probabili-

ties must be updated after each iteration. Since these updates do

not depend on the number of agents, the overhead remains con-

stant and thus compares favorably w.r.t. Flee. Indeed, for γ = 1000,

MarkovFlee is again two orders of magnitude faster than Flee. In ad-

dition, Figure 2 shows that dynamic programming further reduces

the runtime complexity compared to the recursive computation of

travel probabilities.

7 SIMULATION OF REALISTIC CONFLICT
SCENARIOS

We finally investigate realistic conflict scenarios, in South Sudan,

Central African Republic (CAR), Burundi, and Mali. The South

Sudan conflict between forces of the government and opposition

forces started in December 2013. Since then, more than four mil-

lion people have been forced to displace and become refugees. The

simulation period, in which we covered the most intense conflicts,

covers 604 days between 15th December 2013 and 10th August 2015.

In the CAR, which has been in turmoil since a violent takeover

of power in 2013, more than 640,000 people fled the country in

search of safety, and an additional 630,000 were internally displaced

according to UNHCR. The majority of those sought refuge in neigh-

boring countries such as Cameroon, Chad, the Democratic Republic

of the Congo (DRC) and the Republic of the Congo, with smaller

numbers in Sudan and South Sudan. The crisis in Burundi started

in April 2015 after President Pierre Nkurunziza announced he was

running for a third term, in violation of the country’s constitution.

By November of the same year, around 2% of Burundi’s popula-

tion had fled to neighbouring countries, Tanzania, Rwanda, DRC

and Uganda. Since 2015, more than 400,000 refugees and asylum-

seekers have fled the country. For the Mali conflict scenario, since

the uprising started in 2012, the security situation has gone from

bad to worse in much of the region and attacks by armed groups

have increased since then. According to UNHCR and UNICEF, since
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Figure 3: Left: Synthetic conflict scenario with a single conflict site (A) and two camps (E,F) with capacities of 18000 and 17000,
respectively. Vertex populations on locations B and F computed by Flee and MarkovFlee for γ = 2 (middle) and γ = 200 (right)
in the synthetic conflict scenario.

T NT L |E | |C | ¯h

South Sudan 604 433k 51 60 10 2.2

CAR 820 424k 63 86 14 2.4

Burundi 396 205k 30 41 5 4.9

Mali 300 90k 23 35 7 1.5

Table 1: Summary statistics of the conflict scenarios, depict-
ing the simulation time T , the number of agents at the end
of the simulation NT , number of locations L and camps |C |,
the number of routes |E |, and ¯h, which is the ratio between
the travel budget dmax and the average route distance.

January 2012, nearly 375,000 Malians have fled the conflict in the

north of their country. Some 145,000, the majority of them women

and children, have crossed into Burkina Faso, Mauritania and Niger.

Our simulation starts on 1st March 2012 and ends in December

2012, for a total of 300 days. Table 1 provides an overview of the

numbers characterizing the scenarios.

We ran simulations with MarkovFlee, Flee [31], and FleeV2 [30],
with the default parameter settings. The updated ruleset of FleeV2
prevents agents from residing at a location if they have not ex-

hausted their movement budget in the previous time steps, which

effectively increases the probabilities ρ that agents leave their cur-

rent locations. To emulate the effects of the corresponding rule, we

ran MarkovFlee with an increased value of ρ for locations that are

neither camps nor conflict zones (i.e., we increased ρ(ℓ) from 0.3 to

0.5). We executed all simulations on a Notebook with 12 GB RAM

and an Intel® Core™ i5-8250U CPU with 1.60 GHz

We compare Flee, FleeV2, and MarkovFlee in terms of runtime

and the differences between camp populations yℓ,t predicted by

the simulation and interpolated from UNHCR data, respectively.

Specifically, if C ⊂ V is the set of camps and if y•
ℓ,t is the true pop-

ulation of camp ℓ ∈ C at time t , then the mean absolute percentage

error (MAPE) at time t is given as

e(t) =
1∑

ℓ′∈C y•
ℓ,t

∑
ℓ∈C

���yℓ,t − y•ℓ,t ��� . (19)

The error reported in Table 2 is the MAPE averaged over the entire

simulation duration, i.e., e = 1/T
∑T
t=1

e(t).
Our results in Table 2 show that, in general,MarkovFlee achieves

similar accuracy as the Flee, and that FleeV2 consistently outper-

forms competing methods, which is in line with the arguments

in [30]. Indeed, MarkovFlee with default settings performs close

to Flee in the South Sudan and CAR scenarios, while it performs

worse for the Burundi and Mali conflicts. Adapting the simulation

settings of MarkovFlee by increasing the movement probability ρ
from 0.3 to 0.5 for locations that are neither conflict sites nor camps

substantially improved the performance of MarkovFlee. Thus, even
thoughMarkovFlee is based on the reduced ruleset of Flee, adapting
its parameters may recover parts of the thus reduced accuracy.

Our runtime analyses in Table 2 show that MarkovFlee is ap-
proximately one order of magnitude faster than Flee and FleeV2 in
three out of four scenarios. Indeed, Flee and FleeV2 suffer from long

runtimes especially when the number of refugees N is large. In

contrast, we see that in the Burundi conflict scenario, MarkovFlee
is slower than Flee and FleeV2. This conflict is characterized by rel-

atively short distances between locations, which means that agents

may visit multiple locations at each iteration. This, in turn increases

the cost of recomputing the probabilities in (15).

We finally investigate exemplary camp populations in Figure 4.

It can again be seen that MarkovFlee performs similarly to its pre-

decessors Flee and FleeV2, and that the general agreement between

simulations and ground truth is satisfactory for many locations.

The results for the Fassala-Mbera camp in the Mali conflict further

shows that FleeV2 is capable of initializing camp populations cor-

rectly, which we believe is an important factor contributing to its

superior accuracy. Future work shall incorporate such prior infor-

mation about camp utilization also in MarkovFlee. Finally, we see
that in theMentao camp in theMali conflict, also Flee and, to a lesser
extent, FleeV2 initially exceed camp populations. Indeed, Mentao’s

distance to its neighbors in G exceeds dmax. Thus, multiple agents

at neighboring locations can start travelling to Mentao without

immediately affecting the camp capacity and thus κ (which would

prevent agents from selecting the corresponding route). When the
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South Sudan CAR Burundi Mali

MAPE runtime (s) MAPE runtime (s) MAPE runtime (s) MAPE runtime (s)

Flee [31] 0.461 1954 0.387 3189 0.646 351 0.412 310

FleeV2 [30] 0.48 1979 0.333 2993 0.528 657 0.358 204

MarkovFlee (ρ = 0.3) 0.48 51 0.398 516 0.711 776 0.48 10

MarkovFlee (ρ = 0.5) 0.46 55 0.39 538 0.698 897 0.404 10

Table 2: Mean absolute percentage error and runtime (in seconds) of MarkovFlee and competing methods for four realistic
conflict scenarios. See text for details.

Figure 4: Exemplary camp populations for the camps in (from left to right): Adjumani and West Kordofan (South Sudan
conflict) and Fassala-Mbera and Mentao (Mali conflict scenario). In general, all ABM approaches perform similarily, which is
in line with the results from Table 2.

agents arrive at the next iteration, camp capacity is exceeded. The

corresponding behavior of MarkovFlee is explained by Remark 1.

8 DISCUSSION AND CONCLUSION
In this work, we discussed ABMs for agent movements on a graph

and showed that under certain assumptions the sequence of vertex

populations is a MC (Theorem 1). We then instantiated this insight

for a recent ABM for forced migration (Flee) and found that the

resulting MC-based approach (MarkovFlee) can lead to a substantial

speed-up with little or no loss of accuracy, both in synthetic and

realistic conflict scenarios. Specifically, our analysis in Section 5

shows that the runtime complexity is reduced from O(NhT ) to

O(LhT ). Under the reasonable assumption that h is constant with

L and N , this means that the runtime complexity of MarkovFlee is
polynomial in the number of locations and constant in the number

of agents, while that of Flee is linear in the number of agents. Indeed,

runtime complexity was substantially reduced in conflicts with a

large number N of refugees and in settings where routes between

locations are long (small h). Future work shall investigate whether

this computational speed-up can be maintained for large graphs

with 100–10,000 locations.

We believe that results similar to Theorem 1 can be derived for

other ABMs. For example, for ABMs with finitely many agent types

that are characterized by different rulesets (e.g., travelling by foot

and by car), we believe that the sequence of type-specific popula-

tions is still Markov if Assumption 1 holds. The authors of [3, 20]

showed that aggregation can be useful for the voter model. Another

example is epidemic spreading: Assuming a well-mixed popula-

tion, epidemic spreading can be simulated by agent movement on a

graph with three vertices (susceptible, infected, recovered). Given

that Assumption 2 holds, i.e., that the infection probability depends

on the total number of infected agents, Markov aggregation leads to

the SIR model, cf. [18]. Finally, continuous-time ABMs may benefit

from the concept of lumpability for continuous-time MCs.

While the equivalence between the ABM and a MC on vertex

populations shown in Section 4 holds under quite general condi-

tions, seemingly small changes to the agent rulesets can cause this

equivalence to break down. We illustrated this at the hand of Flee
and MarkovFlee. First, in Flee one has the option of computing the

camp capacity factor κ either after each agent movement, or at the

end of each iteration, with the authors of Flee having chosen the

former option. In MarkovFlee, this choice is not available, as the
concept of individual agent movements does not apply. Second, the

fact that agents reside on links or that agents decide whether they

leave a location depends on the total distance they have traveled

within the last two iterations requires that agents have an internal

state: the position on the route towards the target destination (see

line 8 in Algorithm 1) or a log of traveled distances. Such an internal

state prevents us from treating agents equivalently, as the agent

identity then affects travel probabilities (via the extended agent

state). Effectively, the probability that an agent i leaves location ℓ
at iteration t depends also on i directly, i.e., ρ(ℓ, t) = ρ(ℓ, t , i). As
a consequence, Assumption 2 is violated and Theorem 1 does not

apply. Nevertheless, in the case of FleeV2 or Flee, we showed that

comparable accuracy can be achieved by appropriately adjusting

other ruleset parameters of MarkovFlee, effectively enabling us to

reap the computational speed-up implied by Theorem 1. Hence,

even if lumpability in the sense of Theorem 1 does not hold, Markov

aggregation may prove to be useful if the sequence of aggregate

statistics is at least approximately Markov. Future work shall inves-

tigate Markov aggregation to different ABMs and characterize the

resulting trade-off between accuracy and runtime.
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